THE EXTREMAL COLLAPSE THRESHOLD AND

THE THIRD LAW OF BLACK HOLE THERMODYNAMICS

Ryan Unger

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
MATHEMATICS

ADVISER: MIHALIS DAFERMOS

May 2024



© Copyright by Ryan Unger, 2024.
All Rights Reserved



Abstract

In this dissertation, we investigate extremal black holes in general relativity. Extremal black holes are
exceptional solutions of Einstein’s equations which have absolute zero temperature in the celebrated
thermodynamic analogy of black hole mechanics.

Our first main result is a definitive disproof of the “third law of black hole thermodynamics.”
We construct examples of black hole formation from regular, one-ended asymptotically flat Cauchy
data for the Einstein—-Maxwell-charged scalar field system which are exactly isometric to extremal
Reissner-Nordstrom after a finite advanced time along the event horizon. Moreover, in each of these
examples the apparent horizon of the black hole coincides with that of a Schwarzschild solution at
earlier advanced times. We also prove similar black hole formation results for very slowly rotating
Kerr black holes in vacuum.

Our second main result is a proof that extremal black holes arise on the threshold of gravita-
tional collapse. More precisely, we construct smooth one-parameter families of smooth, spherically
symmetric solutions to the Einstein—-Maxwell-Vlasov system which interpolate between dispersion
and collapse and for which the critical solution is an extremal Reissner—Nordstrém black hole. We
call this critical phenomenon extremal critical collapse and the present work constitutes the first
rigorous result on the black hole formation threshold in general relativity.

The above mentioned results constitute Part I of this dissertation and were all obtained in joint
work with Christoph Kehle.

In Part II of this dissertation, we study extensions of the celebrated positive mass theorem to
a very general class of initial data, including extremal black holes. These results were obtained in
collaboration with Dan A. Lee, Martin Lesourd, and Shing-Tung Yau. We provide a resolution of the
spacetime positive mass theorem on manifolds with boundary, a resolution of the remaining cases
of Schoen and Yau’s Liouville conjecture for locally conformally flat manifolds, and demonstrate a

novel scalar curvature shielding phenomenon for the ADM mass.
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Part 1

The extremal collapse threshold

and the third law



Chapter 1

Overview of Part 1

One of the most spectacular predictions of general relativity is the existence and formation of black
holes, which are regions of spacetime where gravity is so strong that not even light can escape from

within. Matter and energy, evolving under the Einstein field equations [Einl5)
Ric(g) — 3R(g)g = 2T, (1.0.1)

can undergo gravitational collapse, becoming so dense that a black hole forms dynamically. The Ein-
stein equations relate the geometry of spacetime, a (341)-dimensional Lorentzian manifold (M?*, g),
to its matter content, which is represented by the energy-momentum tensor T.

The first solution of (1.0.1) containing a black hole was discovered by Schwarzschild [Sch16]
almost immediately after Einstein’s formulation of the field equations. Building on earlier work of
Lemaitre [Lem33], Oppenheimer and Snyder [0S39] produced the first actual example of gravita-
tional collapse by showing that a homogeneous dust cloud can collapse to form a Schwarzschild black
hole in finite time. However, the significance of this work was not understood for another 20 years,
until the celebrated work of Penrose [Pen65]. Now black holes are one of the central objects of study
in astrophysics and high energy physics.

The most important explicit black hole solutions of the Einstein equations are the Reissner—
Nordstréom and Kerr families. Each of these black holes is characterized by a mass M and either
a charge |e| < M for Reissner—-Nordstrom or a specific angular momentum |a| < M for Kerr. As
with every black hole, the event horizon HT of a Reisser-Nordstrém or Kerr black hole is a null

hypersurface. For each member of these families, there is a Killing vector field K normal and tangent



to HT—the event horizons are Killing horizons. This Killing field satisfies
VKK =krkK

along H*, where £ > 0 is a constant known as the surface gravity, which can be explicitly calculated
in terms of M and e or a. If |e] < M or |a] < M, x > 0 and the black hole is called subextremal.
If el = M or |a] = M, k = 0 and the black hole is called extremal. As we will see, extremal black
holes have exceptional properties and play a fundamental role in the structure of the moduli space
of solutions of the Einstein equations.

Part I of this dissertation describes the beginning of a research program, which is joint work with
Christoph Kehle, to study the dynamical formation of extremal black holes and develop a picture
of phase space around extremal black holes in gravitational collapse. More precisely, we pose and

solve the following three problems:

1. We prove that a subextremal black hole can become extremal in finite time in the gravitational
collapse of charged matter, which definitively disproves the so-called third law of black hole
thermodynamics. See already Section 1.1. This result was unexpected because the third law
was widely believed to be true, with a supposed proof by Israel [Isr86] and several other

supporting numerical and heuristic studies in the literature.

2. We prove that any sufficiently slowly rotating Kerr (including Schwarzschild) black hole can
form in vacuum gravitational collapse in finite time. See already Section 1.1.5. We hope that
the techniques developed here will allow us to prove that extremal Kerr can form in vacuum

gravitational collapse and disprove the third law in vacuum.

3. We prove that there exist extremal black holes on the threshold between collapsing and dis-
persing charged matter, without the use of infinitesimally thin shells or other singular matter.
See already Section 1.2. This is a novel critical phenomenon which we call extremal critical

collapse.

1.1 The third law of black hole thermodynamics

1.1.1 Retiring the third law

Following pioneering work of Christodoulou [Chr70] and Hawking [Haw71] on energy extraction from

rotating black holes and Bekenstein’s proposal of a black hole entropy [Bek72], Bardeen, Carter, and



Hawking [BCHT73] proposed—via analogy to classical thermodynamics—the celebrated four laws of
black hole thermodynamics. The analogy asserts that the entropy S of a black hole is proportional to
the surface area A of the horizon and the temperature T is proportional to the surface gravity k of
the horizon. While these identifications were later vindicated by the discovery of Hawking radiation
[Haw75], the laws proposed by Bardeen—Carter—-Hawking are a set of mathematical statements about

classical general relativity.

’ Law Classical thermodynamics Black hole dynamics ‘

Zeroth T constant in equilibrium & constant on stationary horizon

First dE =TdS + - -- dM = kdA+ - --
Second dS >0 dA >0
Third T +# 0 in finite process K # 0 in finite advanced time

Table 1.1: The four laws of black hole thermodynamics. Extremal black holes have absolute zero
temperature in this analogy. These “laws” are to be thought of as conjectures, and laws 0, 1, and 2
have been proved in the form stated here [Haw72a; BCHT73]. In the physics literature, these “laws”
(sometimes suitably modified) are interpreted as fundamental meta-theorems which are to be true
in any reasonable physical theory.

In analogy to Nernst’s “unattainability law” in classical thermodynamics, we have:

Conjecture (The third law of black hole thermodynamics). A subextremal black hole cannot become
extremal in finite time by any continuous process, no matter how idealized, in which the spacetime

and matter fields remain regular and obey the weak energy condition.

This version is distilled from the literature, particularly from the work of Israel [Isr86; Isr92]
who added explicit mention of regularity and the weak energy condition to avoid previously known
examples [DI67; Kuc68; Bou73; FH79; SI80; Pré83] which would otherwise violate the third law. In
this dissertation (taken from the work [KU22]), we show that the third law is fundamentally flawed
in a manner that does not appear to be salvageable by further reformulation. Indeed, we construct
counterexamples in the Einstein—-Maxwell-charged scalar field model in spherical symmetry, a model
which satisfies the dominant energy condition, arising from arbitrarily regular initial data on a

one-ended asymptotically flat hypersurface.



