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1 The spherically symmetric equations
Let g be a spherically symmetric Lorentzian metric

g = −Ω2 dudv + r2gS2 , (1.1)

onM3+1 where gS2
.
= dϑ2+sin2 ϑ dϕ2 is the round metric on the unit sphere. We use the notation /g

.
= r2gS2 .

a) Show that the Christoffel symbols involving null coordinates are given by

Γuuu = ∂ulog Ω2, Γvvv = ∂vlog Ω2, (1.2)

ΓuAB =
2∂vr

Ω2r
/gAB , ΓvAB =

2∂ur

Ω2r
/gAB , (1.3)

ΓABu =
∂ur

r
δAB , ΓABv =

∂vr

r
δAB , (1.4)

and the totally spatial Christoffel symbols ΓABC are the same as for gS2 in the coordinates (ϑ, ϕ).

b) Show that the Ricci tensor is given by

Ruu = −2Ω2

r
∂u

(
∂ur

Ω2

)
, Ruv = −∂u∂vlog Ω2 − 2

r
∂u∂vr, (1.5)

Rvv = −2Ω2

r
∂v

(
∂vr

Ω2

)
, Rϑϑ = 1 +

4∂ur∂vr

Ω2
+

4r

Ω2
∂u∂vr, (1.6)

Rϕϕ = sin2 ϑRϑϑ. (1.7)

c) Let φ be a free massless scalar field on (M, g), i.e., a smooth function φ : M → R which solves the
linear wave equation

�gφ
.
= ∇µ∇µφ = 0. (1.8)

If φ is also spherically symmetric, i.e., φ = φ(u, v), show that

�gφ = − 4

Ω2

(
∂vr∂uφ

r
+
∂ur∂vφ

r
+ ∂u∂vφ

)
. (1.9)
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d) Define the energy-momentum tensor of φ by

Tµν
.
= ∂µφ∂νφ− 1

2gµν∂
αφ∂αφ. (1.10)

Prove that
∇µTµν = �gφ∂νφ. (1.11)

(This part of the exercise does not rely on spherical symmetry.)

e) For a spherically symmetric scalar field, show that

Tuu = (∂uφ)2, Tuv = 0, (1.12)

Tvv = (∂vφ)2, TAB =
2

Ω2
∂uφ∂vφ /gAB . (1.13)

f) The Einstein field equations for a self-gravitating massless scalar field (with zero cosmological constant)
read

Rµν − 1
2Rgµν = 2Tµν (1.14)

with Tµν as in (1.10). Prove that

Rµν = 2∂µφ∂νφ, (1.15)
�gφ = 0. (1.16)

(This part of the exercise does not rely on spherical symmetry.)

g) For a spherically symmetric scalar field, derive the spherically symmetric Einstein equations

∂u∂vr = −Ω2

4r
− ∂ur∂vr

r
, (1.17)

∂u∂vlog Ω2 =
Ω2

2r2
+

2∂ur∂vr

r2
− 2∂uφ∂vφ, (1.18)

∂u∂vφ = −∂ur∂vφ
r

− ∂vr∂uφ

r
, (1.19)

∂u

(
∂ur

Ω2

)
= − r

Ω2
(∂uφ)2, (1.20)

∂v

(
∂vr

Ω2

)
= − r

Ω2
(∂vφ)2. (1.21)

2 The Hawking mass and monotonicities in spherical symmetry
In this problem we again consider a spherically symmetric self-gravitating scalar field. Recall the Hawking
mass m, defined by

m =
r

2
(1− g(∇r,∇r)) =

r

2

(
1 +

4∂ur∂vr

Ω2

)
. (2.1)

a) Derive the equations

∂um = −2r2∂vr

Ω2
(∂uφ)2, ∂vm = −2r2∂ur

Ω2
(∂vφ)2. (2.2)

b) Show that if ∂ur(u, v) ≤ 0 (resp., < 0), then ∂ur(u′, v) ≤ 0 (resp., < 0) for all u′ ≥ u.

c) Show that if ∂vr(u, v) ≤ 0 (resp., < 0), then ∂vr(u, v′) ≤ 0 (resp., < 0) for all v′ ≥ v.

d) If ∂ur(u, v) ≤ 0, show that ∂vm(u, v) ≥ 0.

e) If ∂vr(u, v) ≥ 0, show that ∂um(u, v) ≤ 0.
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f) If ∂ur < 0 at a point (u, v), show the following equivalences at (u, v):

∂vr > 0⇐⇒ 2m

r
< 1, (2.3)

∂vr = 0⇐⇒ 2m

r
= 1, (2.4)

∂vr < 0⇐⇒ 2m

r
> 1. (2.5)

g) Show that if ∂ur < 0, then

∂u

(
Ω2

−∂ur

)
≤ 0. (2.6)

3 The characteristic initial value problem
In this problem, we set up and solve the characteristic initial value problem for the spherically symmetric
Einstein-scalar field system (away from the center).

