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1 Orthogonality in Lorentzian vector spaces
Let (V,m) be an (n+ 1)-dimensional Lorentzian vector space. Show that:

a) Two timelike vectors are never orthogonal.

b) A timelike vector is never orthogonal to a null vector.

c) Two null vectors are orthogonal if and only if they are collinear.

d) The orthogonal complement of a null vector is a codimension-one subspace with a degenerate scalar
product. The kernel of the scalar product restricted to this subspace is one-dimensional and equal to
the span of the null vector.

e) Continuing the previous point, show that if v is null, then (v⊥)⊥ = Rv. (In fact, for any subspace it
holds that (W⊥)⊥ = W , just as in an inner product space.)

Hint : While one can try to prove all of these in a “coordinate free” manner, it is much simpler to work
in a standard orthonormal basis.

2 Null hypersurfaces
Let (Mn+1, g) be a Lorentzian manifold and Hn ⊂Mn+1 a smooth embedded hypersurface. We say that H
is a null hypersurface if TpH ⊂ TpM is null (as a codimension-one subspace of the Lorentzian vector space
(TpM, gp)) for every p ∈ H. Show that:

a) There exists a null vector field L defined along H such that Lp ∈ TpH for every p ∈ H. This L is both
tangent and normal to H!
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b) Show that there exists a function f : H → R such that

∇LL = fL. (2.1)

Hint : The goal is show that for any section X of TH, g(X,∇LL) = 0. Let p ∈ H, Xp ∈ TpH, and
extend Xp to a vector field X ∈ Γ(TH) (at least locally near p) such that [L,X] = 0. (Why can this
be done?) Now use the symmetry of the connection to show that g(∇LL,X) = 0.

c) Show that there exists a null vector field L′, pointwise proportional to L, such that

∇L′L′ = 0. (2.2)

d) Interpret and prove the statement that “any null hypersurface is ruled by null geodesics.”

3 The energy-momentum tensor of a scalar field
A scalar field is a function φ ∈ C∞(M) (which often solves a wave equation). We define the energy-
momentum tensor of φ by

Tµν
.
= ∂µφ∂νφ− 1

2gµν∂
αφ∂αφ, (3.1)

where ∂αφ = gαβ∂βφ.

a) Show that if X is future-directed causal, then −TµνXν is as well. Hint : Choose an orthonormal basis
of the tangent space so that X is “standard,” i.e., is of the form e0 or e0 + e1. Use the fact that
TµνX

µXν is coordinate invariant.

b) Let X and Y be future-directed timelike vectors at p and {Vµ} a basis of TpM. Show that there exists
a constant c > 0 such that

T (X,Y ) ≥ c
∑
µ

|Vµφ|2. (3.2)

In this sense T (X,Y ) quantitatively “controls all derivatives of φ” pointwise.

c) Let X be future-directed timelike and Y be future-directed null. Let {e1, . . . , en−1} be spacelike vectors
so that {Y, e1, . . . , en−1} spans Y ⊥. Show that there exists a constant c > 0 such that

T (X,Y ) ≥ c

(
|Y φ|2 +

n−1∑
i=1

|eiφ|2
)
. (3.3)

This combination misses one direction!

d) Let Y be future-directed null and let Y be a future-directed null vector so that g(Y, Y ) = −2. Show
that there exists a constant c > 0 such that

T (Y, Y ) ≥ c
n−2∑
i=1

|eiφ|2, (3.4)

where {e1, . . . , en−1} is a basis of spacelike vectors for Y ⊥∩Y ⊥. This combination misses two directions!

Remark 1. In general, the constants c in (3.2), (3.3), and (3.4) depend on the metric g, the point p, the
vector fields X and Y , and the choice of basis vectors on the right-hand side. In practice one needs some
quantitative control this constant so that these estimates are “effective.”
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4 Topology of Lorentzian manifolds
In this exercise, we will see some basic topological properties of Lorentzian manifolds. We wish to prove the
following:

Theorem 1. LetM be a smooth manifold. The following are equivalent:

i) M admits a Lorentzian metric.

ii) M admits a time-oriented Lorentzian metric.

iii) M admits a nonvanishing vector field (i.e., X(p) 6= 0 for every p ∈M).

iv) M is noncompact or is compact with vanishing Euler characteristic.

Proof. The logic of the proof is as follows: ii) ⇒ i) is trivial, iii) ⇔ iv), iii) ⇔ ii), and i) ⇒ iv). Here is an
outline of some of the parts. We will need the following deep theorem in topology:

Theorem 2 (Poincaré–Hopf). A closed manifold M carries a nonzero vector field if and only if the Euler
characteristic χ(M) = 0.

Here are now some hints to prove Theorem 1.

a) Let M be a smooth manifold carrying a nonzero vector field X. Let g0 be a Riemannian metric on
M. (Does such a g0 always exist?) Show that there exists a positive function f ∈ C∞(M) so that

g = −f2g0(·, X)⊗ g0(·, X) + g0 (4.1)

is a Lorentzian metric onM.

b) (∗) Show that every noncompact manifold carries a nonvanishing vector field. Hint : Construct a vector
field with discrete zeros and isotope the zeros to infinity.

c) Show that a time-orientable Lorentzian manifold carries an everywhere nonvanishing timelike vector
field.

d) Show that a Lorentzian manifold admits a time-orientable double cover.

e) Show that a closed Lorentzian manifold has χ(M) = 0. Hint : How does χ(M) behave under finite
covering maps?

Corollary 1. Any odd-dimensional smooth manifold admits a Lorentzian metric.

f) (∗) Prove this. Hint: Use Poincaré duality.