Theorem 1.1.1. Subextremal black holes can become extremal in finite time, evolving from reqular
initial data. In fact, there exist reqular one-ended Cauchy data for the Einstein—Mazwell-charged
scalar field system which undergo gravitational collapse and form an exactly Schwarzschild apparent
horizon, only for the spacetime to form an exactly extremal Reissner—Nordstrom event horizon at a
later advanced time.

In particular, the “third law of black hole thermodynamics” is false.

For the more precise version of the theorem, see Theorem 1.1.11 below. For a Penrose diagram

of the counterexample, see Fig. 1.1 below.

isometric to extremal
Reissner—Nordstrom

isometric to BH g
Schwarzschild ~
(subextremal)

regular center

Figure 1.1: Penrose diagram of our counterexample to the third law arising from regular initial data
on Y. The northwest edge of the Schwarzschild region is exactly isometric to a section of the r = 2M
hypersurface in Schwarzschild. The outermost apparent horizon A’ is initially indistinguishable
from Schwarzschild and then jumps out in finite time to be exactly isometric to the event horizon
of extremal Reissner—Nordstrom. For speculations about the future boundary of the interior, see
already Section 1.1.4.1. The behavior of our solutions can be modified to be subextremal near i°,

see already Remark 1.1.2.

Our result also clarifies some issues raised by Israel in [Isr86; Isr92] who seemingly associated a
disconnected outermost apparent horizon with a severe lack of regularity of the spacetime metric

and/or matter fields. We stress that our examples are regular despite the disconnectedness of the ap-

parent horizon. We note moreover that Israel seemed to associate extremization with the black hole
“losing its trapped surfaces.” This confusion appears to be related to his implicit assumption that the
apparent horizon is connected. Since the Einstein—-Maxwell-charged scalar field matter manifestly

obeys the dominant energy condition, trapped surfaces are not lost in any sense, nonetheless, the

black hole becomes extremal in finite time. In the examples we construct, there exists an open

set of trapped spheres inside the black hole region, which persist for all advanced time until they
encounter the Cauchy horizon or a curvature singularity inside the black hole. However, there is a

neighborhood of the event horizon which does not contain any (strictly) trapped surfaces. For an



extended discussion of these issues, see already Section 1.1.3.

Remark 1.1.2. Note that in discussions of the third law, the focus is typically on dynamics near
the event horizon and apparent horizon, in late advanced time. Our counterexamples depicted in
Fig. 1.1 are isometric to extremal Reissner-Nordstrom for all sufficiently late advanced times and
all retarded times to the past of the event horizon, in particular near spatial infinity i°. However,
by using a scattering argument as in [Keh22b], one can easily modify our examples so as to be

subextremal in a neighborhood of 3%, if desired.

The Einstein-Maxwell-charged scalar field (EMCSF) system featured in Theorem 1.1.1 reads

Ry (9) — 3R(9) g =2 (T2 + TF) (1.1.1)
VEF,, = 2eIm(¢D, ), (1.1.2)
9" DuDy¢ =0, (1.1.3)

for a quintuplet (M, g, F, A, ¢), where (M, g) is a (34+1)-dimensional Lorentzian manifold, ¢ is a
complex-valued scalar field, A is a real-valued 1-form, F' = dA is a real-valued 2-form, D = d + icA
is the gauge covariant derivative, ¢ € R\ {0} is a fixed coupling constant representing the charge of

the scalar field, and the energy momentum tensors are defined by

TEI}VI = gaﬁFaVFB# - %FQBFQBQ;W» (114)

TS = Re(Du¢Dyd) — 39,09 DadDpé. (1.1.5)

We refer to Section 2.2 for the form of the EMCSF system in spherical symmetry.

Remark 1.1.3. Theorem 1.1.1 also holds for the Einstein-Mazwell-charged Klein—Gordon system in

which the wave equation (1.1.3) is replaced by the Klein-Gordon equation
gHVD,uDV¢ = m2¢7

where m € R+ represents the mass of the scalar field and satisfies mM < eM. Here M denotes the

mass of the black hole to be formed.

We emphasize that not only are our data in the above examples regular, but the spacetimes
arise from gravitational collapse, i.e., the initial data surface is one-ended, has a regular center, lies
entirely in the domain of outer communication, and the black hole forms strictly to the future of

initial data. In particular, in contrast to what has been suggested numerically [TA14; CIP21], there



is no upper bound (strictly less than unity) on the charge to mass ratio of a black hole which can

be achieved in gravitational collapse for this model.

1.1.2 Gravitational collapse to Reissner—Nordstrom black holes with pre-

scribed parameters

For appropriate matter models, the Einstein equations (1.0.1) are well-posed (see [Foub2; CG69] for
the vacuum case) as a Cauchy problem for suitable initial data posed on a 3-manifold ¥, which will
then be isometrically embedded as a spacelike hypersurface in a Lorentzian manifold (M, g). The
textbook explicit black hole solutions such as the Schwarzschild spacetime do not contain one-ended
Cauchy surfaces ¥ = R? but are instead foliated by two-ended hypersurfaces ¥ = R x S2. Thus, a
natural and physically relevant problem is to construct regular asymptotically flat data on ¥ = R3
which evolve to a black hole spacetime.

Our counterexample of the third law, Theorem 1.1.1, is preceded by a more general construction,
presented as Theorem 1.1.4 below. We construct regular one-ended Cauchy data for the Einstein—
Maxwell-charged scalar field system in spherical symmetry whose black hole exterior evolves (in
fact is eventually isometric) to a Schwarzschild black hole with prescribed mass M > 0 or to a
subextremal or extremal Reissner—Nordstrom black hole with prescribed mass M > 0 and prescribed

charge to mass ratio q =e/M € [—1,1].

Theorem 1.1.4 (Exact Reissner—Nordstrom arising from gravitational collapse). For any reqularity
index k € N and charge to mass ratio q € [—1,1], there exist spherically symmetric, asymptotically
flat Cauchy data for the Einstein-Mazwell-charged scalar field system, with ¥ = R3 and a regu-
lar center, such that the maximal future globally hyperbolic development (M?*,g) has the following

properties:
o All dynamical quantities are at least C*-regular.
o Null infinity T is complete.
e The black hole region is non-empty, BH = M\ J~(Z1) # 0.

e The Cauchy surface ¥ lies in the causal past of future null infinity, ¥ C J~(Z1). In particular,
Y does not intersect the event horizon Ht = 0(BH). Furthermore, ¥ contains no trapped or

antitrapped surfaces.

o For sufficiently late advanced times v > vy, the domain of outer communication, including the

event horizon, is isometric to that of a Reissner—Nordstrom solution with charge to mass ratio



q. For v > vy, the event horizon of the spacetime can be identified with the event horizon of

Reissner—Nordstrom.

For the Penrose diagram of this spacetime, see Fig. 1.2 below. The construction of Cauchy data
on ¥ = R? in Theorem 1.1.4 will follow from the characteristic gluing statement Theorem 4.4.1,

which we present in Section 4.4 below. The detailed proof of Theorem 1.1.4 is given in Section 5.6.1.

Figure 1.2: Penrose diagram for Theorem 1.1.4. The textured line segment is where the data
constructed in Theorem 4.4.1 live.