3.1 Definitions and the initial data
Given U0 < U1 and V0 < V1, set

C(U0, U1, V0, V1)
.
= ({U0} × [V0, V1]) ∪ ([U0, U1]× {V0}), (3.1)

R(U0, U1, V0, V1)
.
= [U0, U1]× [V0, V1], (3.2)

so that C is the past boundary of R when viewed as subsets of R2
u,v equipped with the standard Minkowski

metric −dudv and time orientation. A Ck characteristic data set for the spherically symmetric Einstein-
scalar field system on C consists of continuous functions r̊, Ω̊2, φ̊ : C → R such that r̊ and Ω̊2 are strictly
positive, r̊ is Ck+1 when restricted to the two intervals in C, and Ω̊2 and φ̊ are Ck when restricted to the
two intervals. Furthermore, we require that (1.20) and (1.21) hold on C for (̊r, Ω̊2, φ̊).

a) Show that Ω̊2 and φ̊, together with r̊(U0, V0), ∂ur̊(U0, V0), and ∂v r̊(U0, V0), determine a unique char-
acteristic data set on ({U0} × [V0, V

′
1 ]) ∪ ([U0, U

′
1] × {V0}) if V ′1 − V0 and U ′1 − U0 are sufficiently

small.

3.2 The proxy system
We will prove local well-posedness for systems of nonlinear wave equations on R2

u,v of the form

∂u∂vΨ = F (Ψ, ∂Ψ), (3.3)

where Ψ : D → RN , F : RN × R2N → RN is smooth, and D ⊂ R2
u,v.

a) Show that the spherically symmetric Einstein-sclar field system can be brought into this form if r > 0,
with the variables Ψ1 = log r, Ψ2 = log Ω2, and Ψ3 = φ.

b) We say that the nonlinearity F satisfies the null condition if there exist functions F0, Fij : RN → RN
such that

F (Ψ, ∂Ψ) = F0(Ψ) +
∑
i,j

Fij(Ψ)∂uΨi∂vΨj . (3.4)

Show that the spherically symmetric Einstein-scalar field model satisfies the null condition.
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3.3 Uniqueness
A C1 function Ψ : D → RN is said to be a C1 solution of (3.3) if for any R = R(U0, U1, V0, V1) ⊂ D, the
integrated form of (3.3) holds on R:

Ψ(u, v) =

∫ u

U0

∫ v

V0

F (Ψ, ∂Ψ) dv′du′ + Ψ(u, V0) + Ψ(U0, v)−Ψ(U0, V0) (3.5)

for every (u, v) ∈ R. We wish to show:

Theorem 1. Let Ψ1 and Ψ2 be two C1 solutions of (3.3) on R(U0, U1, V0, V1) which agree along C(U0, U1, V0, V1).
Then Ψ1 = Ψ2 identically in R.

a) Show that any classical (C2) solution of (3.3) is a C1 solution.

b) Prove the following lemma:

Lemma 3.1. For any constant C† > 0 there exists a constant δ = δ(C†) > 0 such that if Ψ is a C1

RN -valued function on R(U0, U1, V0, V1) with 0 < U1 − U0 < δ, 0 < V1 − V0 < δ, satisfying

Ψ(u, v) =

∫ u

U0

∫ v

V0

f1 ·Ψ + f2 · ∂Ψ dv′du′ (3.6)

for every (u, v) ∈ R, where f1 and f2 are continuous N ×N -matrix valued functions satisfying

sup
R

(|f1|+ |f2|) ≤ C†, (3.7)

then Ψ vanishes identically in R.

Hint : Use (3.6) to directly estimate ‖Ψ‖C1(R) in terms of itself.

c) Use Lemma 3.1 to prove Theorem 1. Hint : Let Ψ
.
= Ψ2 − Ψ1. Show that Ψ satisfies (3.6) for an

appropriate choice of f1 and f2. Then cover the domain by small rectangles.

