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1 Orthogonality in Lorentzian vector spaces
Let (V,m) be an (n + 1)-dimensional Lorentzian vector space. Show that:

a) Two timelike vectors are never orthogonal.

o

A timelike vector is never orthogonal to a null vector.

Two null vectors are orthogonal if and only if they are collinear.

o

)
)
)
)

d) The orthogonal complement of a null vector is a codimension-one subspace with a degenerate scalar
product. The kernel of the scalar product restricted to this subspace is one-dimensional and equal to

the span of the null vector.

e) Continuing the previous point, show that if v is null, then (v+)+ = Ro. (In fact, for any subspace it
holds that (W)L = W, just as in an inner product space.)

Hint: While one can try to prove all of these in a “coordinate free” manner, it is much simpler to work
in a standard orthonormal basis.

2 Null hypersurfaces

Let (M"*1 g) be a Lorentzian manifold and H® C M"*! a smooth embedded hypersurface. We say that H
is a null hypersurface if T,H C T, M is null (as a codimension-one subspace of the Lorentzian vector space
(TpyM, gp)) for every p € H. Show that:

a) There exists a null vector field L defined along H such that L, € T,H for every p € H. This L is both
tangent and normal to H!
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b)

)

d)

Show that there exists a function f : H — R such that
VL= fL. (2.1)

Hint: The goal is show that for any section X of TH, g(X,VL) = 0. Let p € H, X, € T,H, and
extend X, to a vector field X € I'(T'H) (at least locally near p) such that [L, X] = 0. (Why can this
be done?) Now use the symmetry of the connection to show that g(VpL,X) = 0.

Show that there exists a null vector field L', pointwise proportional to L, such that

Vi L =0. (2.2)

Interpret and prove the statement that “any null hypersurface is ruled by null geodesics.”

3 The energy-momentum tensor of a scalar field

A scalar field is a function ¢ € C°°(M) (which often solves a wave equation). We define the energy-
momentum tensor of ¢ by

T;w = y@saud) - %gpuaaﬁbaad)v (31)

where 0%¢ = g% 95¢.

a)

Show that if X is future-directed causal, then —T*, X" is as well. Hint: Choose an orthonormal basis
of the tangent space so that X is “standard,” i.e., is of the form ey or ey + e;. Use the fact that
T, X* X" is coordinate invariant.

Let X and Y be future-directed timelike vectors at p and {V,} a basis of T, M. Show that there exists
a constant ¢ > 0 such that

T(X,Y)> e [Vugl”. (3.2)

“w

In this sense T(X,Y) quantitatively “controls all derivatives of ¢” pointwise.

Let X be future-directed timelike and Y be future-directed null. Let {ey,...,e,_1} be spacelike vectors
so that {Y,e1,...,e,—1} spans Y+. Show that there exists a constant ¢ > 0 such that

T(X,Y) > <|Y¢|2 s |ei¢|2> . (3.3)

i=1
This combination misses one direction!

Let Y be future-directed null and let Y be a future-directed null vector so that ¢(Y,Y) = —2. Show
that there exists a constant ¢ > 0 such that

n—2
T(YV,Y)>c) leidl?, (3.4)
i=1

where {ej, ..., e,_1} is a basis of spacelike vectors for YJ-OXJ‘. This combination misses two directions!

Remark 1. In general, the constants ¢ in (3.2), (3.3), and (3.4) depend on the metric ¢, the point p, the
vector fields X and Y, and the choice of basis vectors on the right-hand side. In practice one needs some
quantitative control this constant so that these estimates are “effective.”



4

Topology of Lorentzian manifolds

In this exercise, we will see some basic topological properties of Lorentzian manifolds. We wish to prove the
following:

Theorem 1. Let M be a smooth manifold. The following are equivalent:

i) M admits a Lorentzian metric.

it) M admits a time-oriented Lorentzian metric.

i) M admits a nonvanishing vector field (i.e., X(p) # 0 for everyp € M).

iv) M is noncompact or is compact with vanishing Euler characteristic.

Proof. The logic of the proof is as follows: ii) = i) is trivial, iii) < iv), iii) < ii), and i) = iv). Here is an
outline of some of the parts. We will need the following deep theorem in topology:

Theorem 2 (Poincaré-Hopf). A closed manifold M carries a nonzero vector field if and only if the Fuler
characteristic x(M) = 0.

Here are now some hints to prove Theorem 1.

a)

Let M be a smooth manifold carrying a nonzero vector field X. Let gy be a Riemannian metric on
M. (Does such a gg always exist?) Show that there exists a positive function f € C°°(M) so that

g = _f290(;X)®90(aX)+90 (41)
is a Lorentzian metric on M.

() Show that every noncompact manifold carries a nonvanishing vector field. Hint: Construct a vector
field with discrete zeros and isotope the zeros to infinity.

Show that a time-orientable Lorentzian manifold carries an everywhere nonvanishing timelike vector
field.

Show that a Lorentzian manifold admits a time-orientable double cover.