The key step in the proof of Theorem 1.1.4 is a novel characteristic/null gluing result which
we report as Theorem 4.4.1 below. The study of the characteristic gluing problem for the Einstein
vacuum equations (outside of spherical symmetry) was recently initiated by Aretakis, Czimek, and
Rodnianski [ACR21; ACR23b; ACR23a] in the perturbative regime around Minkowski space. Our
setup is directly inspired by their work. In contrast, however, our null gluing construction (while in
spherical symmetry) necessarily exploits the large data regime in order to glue a cone of Minkowski
space to a black hole event horizon along a null hypersurface within the EMCSF model. The
characteristic gluing problem will be extensively discussed in Chapter 4.

Note that in the case |q| = 1, this does not yet furnish a counterexample to the third law of
black hole thermodynamics, as the spacetime does not necessarily contain a subextremal apparent
horizon. For the counterexample we must defer to Theorem 1.1.11 in Section 1.1.4 below.

However, in our proof of Theorem 1.1.4, forming an extremal black hole with |q| = 1 is no different
from any subextremal charge to mass ratio |q] < 1 (see already Section 1.1.4.2). In particular, in
contrast with what has been suggested by numerical simulations [TA14; CIP21], there is no universal
upper bound (strictly less than unity) for |q|. Given that we have now proved that extremal Reissner—
Nordstréom can arise in gravitational collapse, it would be interesting to rethink the numerical

approach to this problem and develop a scheme to construct such solutions numerically. Because



our construction is fundamentally teleological (see already Section 2.4), it might be challenging to
directly find suitable data on ¥ by trial and error.

The formation of black holes is a very well studied problem in spherical symmetry. We men-
tion here only the Einstein-scalar field model, for which Christodoulou [Chr91b] first showed that
concentration of the scalar field can lead to formation of a black hole. This result played a decisive
role in Christodoulou’s proof of weak cosmic censorship in spherical symmetry [Chr99b]. Dafermos
constructed solutions of the Einstein-scalar field system which collapse to the future but are com-
plete and regular to the past [Daf09]. For work on other matter models, see for example [And14;
AL22a). In this dissertation, we also consider black hole formation in vacuum, to be discussed in

Section 1.1.5 below.

Remark 1.1.5. Our derivation of Theorem 1.1.4 from Theorem 4.4.1 is completely soft and does not
make use of spherical symmetry. Therefore, if versions of the main gluing theorems were known for
the Einstein vacuum equations (for example, gluing a Minkowski cone to an extremal Kerr event
horizon, or more generally a Schwarzschild exterior sphere to an extremal Kerr event horizon),
then our procedure would yield vacuum spacetimes arising from gravitational collapse which are
eventually isometric to extremal Kerr. Furthermore, such a construction would also yield a disproof
of the third law in vacuum. See already Section 1.1.5.1 and Section 4.5 for the case of very slowly

rotating Kerr.

Remark 1.1.6. By the very nature of the gluing procedure, our constructions have finite regularity
(C* for arbitrarily large k). It would be mathematically interesting to create such examples with

C™ regularity. See already Remark 4.2.1.

Remark 1.1.7. The existence of dynamical spacetimes satisfying the dominant energy condition
which are extremal at spacelike infinity i® does not contradict the positive mass theorem “with
charge” [GHHP83; CRT06] because the matter itself carries charge. Concretely, condition (27) in
[GHHPS83] is false for various charged matter models, in particular the Einstein—-Maxwell-charged

scalar field model with small (or zero) mass.

1.1.3 Commentary on the formulation of the third law

In this section we give more details on the background and history of the third law of black hole
thermodynamics, in particular the motivation for Israel’s formulation in [Isr86; Isr92].
While the zeroth, first, and second laws of black hole thermodynamics are by now well understood

in the literature (see e.g. [Wal01]), the validity of the third law has been a source of debate up until



today. In the original form of Bardeen—Carter-Hawking (BCH), in analogy to Nernst’s version of

the third law of classical thermodynamics [Ner26]', it reads:

It is impossible by any procedure, no matter how idealized, to reduce k to zero by a finite sequence

of operations.

There were two main motivations in [BCH73] for proposing a third law of black hole ther-
modynamics (aside from the aesthetic desire of having the full analogy between black hole and

thermodynamics as laid out as in Table 1.1):

1. Heuristic perturbative calculations seemed to indicate that something like the third law could
be true. Our disproof of the third law shows that such calculations do not accurately represent

the fully dynamical regime of the Einstein equations.

2. Tt was thought that if one could charge/spin a black hole up to extremality, then one could
go further and create a naked singularity, which would violate the weak cosmic censorship
conjecture. This was a rather severe misunderstanding of the geometry of maximally extended
superextremal Reissner—Nordstrom and Kerr solutions. We will return to this point in Re-

mark 1.2.11 below.

A number of arguably pathological (e.g. singular or energy condition violating) examples of
extremal black hole formation were put forth in [Kuc68; DI67; Bou73; FH79; SI80; Prd83], which

Israel [Isr86; Isr92] took into account to make the third law more precise:

A nonextremal black hole cannot become extremal (i.e., lose its trapped surfaces) at a finite
advanced time in any continuous process in which the stress-energy tensor of accreted matter stays

bounded and satisfies the weak energy condition in a neighborhood of the outer apparent horizon.

The parenthetical comment “(i.e., lose its trapped surfaces)” is an extra source of confusion
which will be specifically addressed in Section 1.1.3.3. We will now discuss the papers [Kuc68; DIGT;
Pré83; Bou73; FHT79; SI80; Isr86; Isr92] and where the issues lie.

1.1.3.1 The singular thin charged shell model

It has been known since the 60’s that an extremal black hole can be formed instantly by collapsing an

infinitesimally thin shell of charged massive dust [Kuc68; DI67; Bou73; Pré83]. Later, Farrugia and

LFor a discussion of various versions of the third law of classical thermodynamics, see [Wal97].
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Hajicek [FHT79] showed how to “turn a subextremal Reissner—Nordstrom spacetime into an extremal
one” by firing an appropriately charged singular massive shell into the black hole.

The resulting spacetime metric is not C%-regular and the energy-momentum tensor is concen-
trated along a timelike hypersurface (the shell). The Penrose diagram of the spacetime they construct
is similar to our Fig. 1.1 (see [FH79, p. 296 Fig. 2]). In particular, we note the presence of a discon-
nected outermost apparent horizon in their example. Israel seemed to associate the disconnectedness
of the apparent horizon with a singularity of the matter and/or spacetime: “Violations can also be
produced by any process that induces discontinuous behavior of the apparent horizon—for example,
absorption of an infinitely thin massive shell, which will force this horizon to jump outward.”

On the basis of this, he dismissed this example in his formulation of the third law by explicitly
requiring regularity of the energy-momentum tensor. We note, however, that Farrugia and Hajicek
suggest that their construction can in principle be desingularized—we do not know if this point was
ever addressed again, because if true, it would seem to provide an alternative route to constructing
a counterexample apart from our own.

As is clear in Fig. 1.1, the outermost apparent horizon is disconnected in our counterexamples
to the third law. As we will discuss in Section 1.1.3.3, disconnectedness of the outermost apparent
horizon has nothing to do with regularity—it is an intrinsic feature of extremization. Therefore,
dismissing the charged thin shell on the basis of “undesirable” behavior of the apparent horizon was

unwarranted. We will return to the thin charged shell in Section 1.2.1 below.