3.4 Existence in small rectangles
The goal of this section is to prove the following:

Theorem 2. For any C∗ > 0 there exists a constant εloc > 0 depending on C∗ and F with the following
property. Let Ψ0 be a C1 characteristic data set on C(U0, U1, V0, V1) with 0 < U1 −U2 < εloc, 0 < V1 − V0 <
εloc, and

‖Ψ̊‖C1(C) ≤ C∗. (3.8)

Then there exists a unique C1 solution Ψ of (3.3) on R(U0, U1, V0, V1) which extends the initial data Ψ̊.
Moreover, it holds that

‖Ψ‖C1(R) ≤ 10C∗. (3.9)

The theorem is proved by constructing the solution Ψ as the limit of an iteration scheme. Set Ψ1 = 0 on
R and, for n ≥ 2, let Ψn solve the linear inhomogeneous wave equation

∂u∂vΨn = F (Ψn−1, ∂Ψn−1), (3.10)

Ψn|C = Ψ̊. (3.11)

a) Find an explicit recursive formula for Ψn(u, v) using the method of characteristics.

b) Use this formula to show that ‖Ψn‖C1(R) ≤ 10C∗ if εloc is chosen sufficiently small.

c) Show that
‖Ψn −Ψn−1‖C1(R) ≤ 1

2‖Ψn−1 −Ψn−2‖C1(R) (3.12)

for εloc sufficiently small.

d) Conclude that Ψn converges to the desired unique C1 solution Ψ. Hint : Show that Ψn is a Cauchy
sequence in C1.
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3.5 Higher regularity
In fact, Theorem 2 can be upgraded to the following:

Theorem 3. Let k ≥ 2. For any C∗ > 0 there exists constants C1, C2, . . . , Ck > 0 depending on C∗ and F
with the following property. Let εloc(C∗, F ) > 0 be as in Theorem 2. Let Ψ̊ be a Ck characteristic data set
on C(U0, U1, V0, V1) with 0 < U1 − U0 < εloc, 0 < V1 − V0 < εloc, and

‖Ψ0‖C1(C) ≤ C∗. (3.13)

Then there exists a unique classical Ck solution Ψ of (3.3) on R(U0, U1, V0, V1) which extends the initial
data Ψ̊. Moreover, it holds that

‖Ψ‖Ck(R) ≤ Ck‖Ψ̊‖Ck(C) (3.14)

for all k.

Note that the size of the region on which Ψ exists depends only on the C1 norm of the initial data.
The easiest way to prove this result is to directly argue that the iterates Ψn in the proof of Theorem 2 are
bounded and Cauchy in Ck.

Proof of boundedness for k = 2. We claim that there exists constants Ĉ2, C̃2 such that

|∂2uΨn| ≤ C̃2e
Ĉ2v, (3.15)

|∂2vΨn| ≤ C̃2e
Ĉ2u (3.16)

on R for every n. Indeed, differentiating (3.10) in u, we find

∂v(∂
2
uΨn) = f1 + f2∂

2
uΨn−1, (3.17)

where f1 and f2 are uniformly bounded functions by the C1 estimate for Ψn−1. By integrating this and
choosing Ĉ2, C̃2 sufficiently large, (3.15) is easily established by induction. (Note that we used (3.10) again
to eliminate the mixed term ∂u∂vΨn−1 that could have appeared.) The estimate (3.16) is obtained similarly
by differentiating (3.10) in v. By commuting the equation further, one can show (3.9) for k = 2.

a) Generalize this argument to arbitrary k.

b) Is it true that Ψn is Cauchy in Ck?

3.6 Existence in thin slabs
The region of existence in Theorems 2 and 3 is a small rectangle. If the nonlinearity F satisfies the null
condition (3.4), then this local existence result can be upgraded to include a full neighborhood of the bifurcate
characteristic hypersurface C.