Corollary 2. A closed, (1 + 1)- or (3 + 1)-dimensional Lorentzian manifold is not simply connected.

g) (∗) Prove this. Hint : Use Poincaré duality again and aim to show that b1(M) 6= 0.

h) (∗) Construct counterexamples to this statement in all even spacetime dimensions ≥ 6.

Proposition 2. Let (M, g) be a closed Lorentzian manifold. ThenM contains a closed timelike curve.

i) Prove this. Hint : CoverM by finitely many sets of the form I+(pi), i = 1, . . . , N . Show that for some
i, pi ∈ I+(pi).
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5 Uniformization of Lorentzian surfaces
The goal of this exercise is to prove the following important theorem in Lorentzian geometry:

Theorem 3. Let (M2, g) be a Lorentzian surface. For any p ∈ M there exist coordinates (t, x) defined in
a neighborhood U ⊂M of p and a smooth, positive function Ω on U such that

g = Ω2(−dt2 + dx2) (5.1)

in U .

The proof of this fact for Lorentzian metrics is much simpler than for Riemannian metrics. Here is a
suggested solution:

a) Show there exist two null vectors fields X and Y defined in a neighborhood U of p that are linearly
independent at every point of U .

b) Show that there exist functions α, β ∈ C∞(U) such that [X,Y ] = αX + βY .

c) Show that there exist nowhere vanishing functions θ, ζ ∈ C∞(U ′), where U ′ is a possibly smaller
neighborhood of U , such that [θX, ζY ] = 0. Hint : Compute out [θX, ζY ] and derive a first order PDE
system for θ and ζ that makes this vanish. Why does a solution exist?

d) Show that there exists a coordinate chart (u, v) defined near p such that θX = ∂u and ζY = ∂v. Hint :
Recall (or prove that) commuting vector fields induce coordinate charts via their flows.

e) Show that t = u+ v, x = v − u has the desired properties.

6 Cauchy stability for ODEs
Cauchy stability, or continuous dependence on initial data, is a very useful tool when studying wave equations.
Here we will see the simplest possible example, which will also introduce us to the notion of bootstrap
arguments.

Theorem 4. Let F : R2 → R be a smooth function and suppose ȳ : I → R is a smooth solution of the ODE

dȳ

dt
(t) = F (t, ȳ(t)) (6.1)

with initial condition ȳ(0) = ȳ0, where I = [0, T0] is a closed and bounded interval. For any ε > 0 there
exists a δ > 0 (depending on F , T0, and ȳ0) such that the solution y(t) of the initial value problem

dy

dt
= F (t, y(t)), (6.2)

y(0) = y0 (6.3)

with |y0 − ȳ0| ≤ δ, exists for t ∈ I and satisfies the estimate

sup
t∈I
|y(t)− ȳ(t)| ≤ ε. (6.4)

We emphasize that this theorem has two parts: the solution y : I → R exists and moreover satisfies the
estimate (6.4).

a) First, prove the following continuation criterion.

Proposition 3. Let y(t) solve the ODE (6.2) on an interval of the form [0, T∗) with T∗ <∞. If

lim sup
t↗T∗

|y(t)| <∞, (6.5)

then y can be uniquely smoothly extended to an interval [0, T ′) with T ′ > T∗.

4



Hint : Use the ODE to prove that y(t) and all of its derivatives are bounded on [0, T∗).

b) For M ≥ 1, define the set

Aδ,M
.
=

{
T∗ ∈ [0, T0] : y(t) exists on [0, T∗] and sup

t∈[0,T∗)

|y(t)− ȳ(t)| ≤ 2δeMT∗

}
. (6.6)

Show that Aδ,M is nonempty and closed.

c) Show that Aδ,M is open for M sufficently large and δ sufficiently small (depending on M and T0).
Hint : Let ỹ .

= y − ȳ and use the calculation (mean value theorem)

|ỹ(t)− ỹ(0)| ≤
∫ t

0

∣∣F (t′, y(t′))− F (t′, ȳ(t′))
∣∣ dt′ (6.7)

≤
(

max
t′∈[0,t],z∈[ȳ(t′)−2δeMt′ ,ȳ(t′)+2δeMt′ ]

DzF (t′, z)

)∫ t

0

2δeMt′ dt′. (6.8)

Show that for M sufficiently large, δ sufficiently small, and T∗ ∈ A, this estimate proves that

sup
t∈[0,T∗)

|ỹ(t)| ≤ δeMT∗ . (6.9)

d) Conclude Theorem 4 by performing a continuity argument and using Proposition 3.

e) Generalize Theorem 4 as follows:

Theorem 5. Let F : R2 → R be a smooth function and suppose ȳ : I → R is a smooth solution of the ODE

dȳ

dt
= F (t, y(t)) (6.10)

with ȳ(0) = ȳ0, where I = (T−1, T1) 3 0 is the maximal domain of definition.1 For any ε > 0 and compact
subinterval K ⊂ I containing t0, there exists a δ > 0 (depending on F , K, t0, and ȳ0) such that the solution
y(t) of

dy

dt
= F (t, y(t)), (6.11)

y(0) = y0 (6.12)

with |y0 − ȳ(t0)| ≤ δ, exists for t ∈ K and satisfies the estimate

sup
t∈K
|y(t)− ȳ(t)| ≤ ε. (6.13)

1That is, T1 = ∞ or T1 < ∞ and |y(t)| blows up as t ↗ T1, and similarly for T−1.

5


	Orthogonality in Lorentzian vector spaces
	Null hypersurfaces
	The energy-momentum tensor of a scalar field
	Topology of Lorentzian manifolds
	Uniformization of Lorentzian surfaces
	Cauchy stability for ODEs