1.1.3.2 The charged null dust model

An interesting example motivating explicit mention of the weak energy condition in the third law
was provided by Sullivan and Israel [SI80] in spherical symmetry, with the charged null dust matter
model. This matter model allows for dynamical violations of the weak energy condition—even if the
initial data satisfies the weak energy condition, the solution might violate it in the future. Sullivan
and Israel showed that extremization is impossible in this model without such a violation, which
can also be seen from Penrose diagrams. They interpreted this result as further evidence that the
third law holds as long as the weak energy condition is demanded near the apparent horizon.

We note, however, that Ori has proposed a different interpretation of the model studied by
Sullivan and Israel which does not violate the weak energy condition [Ori91]. This version is arguably
more physically correct, and it is a pity that Ori’s work was seemingly ignored in the literature. We
will return to Ori’s dust model in Chapter 7 below and prove that it arises as a limit of smooth

solutions to the Einstein—-Maxwell-Vlasov system in Chapter 8.

11



1.1.3.3 “Losing trapped surfaces” and connectedness of the outermost apparent hori-

zon

We will now clarify the issue of “losing trapped surfaces” appearing prominently in [Isr86; Isr92]
and the implicit assumption of connectedness of the outermost apparent horizon.

The black hole region in a subextremal Reissner-Nordstrém or Kerr spacetime is foliated by
trapped spheres. Conversely, extremal Reissner—Nordstrom and Kerr black holes have no trapped
surfaces, but the event horizon is a marginally trapped tube in both cases. As |q| — 1 (where
we take ¢ = e/M for Reissner—Nordstrom and q = a/M for Kerr), r— — 74, and one might be
inclined to think that extremizing involves “squeezing” away the trapped region inside the black
hole. However, it is an immediate consequence of Raychaudhuri’s equation [HET73; Wal84] that
trapped surfaces persist in evolution as long as the spacetime satisfies the weak energy condition.
Since the typical explicit extremal black holes have no trapped surfaces (in particular none near the
event horizon), one might wonder if Raychaudhuri’s equation alone could be used to “prove” the
third law.

This is what Israel attempted to do in [Isr86; Isr92]. We will formalize his observation in Defini-
tion 1.1.8 and Proposition 1.1.10 below. In order to reconstruct Israel’s argument mathematically,
let us formulate the following definition. For precise definitions relating to spherical symmetry, see

already Chapter 2.

Definition 1.1.8. Let H be a connected dynamical apparent horizon, i.e., a connected, achronal
curve in the (1 + 1)-dimensional reduction (Q,gg) of a spherically symmetric spacetime (M, g),
along which 9,r vanishes identically. We say that H becomes extremal in finite time in the sense of

Israel if
1. H is not completely contained in a null cone.

2. Let 7 — H(7) be a parametrization of H. Then there exists a 79 € R so that for all 7 > g,

T+ H(7) is a future-directed constant u curve.

3. There exists a 71 > 79 and a neighborhood N of H, >, such that N\ H. >, contains only

strictly untrapped spheres (9,7 > 0).

Remark 1.1.9. The outermost apparent horizon A’ (see already Section 2.4), if connected, is an

example of a connected dynamical apparent horizon.

As a simple consequence of Raychaudhuri’s equation in a spacetime satisfying the weak energy

condition [HE73; Wal84], we have:
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Proposition 1.1.10 (Israel’s observation). Let (M, g) be a spherically symmetric black hole space-
time. If the spacetime satisfies the weak energy condition, has a nonempty trapped region, and a
connected outermost apparent horizon A’ as defined in [Kom13], then the outermost apparent horizon

A’ does not become extremal in finite time in the sense of Israel.

However, it is clear that in view of our main theorem, the correct reading of this proposition is
the contrapositive, namely that violations of the third law necessarily have a disconnected apparent
horizon. This effect has nothing to do with singularities of spacetime or the matter model (and
there was never actually any a priori reason to believe that the outermost apparent horizon was

connected). This situation is depicted in Fig. 1.3.

Opr >0

\ first extremal
sphere

Figure 1.3: Illustration of the contrapositive of Proposition 1.1.10. The outermost apparent horizon
A" = A} U Al becomes disconnected when a black hole with trapped surfaces “becomes extremal,”
while the spacetime and matter fields remain regular. The trapped region begins to the north of 4]
and persists for all advanced time.

1.1.3.4 Aside: Extremal horizons with nearby trapped surfaces

Though not directly relevant for the considerations of this dissertation, we would like to point out
that there is another issue with the attempt to characterize extremality by the lack of trapped
surfaces near the horizon, i.e., by the third property of Definition 1.1.8. In fact, it would appear
that the property of having no trapped surfaces in the interior near the horizon is actually stronger
than being extremal.

For a spacetime (M, g) with Killing field K, a Killing horizon H is said to be extremal if the
surface gravity k, defined by VxK = kK on H, vanishes identically. Equivalently, extremality
means that g(K, K) vanishes to at least second order along null geodesics crossing H transversely.
If K is timelike to the past of H and g(K, K) vanishes to an even order on H, then K passes from

timelike, to null, then back to timelike across H, and there are no strictly trapped surfaces near
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the horizon. This is precisely the situation for extremal Reissner-Nordstrom and Kerr black holes,
where g(K, K) vanishes to second order on the event horizon.

However, there exist spacetimes for which g(K, K) vanishes to an odd order (at least three), in
which case there may be trapped surfaces just behind the horizon. Indeed, in Proposition 5.A.1
of Section 5.A we construct an example of a stationary spacetime containing an extremal Killing

horizon, with trapped surfaces just behind the horizon, and satisfying the dominant energy con-

dition. In this case g(K, K) is exactly cubic in an ingoing null coordinate system. It would be
interesting to construct such a spacetime with a specific matter model, or an extremal black hole
with this behavior.

While extremal Kerr, Reissner—Nordstrom, and other known examples are extremal in the sense
of Definition 1.1.8, it is far from obvious that all hairy (i.e., carrying non-EM matter fields) extremal
black holes should be free of trapped surfaces. In view of our example in Section 5.A, any mechanism
which enforces this must necessarily be global in nature and/or depend on particular properties of
the matter model in question.

One could define the notion of a nondegenerate extremal Killing horizon, i.e., the Killing field K
has the property that g(K, K) vanishes only to second order, which would then be compatible with
Definition 1.1.8. See already Remark 5.A.2.

For more discussion about possible definitions of extremality, see for instance [BF08; Bool6;

MRT13].

1.1.4 Detailed description of our counterexample to the third law

With this discussion out of the way, we present now a detailed version of our counterexample to the
third law, which satisfies all of Israel’s requirements. It is essentially a corollary of the more general
version of our main gluing result Theorem 4.4.1 with a Schwarzschild exterior sphere in place of a
Minkowski sphere (see already Section 5.4) and will be given in Section 5.6.2. For an illustration of

the spacetime, we refer the reader back to Fig. 1.1.

Theorem 1.1.11 (Detailed version of Theorem 1.1.1). For any regularity index k € N, there ex-
ist spherically symmetric, asymptotically flat Cauchy data for the Finstein—-Mazwell-charged scalar
field system, with ¥ = R3 and a reqular center, such that the maximal future globally hyperbolic

development (M*, g) has the following properties:

o The spacetime satisfies all the conclusions of Theorem 1.1.4 with q = 1, including C* -reqularity

of all dynamical quantities.
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e The black hole region contains an isometrically embedded portion of a Schwarzschild exterior
horizon neighborhood. In particular, there is a portion of a null cone behind the event horizon

of (M, g) which can be identified with a portion of the apparent horizon of Schwarzschild.

e The “Schwarzschild horizon” piece is a part of the outermost apparent horizon A’ of the space-
time. The set A’ is disconnected and agrees with the event horizon H™' to the future of the

first marginally trapped sphere on the event horizon.

e There is a neighborhood of the event horizon that contains no trapped surfaces. Nonetheless,
the black hole region contains trapped surfaces. In fact, there are trapped surfaces at arbitrarily

late advanced time in the interior of the black hole.