Theorem 4. For any A > 0, L > 0, and nonlinearity F satisfying the null condition (3.4), there exists
a constant εslab = εslab(A,L, F ) > 0 with the following property. Let Ψ̊ be a Ck characteristic data set on
C(U0, U1, V0, V1) with 0 < U1 − U0 < εslab, 0 < V0 − V1 < L, and

‖Ψ̊‖C1(C) ≤ A. (3.18)

Then there exists a unique smooth solution of (3.3) on R(U0, U1, V0, V1) which extends the initial data Ψ̊.
The same statement holds for data on C(U0, U1, V0, V1) with 0 < U1 − U0 < L and 0 < V0 − V0 < εslab.

a) Prove the following “matrix Grönwall” lemma:

Lemma 3.2. Let X,Y : [0, T ] → RN be C1 and satisfy X ′ = Y + MX, where M : [0, T ] → RN×N .
Then

|X(T )| ≤

(
|X(0)|+

∫ T

0

|Y (t)| dt

)
exp

(∫ T

0

|M(t)| dt

)
. (3.19)
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Hint : Consider the equation satisfied by x(t) =
√
|X(t)|2 + ε2.

b) I will outline a proof utilizing a bootstrap argument based on the pointwise bounds

|Ψ| ≤ 10A, (3.20)
|∂uΨ| ≤ 10B, (3.21)
|∂vΨ| ≤ 10A (3.22)

and the local existence statement Theorem 2. (Here B is a large constant to be determined in the
course of the proof.) Define the bootstrap set AA,B to be the component of

{Ṽ ∈ [V0, V1] : Ψ exists, is C∞, and satisfies (3.20)–(3.22) on R(U0, U1, V0, Ṽ )}. (3.23)

containing V0. The goal is to show that AA,B is nonempty, open, and closed for B sufficiently large
and εslab sufficiently small.

Using Theorem 2, show that if B ≥ A and εslab is sufficiently small depending on A, then AA,B 6= ∅.

c) Show that AA,B is closed.

d) We separate the proof thatAA,B is open into two parts. Let Ṽ ∈ AA,B . First, show that if εslab is chosen
to be sufficiently small and B sufficiently large, then the bounds (3.20)–(3.22) hold on R(U0, U1, V0, Ṽ )
with “better constants,” i.e.,

|Ψ| ≤ 2A, (3.24)
|∂uΨ| ≤ 2B, (3.25)
|∂vΨ| ≤ 2A. (3.26)

Hint : To estimate Ψ and ∂vΨ, use thinness of the slab in the u-direction. To estimate ∂uΨ, use the
fact that the null condition implies that ∂uΨ satisfies a linear ODE in v. Use Lemma 3.2 to estimate
|∂uΨ|.

e) Using these “improved” estimates, carry out a continuity argument to show that AA,B is open.

3.7 Propagation of constraints
We now return to the spherically symmetric Einstein-scalar field system. Using Theorems 2 and 3, we can
solve the characteristic initial value problem for the wave equations (1.17)–(1.19). But how do we obtain
Raychauduri’s equations (1.20) and (1.21)?

a) Using only (1.17), (1.18), and (1.19), prove the pair of identities

∂u

(
rΩ2∂v

(
∂vr

Ω2

)
+ r2(∂vφ)2

)
= 0, ∂v

(
rΩ2∂u

(
∂ur

Ω2

)
+ r2(∂uφ)2

)
= 0. (3.27)

b) Conclude that (1.20) and (1.21) hold on R if they do on C.

4 The extension principle away from the center*
The goal of this exercise is to prove the following:

Theorem 5. Let (Q, r,Ω2, φ) be a solution of the spherically symmetric-Einstein scalar field system, where
Q ⊂ R2

u,v is an open set. Suppose that the following hold:

i) R′ ⊂ Q, where R′ .= ([0, U ]× [0, V ]) \ {(U, V )} and U, V are finite,

ii) ∂ur < 0 on R′, and
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iii) ∂vr ≥ 0 on R′.

Then the solution extends smoothly to a neighborhood of (U, V ) ∈ Q.

This theorem says that a “first singularity” in the spherically symmetric Einstein-scalar field model either
occurs along the axis Γ (so that no such R′ exists) or where ∂vr < 0. We now sketch the proof as a series of
exercises:

a) Argue using the well-posedness statement from Problem 3 that it suffices to show that (r,Ω2, φ) are
bounded in C1 on R′ and (r,Ω2) are bounded below away from zero.

b) Show that r ∼ 1 on R′.

c) Show that 0 ≤ −Ω2/∂ur . 1 on R′. Hint : Use Raychaudhuri’s equation.

d) Show that |m| . 1 on R′ and hence that

sup
u∈[0,U ]

∫
{u}×[0,V ]

−∂ur
Ω2

r2(∂vφ)2 dv . 1, (4.1)

sup
v∈[0,V ]