Show that a closed Lorentzian manifold has x(M) = 0. Hint: How does x(M) behave under finite
covering maps?

O

Corollary 1. Any odd-dimensional smooth manifold admits a Lorentzian metric.

f)

(x) Prove this. Hint: Use Poincaré duality.

Corollary 2. A closed, (14 1)- or (3 4 1)-dimensional Lorentzian manifold is not simply connected.

g)
h)

(x) Prove this. Hint: Use Poincaré duality again and aim to show that b; (M) # 0.

() Construct counterexamples to this statement in all even spacetime dimensions > 6.

Proposition 2. Let (M, g) be a closed Lorentzian manifold. Then M contains a closed timelike curve.

i)

Prove this. Hint: Cover M by finitely many sets of the form I (p;), i = 1,..., N. Show that for some
i, pi € IT(pi).



5 Uniformization of Lorentzian surfaces

The goal of this exercise is to prove the following important theorem in Lorentzian geometry:

Theorem 3. Let (M?, g) be a Lorentzian surface. For any p € M there exist coordinates (t,z) defined in
a neighborhood U C M of p and a smooth, positive function Q on U such that

g = Q%(—dt* + dz?) (5.1)
mU.

The proof of this fact for Lorentzian metrics is much simpler than for Riemannian metrics. Here is a
suggested solution:

a) Show there exist two null vectors fields X and Y defined in a neighborhood U of p that are linearly
independent at every point of U.

b) Show that there exist functions «, € C°°(U) such that [X,Y] = aX + gY.

¢) Show that there exist nowhere vanishing functions 6, € C°(U’), where U’ is a possibly smaller
neighborhood of U, such that [0X,(Y] = 0. Hint: Compute out [#X, (Y] and derive a first order PDE
system for 6 and ¢ that makes this vanish. Why does a solution exist?

d) Show that there exists a coordinate chart (u,v) defined near p such that X = 0, and (Y = 0,. Hint:
Recall (or prove that) commuting vector fields induce coordinate charts via their flows.

e) Show that ¢t = u + v, £ = v — u has the desired properties.

6 Cauchy stability for ODEs

Cauchy stability, or continuous dependence on initial data, is a very useful tool when studying wave equations.
Here we will see the simplest possible example, which will also introduce us to the notion of bootstrap
arguments.

Theorem 4. Let F : R2 = R be a smooth function and suppose § : I — R is a smooth solution of the ODE
dy
dt

with initial condition §(0) = go, where I = [0,Tp] is a closed and bounded interval. For any e > 0 there
exists a 6 > 0 (depending on F, Ty, and o) such that the solution y(t) of the initial value problem

(t) = F(t,y(t)) (6.1)

dy
— = F(t,y(t 6.2
) (62)
y(0) =yo (6.3)
with |yo — go| < 9, exists for t € I and satisfies the estimate
sup [y(t) — y(1)| < e. (6.4)
tel

We emphasize that this theorem has two parts: the solution y : I — R exists and moreover satisfies the
estimate (6.4).

a) First, prove the following continuation criterion.
Proposition 3. Let y(t) solve the ODE (6.2) on an interval of the form [0,Ty) with T\ < oo. If

lim sup |y(t)| < oo, (6.5)
t AT,

*

then y can be uniquely smoothly extended to an interval [0,T") with T' > T,.



Hint: Use the ODE to prove that y(t) and all of its derivatives are bounded on [0, T}).
b) For M > 1, define the set

As e = {T* € [0,To] : y(¢) exists on [0, T] and sup |y(t) — g(t)| < 256MT*} . (6.6)
te[0,7Ty)
Show that Ajs ps is nonempty and closed.

c) Show that Ajs s is open for M sufficently large and ¢ sufficiently small (depending on M and Tp).
Hint: Let § =y — ¢y and use the calculation (mean value theorem)

t
@@—?@NSL!FWwWD—FW@WDMV (6.7)
t
g( max DZF(t’,z)> / 25eM? dt’. (6.8)
t'€[0,t],z€[g(t")—28eMt’ G(t')+25eMt’] 0

Show that for M sufficiently large, § sufficiently small, and T, € A, this estimate proves that

sup |j(t)| < 6eMTx, (6.9)
te[0,Ty)

d) Conclude Theorem 4 by performing a continuity argument and using Proposition 3.

e) Generalize Theorem 4 as follows:

Theorem 5. Let F : R2 — R be a smooth function and suppose i : I — R is a smooth solution of the ODE

W Py (6.10)

with §(0) = o, where I = (T_1,T1) > 0 is the mazimal domain of definition.® For any e > 0 and compact
subinterval K C I containing to, there exists a § > 0 (depending on F, K, to, and §o) such that the solution

y(t) of

W Py, (6.11)
y(0) = o (6.12)

with |yo — §(to)| < 6, exists for t € K and satisfies the estimate

sup |y(t) — y(t)| <e. (6.13)
teK

IThat is, T1 = oo or T} < oo and |y(t)| blows up as t /Ty, and similarly for T_1.
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