To reiterate, the scalar field collapses to form an exact Schwarzschild spacetime, including the
horizon, only to collapse further to form an exact extremal Reissner—Norstréom for all late advanced
time. The spacetime is regular (for any fixed k& > 1, one can construct an example which is C*) and

the matter model satisfies the dominant energy condition.

1.1.4.1 Future boundary of the interior in third law violating solutions

The future boundary of the black hole region of dynamical black holes formed from gravitational
collapse in the EMCSF system is known to be intricate (see e.g. [Daf03; Kom13; Van18b]). We refer
to [Kom13] for a detailed description of the most general possible structure of the interior, but see
already Fig. 2.1 for a summary of the most salient features. In this subsection we will first discuss
the future boundary of the black hole interior in Theorem 1.1.11. Further, we will present additional
corollaries of our characteristic gluing method which provide examples of gravitational collapse to
black holes with a piece of null boundary (a “Cauchy horizon”) and a construction of spacetimes for
which a Cauchy horizon closes off the interior region.

For our main counterexample to the third law in Theorem 1.1.11, we obtain that the regular
center I' extends into the black hole region. Regarding the future boundary of the spacetime, we
do not know whether there exists a piece of possibly singular null boundary emanating from i+
as in the subextremal case [Daf03; Vanl18b] or whether a spacelike singularity emanates from i*.
Note that the result of [GL19], which shows the existence of a Cauchy horizon emanating from i+,
does not apply directly since their analysis requires |¢|M < 0.1, whereas our construction requires
|e|M large. Nevertheless, one may speculate that a piece of Cauchy horizon occurs (for which the

linear analysis of [Gajl7a; Gajl7b] would be relevant), which could eventually turn into a spacelike
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singularity. (Note that one can readily set up the data such that the future boundary of the interior

in Theorem 1.1.11 has a piece of spacelike singularity. See however already Section 4.6.2.)

1.1.4.2 Exceptionality and stability of third law violating solutions

The third law is manifestly concerned with exceptional behavior, which is why the phrases “no
matter how idealized” [BCH73] or “in any continuous process” [Isr86] are specifically included in
formulations of the third law. Indeed, keeping a horizon at exactly constant temperature (or equiv-
alently constant surface gravity), any temperature, is of course exceptional. (Exactly stationary
behavior on the horizon for all late advanced times is itself an infinite codimension phenomenon in
the moduli space of solutions.) In view of our construction, the case of gravitational collapse to zero
temperature in finite time is no more exceptional than any other fixed temperature.

We would also like to address the interesting question of whether creating asymptotically extremal
black holes should be viewed any differently from the subextremal case. Indeed, any mechanism
which forms a black hole with ezactly specified parameters is inherently unstable, because a small
perturbation can just change the parameters. As an example of this, we note the codimension-3
nonlinear stability of the Schwarzschild family by Dafermos—Holzegel-Rodnianski-Taylor [DHRT].
In order to preserve the final black hole parameters, only a codimension-3 submanifold of the moduli
space of data is admissible in their theorem.

The stability problem for extremal black holes is exceptional because they suffer from a linear
instability known as the Aretakis instability [Arella; Arellb; Arelb; Ape22]. This instability is
weak, and a restricted form of nonlinear stability is nevertheless conjectured to hold with the same
codimensionality as in the subextremal case. See [DHRT, Section IV.2] for conjectures about stability
of extremal black holes, [Angl6; AAG20] for stability results on a nonlinear model problem, and
numerical work [MRT13; LMRT13] which is consistent with the above conjecture. The Aretakis
instability should not be thought of as a manifestation of the third law and understanding its
ramifications in the full nonlinear theory is a fundamental open problem in general relativity.

Therefore, asymptotic stability for any fixed parameter ratio (up to and including extremality)
should be formulated as a positive codimension statement. In our spherically symmetric setting, we
are led to conjecture that for every solution constructed in Theorem 1.1.4, there exists a codimension-
1 family of perturbations which asymptote to a Reissner—Nordstréom black hole with the same final
parameter ratio. Since the conjectured codimension is the same for every ratio, we are then led to
conclude that asymptotically extremal black holes are not qualitatively rarer than any fixed positive

temperature.
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We will return to the issue of the stability of extremal black holes in Section 1.2.5 below.

1.1.5 Conjecture: the third law is false in vacuum

In light of Theorem 1.1.1, we are motivated to make the following conjecture:

Conjecture 1.1.12. There exist regular one-ended Cauchy data for the Einstein vacuum equations

Ric(g) =0 (1.1.6)

which undergo gravitational collapse and form an exactly Schwarzschild apparent horizon, only for
the spacetime to form an exactly extremal Kerr event horizon at a later advanced time. In particular,

already in vacuum, the “third law of black hole thermodynamics” is false.

Remark 1.1.13. It is not possible to have a solution of the pure Einstein-Maxwell equations which
behaves like one of the solutions in Theorem 1.1.1. This is because the vacuum Maxwell equation
dxF = 0 always gives rise to a conserved electric charge (4m)~! |, ¢ *F, even outside of spherical
symmetry. On Schwarzschild, this charge is zero, and on Reissner—Nordstrém, it equals the charge

parameter e.

Remark 1.1.14. Similarly, if a vacuum spacetime has an axial Killing field Z, then the Komar
angular momentum (167) ! f g*dZ > is conserved. Therefore, Conjecture 1.1.12 cannot be proved in

axisymmetry.

1.1.5.1 Gravitational collapse to very slowly rotating Kerr black holes with prescribed

parameters in vacuum

The black holes in Theorem 1.1.1 are constructed in two stages: First the scalar field is used to form
an exact Schwarzschild apparent horizon in finite time, which is then charged up to extremality by
exploiting the coupling of the scalar field with the electromagnetic field.

In [KU23|, we showed how to generalize the first step of forming an exact Schwarzschild black

hole in vacuum. In fact, we can form any sufficiently slowly rotating Kerr black hole:

Theorem 1.1.15 (Gravitational collapse with prescribed M and 0 < |a| < M in vacuum). There
exists a constant 0 < ag < 1 such that for any mass M > 0 and specific angular momentum
parameter a satisfying 0 < |a|/M < ag, there exist one-ended asymptotically flat Cauchy data

(90, ko) € H? % g2/ for the Einstein vacuum equations (1.1.6) on ¥ = R3, satisfying the

loc loc
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constraint equations, such that the mazimal future globally hyperbolic development (M*,g) contains

a black hole BH = M\ J~(Z") and has the following properties:

e The Cauchy surface X lies in the causal past of future null infinity, ¥ C J~(Z*). In particular,

Y3 does not intersect the event horizon Ht = O(BH) or contain trapped surfaces.
o (M, g) contains trapped surfaces.

e For sufficiently late advanced times v > vg, the domain of outer communication, including
the event horizon H™T, is isometric to that of a Kerr solution with parameters M and a. For

v > vg, the event horizon of the spacetime can be identified with the event horizon of Kerr.

For the relevant Penrose diagram, consult Fig. 1.2 below.