∫
[0,U ]×{v}

∂vr

Ω2
r2(∂uφ)2 du . 1. (4.2)

These are fundamental energy estimates for the spherically symmetric Einstein-scalar field system.

e) Show that |φ| . 1 on R′. Hint : Use the fundamental theorem in calculus in v and parts c) and d).

f) Show that the r wave equation can be written as

∂v∂ur = − Ω2

2r2
m. (4.3)

g) Multiply and divide (4.3) by ∂ur and use the method of integrating factors to estimate ∂ur ∼ −1 on
R′.

h) Show that ∂vr . 1 on R′.

i) Show that Ω2 . 1 on R′.

j) Derive the equation

∂u∂v(rφ) = −Ω2m

2r2
φ (4.4)

and complete the argument.

5 Formation of trapped surfaces in spherical symmetry*
The goal of this exercise is to prove the following:

Theorem 6 (Christodoulou). Black holes can form dynamically in the spherically symmetric Einstein-
scalar field model, starting from data at “past null infinity”: There exists a solution (r,Ω2, φ) on D .

=
(−∞,−1]× [0, δ] (where δ > 0 is a small parameter) with the following properties:

1. The initial ingoing cone is Minkowskian: ∂vr(u, 0) = −∂ur(u, 0) = 1
2 , Ω2(u, 0) = 1, and φ(u, 0) = 0

for u ∈ (−∞,−1].

2. The initial outgoing cone (formally “u = −∞”) is a portion of null infinity in the sense that r(−∞, v) =
∞ and ∂vr(∞, v) > 0 for v ∈ [0, δ]. (These are to be understood as limiting statements.)

3. The solution has no antitrapped surfaces: ∂ur ∼ −1 in D.
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4. The sphere (−1, δ) is trapped: ∂vr(−1, δ) < 0.

Remark 5.1. In fact, this theorem holds true for the Einstein vacuum equations, where it necessarily requires
a departure from spherical symmetry. The proof strategy given below is essentially an interpretation of
Christodoulou’s proof for the Einstein vacuum equations for the spherically symmetric Einstein-scalar field
system.

Proof. We will construct the desired solution by a limiting procedure (i.e., sending the initial outgoing cone
to u = −∞). Consider a double null rectangle R .

= [u0,−1] × [0, δ] ⊂ R2
u,v, where u0 < −1 and δ > 0. We

consider a characteristic data set (̊r, Ω̊2, φ̊) on C (the past boundary of R) chosen as follows: Fix a function
f ∈ C∞c (0, 1) with ‖f ′‖L2 = 1 and set

φ̊(u0, v) =
δ1/2

|u0|
f
(v
δ

)
(5.1)

on the initial outgoing cone Cu0
. On the initial ingoing cone C0, set φ̊(u, 0) = 0. On C, set Ω2 = 1. At the

bifurcation sphere (u0, 0), set

r̊(u0, 0) = 1
2 + 1

2 |u0|, ∂̊vr(u0, 0) = 1
2 , ∂̊ur(u0, 0) = − 1

2 . (5.2)

a) Show that there exists δ0 > 0 such that if |u0| is sufficiently large, and 0 < δ < δ0, then the above seed
data defines a regular characteristic data set on C satisfying the following estimates:

|rφ| . δ1/2, (5.3)

|r2∂uφ| . δ1/2, (5.4)

|r∂vφ| . δ−1/2, (5.5)
∂ur ∼ −1, (5.6)

1
4 ≤ ∂vr ≤

3
4 , (5.7)

m(u0, δ) = 1 +O(δ) (5.8)

Here, the notation x . y means that there exists a constant C, independent of δ and u0, but depending
possibly on f , such that x ≤ Cy.
Hint : This is easily proved by a bootstrap argument in v on Cu0 (for example one can try to improve
the assumptions 1

2 |u0| ≤ r ≤ 2 + 1
2 |u0| and 0 ≤ ∂vr ≤ 1 on Cu0

).

b) Let u∗ ∈ [u0,−1]. Suppose there exists a number B > 0 such that the following bounds hold in
[u0, u∗]× [0, δ]:

−2B ≤ ∂ur ≤ −
1

2B
, (5.9)

|∂vr| ≤ 2B, (5.10)
1

2B
≤ Ω2 ≤ 2B. (5.11)