Kerr N
0<la|/M < 1

Figure 1.4: Penrose diagram for Theorem 1.1.15. The textured line segment is where the gluing
data constructed in Theorem 4.5.2 live.

Remark 1.1.16. It is a classical result that the Einstein equations are well posed in le/f_ X Hlso/cz_,

see [HKM76] and also [PRO7; Chrl3].

The proof is again a characteristic gluing construction, but now for the Einstein vacuum equa-
tions. See already Section 4.5.

Outside of spherical symmetry (for the Einstein vacuum equations), formation of black holes was
studied by Christodoulou in the seminal monograph [Chr09]. Christodoulou constructed character-
istic data for the Einstein vacuum equations containing no trapped surfaces, but whose evolution
contains trapped surfaces in the future. Li and Yu [LY15] showed how to combine Christodoulou’s
construction with the spacelike gluing technique of Corvino and Schoen [CS06] to construct asymp-
totically flat Cauchy data containing no trapped surfaces, but whose evolution contains trapped

surfaces in the future. Later, Li and Mei [LM20] observed that the Corvino—Schoen gluing can be
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done “behind the event horizon,” which yields a genuine construction of gravitational collapse in
vacuum arising from one-ended asymptotically flat Cauchy data.?

The constructions of the above type rely on the observation that if an additional restriction is
imposed on the seed data in [Chr09], then the resulting spacetime has a region of controlled size
which is close to Schwarzschild. The Corvino—Schoen gluing then selects very slowly rotating Kerr
parameters for the exterior region. Our Theorem 1.1.15 can be compared with the main theorem of
Li and Mei in [LM20]. In particular, we also prove trapped surface formation starting from Cauchy
data outside of the black hole region.

Our proof of trapped surface formation starting from Cauchy data is fundamentally different from
[LM20] because it does not appeal to Christodoulou’s trapped surface formation mechanism [Chr09].
In fact, the only aspect of the evolution problem we require is Cauchy stability. Furthermore, we
can directly prescribe the (very slowly rotating) Kerr parameters of the black hole to be formed.
In particular, we may take a = 0, which guarantees the existence of a spacelike singularity, see
already Corollary 4.6.5. However, our data is of limited regularity (but still in a well-posed class).
Nevertheless, by appealing to Cauchy stability once again, Theorem 1.1.15 has the further corollary
of showing the existence of an open set of vacuum Cauchy data not containing trapped surfaces,
but which lead to trapped surface formation in evolution. This method of obtaining trapped surface
formation softly is new and fundamentally different from Christodoulou’s method in [Chr09], which

revolves around a semiglobal evolution problem.

Remark 1.1.17. In [KU23] (and this dissertation), the Cauchy data (g,k) are constructed with
regularity le/c% X Hf;/czf, which is well above the threshold for classical existence and uniqueness
for the Einstein vacuum equations [HKM76; PRO7; Chr13]. This limited regularity is because the
characteristic gluing results [ACR21; CR22] which we use as a black box are limited to C? regularity
of transverse derivatives in the non-bifurcate case. Using the more recent spacelike gluing results of

Mao-Oh-Tao [MOT?23], it is possible to construct suitable Cauchy data in H  x H, S~ for any s.

loc

1.1.5.2 The Thorne bound

When a black hole forms in nature, it is typically surrounded by a so-called accretion disk, consisting
of gas, dust, and other diffuse material. The matter in the disk is susceptible to friction, which
raises the temperature and causes emission of electromagnetic radiation [PT74]. A famous heuristic

argument in astrophysics, called the Thorne bound [Tho74], would imply that Conjecture 1.1.12 is

2Here, gravitational collapse refers to a solution of Einstein’s equations containing a black hole, such that the
Cauchy hypersurface on which data are posed does not intersect the black hole region.
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false in the presence of an accretion disk because of the back-reaction of photons. It would be very

interesting to investigate this argument further in light of our recent results.

1.2 Extremal black hole formation as a critical phenomenon

1.2.1 Statement of the main result

In contrast to the examples of gravitational collapse presented in the previous section, small initial
data for the Einstein equations (with reasonable matter content) tend to disperse without a black hole
forming. It is a fundamental problem in classical general relativity to understand how these different
classes of spacetimes—collapsing and dispersing—fit together in the moduli space of solutions. The
interface between collapse and dispersion is known as the black hole formation threshold and families
of solutions crossing this threshold are said to exhibit critical collapse. Spacetimes lying on the
threshold are called critical solutions.

Critical collapse has been extensively studied numerically, starting with the influential work of
Choptuik [Cho93] on the spherically symmetric Einstein-scalar field model, in a regime where the
critical solutions are believed to be naked singularities. The Einstein—Vlasov system is believed
to have static “star-like” critical solutions [RRS98; OCO02], but critical collapse involving naked
singularities has so far not been observed. These numerical studies on critical collapse (see also the
survey [GMO07]) have yet to be made rigorous.

At first glance, the Reissner—Nordstrom family of metrics (indexed by the mass M > 0 and
charge e) appears to exhibit a type of critical behavior: the solution contains a black hole when
le] < M (subextremal) or |e|] = M (extremal) and does not contain a black hole when |e|] > M
(superextremal). However, the Reissner-Nordstrém black holes are eternal and arise from two-
ended Cauchy data, while the superextremal variants contain an eternal “naked singularity” that has
historically caused much confusion. Moreover, it was long thought that extremal black holes could
not form dynamically (a consideration closely related to the third law of black hole thermodynamics).
Were this true, it would seem to rule out extremal Reissner—Nordstrom as the late-time behavior of
any critical solution. As discussed in the previous section, Kehle and the present author disproved the
third law in the Einstein-Maxwell-charged scalar field model and showed that an exactly extremal
Reissner-Nordstrom domain of outer communication can indeed form in gravitational collapse.

We now continue our investigation of extremal black hole formation by showing that extremal

Reissner—Nordstrom does arise as a critical solution in gravitational collapse for the Einstein—
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Maxwell-Vlasov model, giving rise to a new phenomenon that we call extremal critical collapse.

Theorem 1.2.1. There exist extremal black holes on the threshold between collapsing and dispersing
smooth configurations of charged matter. More precisely, for any mass M > 0, fundamental charge
¢ # 0, and particle mass 0 < m < mg, where 0 < myg <K 1 depends only on M and e, there

exists a smooth one-parameter family of smooth, spherically symmetric, one-ended asymptotically

flat Cauchy data {¥x}xepo,1] for the Einstein-Mazwell-Viasov system for particles of fundamental
charge ¢ and mass m, such that the mazimal globally hyperbolic development of U, denoted by Dy,

has the following properties.

1. Dy is isometric to Minkowski space and there exists A« € (0,1) such that for A < A\, Dy is

future causally geodesically complete and disperses towards Minkowski space. In particular, D

does not contain a black hole or naked singularity. If A < A, is sufficiently close to \., then

for sufficiently large advanced times and sufficiently small retarded times, D) is isometric to

an appropriate causal diamond in a superextremal Reissner—Nordstrom solution.

2. Dy, contains a nonempty black hole region BH = M\ J~(Z) and for sufficiently large
advanced times, the domain of outer communication, including the event horizon Ht = 0(BH),
is isometric to that of an extremal Reissner—Nordstrom solution of mass M. The spacetime

contains no trapped surfaces.

3. For A > A\, Dy contains a nonempty black hole region BH and for sufficiently large advanced
times, the domain of outer communication, including the event horizon H', is isometric to
that of a subextremal Reissner—Nordstrom solution. The spacetime contains an open set of

trapped surfaces.

In addition, for every A € [0,1], Dy is past causally geodesically complete, possesses complete null

infinities I and I, and is isometric to Minkowski space near the center {r = 0} for all time.

In the proof of Theorem 1.2.1, we construct one-parameter families of charged Vlasov beams
coming in from past timelike infinity (if m > 0, cf. Fig. 1.5) or from past null infinity (if m = 0,
cf. Fig. 1.6). In the dispersive case A\ < A, the area-radius r of the beam grows linearly in time as
the matter expands towards the future. Moreover, the macroscopic observables of the Vlasov matter
(the particle current N and energy momentum tensor 7') decay at the sharp ¢t =2 rate in the massive
case and at the sharp ¢~2 rate in the massless case (with faster decay for certain null components),
see already (8.2.10)—(8.2.14) in Proposition 8.2.3. In fact, this same dispersive behavior occurs in

the past for every A € [0,1].
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A < A, dispersion A = \,.: extremal BH A > A,: subextremal BH

3t

N no trapped N trapped
N C\)’}X region N ng/x region

Figure 1.5: Penrose diagrams of the one-parameter family {Dy} from Theorem 1.2.1 in the case of
massive particles. The dark gray region depicts the physical space support of the Vlasov matter
beam. The region of spacetime to the left of the beam is exactly Minkowski space and the region to
the right of the beam is exactly Reissner—Nordstrom with the parameter ratio as depicted. In every
case, the beam “bounces” before it hits the center {r = 0} due to the repulsive effects of angular
momentum and the electromagnetic field. When A\ < \,, the beam bounces before a black hole is
formed. The leftmost figure, with superextremal exterior parameters, represents the case of A close
to A. For X close to zero, the exterior parameters can be subextremal (but nevertheless no black
hole forms). We note already that the beams actually have more structure than is depicted here in
these “zoomed out” pictures. See already Fig. 8.2.

As a direct consequence of Theorem 1.2.1, we obtain

Corollary 1.2.2. The very “black hole-ness” of an extremal black hole arising in gravitational
collapse can be unstable: There ezist one-ended asymptotically flat Cauchy data for the Finstein—
Mazwell-Vlasov system, leading to the formation of an extremal black hole, such that an arbitrarily
small smooth perturbation of the data leads to a future causally geodesically complete, dispersive

spacetime.

This is in stark contrast to the subextremal case, where formation of trapped surfaces behind
the event horizon—and hence stable geodesic incompleteness [Pen65]—is expected. Despite this
inherent instability of the critical solution, we expect extremal critical collapse itself to be a sta-
ble phenomenon: We conjecture that there exists a teleologically determined “hypersurface” Bt
in moduli space which consists of asymptotically extremal black holes, contains D,,, and locally
delimits the boundary in moduli space between future complete and collapsing spacetimes. This
“codimension-one” property is expected to hold for other variants of critical collapse and will be
discussed in detail in Section 1.2.5.

We further expect extremal critical collapse to be a more general phenomenon: we conjecture it
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A < A, dispersion A = A extremal BH A > A subextremal BH
T

Q N no trapped N trapped
N N 0’3’x region N 0’3& region

O'/ Minkowski

7 2 2

Figure 1.6: Penrose diagrams of the one-parameter family {D,} from Theorem 1.2.1 in the massless
case. In the ingoing (resp., outgoing) phases, the massless beams are entirely contained in slabs of
finite advanced (resp., retarded) time. Therefore, for sufficiently early advanced times and sufficiently
late retarded times, the solutions are vacuum and isometric to Minkowski space.

to occur in the spherically symmetric Einstein—-Maxwell-charged scalar field model and also for the
Einstein vacuum equations, where extremal Kerr is the model critical solution. In this paper, we
also prove (see already Theorem 7.3.2 in Section 7.3) that extremal critical collapse already occurs
in the simpler—but singular—bouncing charged null dust model, which was first introduced by Ori
in [Ori91]. The proof of Theorem 1.2.1, which will be outlined in Section 8.1, can be viewed as a
global-in-time desingularization of these extremal critical collapse families in dust.

Besides the Einstein—-Maxwell-Vlasov and bouncing charged null dust models, it turns out that
the thin charged shell model [Isr66; DI67] also exhibits extremal critical collapse: Prészyriski observed
in [Pré83] that if a thin charged shell is injected into Minkowski space (so the interior of the shell is
always flat), the parameters can be continuously varied so that the exterior of the shell goes from
forming a subextremal Reissner—Nordstrém black hole, to forming an extremal Reissner—Nordstrém
black hole, to forming no black hole or naked singularity at all: the shell “bounces” off to future
timelike infinity. Because the thin shell model is quite singular (the energy-momentum tensor is
merely a distribution and the metric can fail to be C! across the shell), it seems to have been
discounted as a serious matter model. We refer to the previous discussion in Section 1.1.3.1 in
reference to the thin charged shell counterexample to the third law by Farrugia and Hajicek [FH79].
Theorem 1.2.1 can be viewed as a vindication of [Pr683], since our smooth Einstein-Maxwell-massive
Vlasov solutions exhibit all of the qualitative features of Proszyriski’s dust shells. In particular,

Fig. 8.1 below is strikingly similar to Fig. 3 in [Pr683].
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1.2.2 The Einstein—Maxwell-Vlasov system

In Theorem 1.2.1, we consider the Finstein—Mazwell-Viasov system, which models a distribution of
collisionless, self-gravitating charged particles with mass m > 0 and fundamental charge ¢ € R\ {0}.
The model consists of a quadruple (M*, g, F, f), where (M*, g) is a spacetime, F is a closed 2-form
representing the electromagnetic field strength, and f = f(x,p), called the distribution function of

the Vlasov matter, is a smooth nonnegative function defined on the mass shell

P™ = {(x,p) € TM : pis future-directed causal and g(p, p) = —m?}.

The equations of motion are

Ruv — 3Rgu =2 (T" + Tow) (1.2.1)
V' = —eNY, (1.2.2)
Xf=0, (1.2.3)

where ThM = F,*F,q — 29, FapF P is the energy-momentum tensor of the electromagnetic field,

N and T are the number current and energy-momentum tensor of the Vlasov matter, defined by

P (2. p) du™ (p), J”WLﬂ(x)ﬁt/‘ P p) (), (1.2.4)

m
P x

N [f@) = |

pr
and X € I'(TTM) is the electromagnetic geodesic spray vector field, defined relative to canonical
coordinates (z*,p*) on TM by

L0 . N
X :p"@ - (I‘Zﬂp PP —eF*op ) o (1.2.5)

For the definition of the family of measures du} on P™ and a proof of the consistency of the system
(1.2.1)—(1.2.3), we refer to Section 2.3.1.

The integral curves of the vector field X consist of curves of the form s — (y(s),p(s)) € TM,
where p = dvy/ds and p satisfies the Lorentz force equation

Dp*

=eF*, p”.
ds ¢ P

We refer to such curves v as electromagnetic geodesics. The vector field X is tangent to P™ for any

m > 0, and the Vlasov equation (1.2.3) implies that f is conserved along electromagnetic geodesics.
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Since f > 0, N is a future-directed causal vector field on M and the model satisfies the dominant
energy condition.