We will refer to these estimates as the “bootstrap assumptions.” Use the bootstrap assumptions to
infer the following estimates in [u0, u∗]× [0, δ]:

|r − 1
2 + 1

2u| ≤ 2Bδ, (5.12)

|rφ| .B δ1/2, (5.13)

|r2∂uφ| .B δ1/2, (5.14)

|r∂vφ| .B δ−1/2 (5.15)

if δ is sufficiently small (independent of u0). Here, the notation x .B y means that there exists a
constant C, independent of δ and u0, but depending possibly on f and B, such that x ≤ Cy.
Hint : Write the wave equation in the form ∂u∂v(rφ) = · · · and estimate the right-hand side using the
bootstrap assumptions. Then integrate in u and v, and use the fact that the integral in v gives a good
power of δ. Don’t forget to include the initial data (estimated in the previous step) when integrating!
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c) Use the above estimates for the scalar field to show that for B sufficiently large and δ sufficiently small
(depending on B), the estimates (5.9)–(5.11) hold in [u0, u∗]× [0, δ] with 2B replaced by B.

Hint : To estimate ∂vr, either use the v-Raychaudhuri equation or first bound the Hawking mass m to
get an improved estimate on |∂u∂vr|.

d) Show that the solution exists in the full rectangle [u0,−1]× [0, δ] and satisfies

|r − 1
2 + 1

2u| . δ, (5.16)
∂ur ∼ −1, (5.17)
|∂vr| . 1, (5.18)

|rφ| . δ1/2, (5.19)

|r2∂uφ| . δ1/2, (5.20)

|r∂vφ| . δ−1/2. (5.21)

Hint : Use a continuity argument: Consider the set A consisting of u∗ ∈ [u0,−1] such that the solution
exists on the rectangle [u0, u∗]× [0, δ] and satisfies the bootstrap assumptions (5.9)–(5.11). Show that
if B is sufficiently large and δ is sufficiently small, then A is nonempty, closed, and open.

e) Conclude trapped surface formation as follows: Using the above hierarchy of estimates, compute
r(−1, δ) and m(−1, δ) and show that 2m

r (−1, δ) > 1 for δ sufficiently small.

Hint : Estimate ∂um.

Extended hints:

b) (5.12) is proved by integrating (5.10). To estimate the scalar field, we write the wave equation as

∂u∂v(rφ) =

(
− Ω2

4r2
− ∂ur∂vr

r2

)
rφ, (5.22)

which using the bootstrap assumptions implies

|∂u∂v(rφ)| .B
‖rφ‖L∞

r2
. (5.23)

Integrating in u, using the estimate for ∂v(rφ) = φ∂vr + r∂vφ obtained from part a) on Cu0
, and the

fact that r−2 is integrable in u on [u0, u1], we obtain

‖∂v(rφ)‖L∞ .B δ−1/2 + ‖rφ‖L∞ . (5.24)

Integrating in v, we find ‖rφ‖L∞ .B δ1/2 + δ‖rφ‖L∞ . The second term can be absorbed and we
conclude (5.13). Inserting this into (5.24), we conclude (5.15). Integrating (5.22) in v, we obtain
|∂u(rφ)| .B r−2δ3/2. We then have

|r2∂uφ| ≤ |∂ur||rφ|+ r|∂u(rφ)| .B δ1/2, (5.25)

which is (5.14).

c) The bootstrap assumption on Ω2 is immediately improved by integrating the wave equation and using
smallness in the v direction. This works similarly for ∂ur by integrating the wave equation for r in v.
To estimate ∂vr, we integrate Raychaudhuri’s equation1 in v:

|Ω−2∂vr − 1
2 | .

∫ δ

0

rΩ−2(∂vφ)2 dv′ . 1. (5.26)

1The use of Raychaudhuri’s equation here can be avoided if one is willing to take |u0| . 1. In that case, the estimate can be
retrieved by using an integrating factor on the wave equation for r, but I think this generates terms diverging in |u0|.
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e) It follows from the first estimate in part d) that r(u1, δ) = 1 + O(δ) by the definition of u1. We then
estimate

|m(u1, δ)−m(u0, δ)| ≤
∫ −1
u0

2Ω−2r2|∂vr|(∂uφ)2 du′ . δ. (5.27)

Combined with m(u0, δ) = 1 +O(δ), this implies m(u1, δ) = 1 +O(δ) and consequently,

2m

r
(u1, δ) = 2 +O(δ) > 1 (5.28)

for δ sufficiently small.
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