When m > 0, the system (1.2.1)—(1.2.3) is locally well-posed outside of symmetry, which can
be seen as a special case of results in [BC73] or by applying the general methods of [Rin13]. Well-
posedness when m = 0 is conditional and is a delicate issue that we will return to in Section 3.2.1.
We emphasize at this point that Theorem 1.2.1 produces examples of extremal critical collapse for
any sufficiently small positive particle mass, where well-posedness is unconditional and valid outside

of spherical symmetry.

1.2.3 The problem of critical collapse

We would like to place Theorem 1.2.1 into the larger picture of critical collapse, the general study of
the black hole formation threshold. In particular, we conjecture that our examples in Theorem 1.2.1
have a suitable codimension-one property as is expected to hold for other, so far only numerically
observed, critical phenomena in gravitational collapse.

In order to discuss the general concept of critical collapse, it is very helpful to have a notion of
“phase space” or moduli space for initial data (or maximal Cauchy developments) for the Einstein
equations. Consider, formally, the set 9t of one-ended asymptotically flat Cauchy data for the
Einstein equations with a fixed matter model (or vacuum) and perhaps with an additional symmetry
assumption. We will be intentionally vague about what regularity elements of 9t have, what decay
conditions to impose, or what topology to endow 2t with. We will also not discuss gauge conditions,
which could be viewed as taking specific quotients of 9. These questions are related to several
fundamental issues in general relativity, see for instance [Chr94; Chr99b; Chr02; DS18; LO19;
Keh22a; RSR23; Keh23; KM24; Sin24].> Indeed, it seems likely that there is no single “correct”
definition—it is doubtful that a single moduli space will capture every interesting phenomenon.

Nevertheless, we will pretend in this section that a “reasonable” definition of 9 exists. At the
very least, 91 ought to consist of initial data possessing a well-posed initial value problem. For
each element ¥ = (g,k,...) € 9 (where g is a Riemannian metric on R3, k the induced second
fundamental form, and ... denotes possible matter fields), we have a unique maximal globally

hyperbolic development D = (M, g,...) of ¥, where M = R* [Fou52; CG69; Sbil6].* We assume

3In particular, it would actually be most natural to define 9 in terms of (perhaps a quotient space of) scattering
data on past infinity (past null infinity Z— in the case of massless fields). However, since a nonlinear scattering theory
for the full Einstein equations has not yet been developed in any regime, we limit ourselves to the Cauchy problem
for now.

4By an abuse of terminology, we will interchangeably refer to either ¥ or its development D, which is of course
only unique up to isometry.
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that (M, g) is asymptotically flat. In particular, we assume that we have a well-defined notion of

future null infinity Z* and past null infinity Z—.

Remark 1.2.3. In the proof of Theorem 1, we define a “naive moduli space” M, consisting of all

smooth solutions of the Einstein-Maxwell-Vlasov constraint equations on R3, equipped with the

o0
loc

topology, and with no identifications made. See already Definition 8.9.8. This topology is
inadequate for addressing asymptotic stability questions but since our families are electrovacuum
outside a fixed large compact set anyway, they will be continuous in any “reasonable” topology that

respects asymptotic flatness.

Let € C 991 denote the subset of initial data with future causally geodesically complete develop-
ments. We also highlight the special class ® C € of initial data with dispersive developments, i.e,
those solutions whose geometry asymptotically converges to Minkowski space in the far future and
matter fields decay suitably.® Nontrivial stationary states, if they exist, lie in € \ D since they do
not decay.® Let B C 9 denote the set of initial data leading to the formation of a nonempty black
hole region, i.e., BH = M\ J=(ZT) # (. The question of critical collapse is concerned with the
study of phase transitions between €, D, and B, that is, the structure of the boundaries 0€, 09,
and 08, how they interact, and characterizing solutions lying on the threshold.

A natural way of exploring this phase transition is by studying continuous paths of initial data

interpolating between future complete and black hole forming solutions.

Definition 1.2.4. An interpolating family is a continuous one-parameter family {Wx}rgj—1,1) C M
such that ¥y € € and ¥; € *B. Given such a family, we may define the critical parameter A, and

the critical solution Dy, (the development of ¥y, ) by

Av =sup{A €[0,1]: U, € ¢}

The prototypical critical collapse scenario consists of a spherically symmetric self-gravitating
massless scalar field pulse with fixed profile and “total energy” ~ A. At A = 0, the solution is
Minkowski space and for A very close to 0, the solution disperses and is future complete [Chr86].
As )\ approaches 1, a trapped surface forms in evolution, signaling the formation of a black hole
[Chr91c]. This is precisely the scenario first studied numerically by Christodoulou in his thesis

[Chr71] and then later by Choptuik in the influential work [Cho93]. Based on numerical evidence,

5Again, we are being intentionally vague here.

6 According to a famous theorem of Lichnerowicz, the Einstein vacuum equations do not admit nontrivial asymp-
totically flat stationary solutions on R3 x R (with an everywhere timelike Killing field) [Lic55]. On the other hand,
the Einstein—Vlasov and Einstein-Maxwell-Vlasov systems, for example, have many asymptotically flat stationary
solutions [RR93; Thal9; Tha20].
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it is believed that the critical solutions for these types of families are naked singularities that form
a codimension-one “submanifold” in moduli space. For discussion of Choptuik’s results we refer to

the survey [GMOT].

Remark 1.2.5. A codimension-one submanifold of naked singularities is nongeneric and therefore
compatible with the weak cosmic censorship conjecture, which has been proved in this model by

Christodoulou [Chr99b].

Remark 1.2.6. A rigorous understanding of Choptuik’s critical collapse scenario would in particular
give a construction of naked singularities in the Einstein-scalar field system starting from smooth
initial data, in contrast to Christodoulou’s examples in [Chr94]. It already follows from work of
Christodoulou [Chr91c] that a critical solution cannot be a black hole in this model and from work
of Luk and Oh that a critical solution cannot “scatter in BV norm” [LO15]. This leaves the possibility

7

of either a first singularity along the center not hidden behind an event horizon’ or a solution in

¢\ ® which “blows up at infinity.” Ruling out this latter case is an interesting open problem.

When massive fields are introduced, such as in the spherically symmetric Einstein—massive Klein—
Gordon or Einstein—massive Vlasov systems, then static “star-like” critical solutions can be observed
numerically [BCG97; RRS98; OC02; AR06; AAR21]. These static solutions are nonsingular and lie
in €\D. It is interesting to note that while Einstein—Klein—Gordon also displays Choptuik-like naked
singularity critical solutions, there is no numerical evidence for the existence of naked singularities
in the Einstein—Vlasov system. We again refer to [GMO7] for references and would also like to point

out the new development [Bau+23] on numerical critical collapse in vacuum.

1.2.4 Extremal critical collapse

So far, all numerically observed critical solutions are believed to be either naked singularities or
complete and nondispersive. It follows at once from Penrose’s incompleteness theorem [Pen65] and
Cauchy stability that a critical solution cannot contain a trapped surface. While a generic black
hole is expected to contain trapped surfaces,® members of the extremal Kerr-Newman family do
not. In view of this, we raise the question of whether extremal black holes can arise on the black

hole formation threshold:

Definition 1.2.7. An interpolating family {Wx}\c[o,1) exhibits extremal critical collapse if the

critical solution Dy, asymptotically settles down to an extremal black hole.

"See [Kom13, Page 10] for a catalog of the possible Penrose diagrams in this case.
8By the celebrated redshift effect, one expects a spacetime asymptoting to a subextremal Kerr-Newman black hole
to contain trapped surfaces asymptoting to future timelike infinity i*. See [Daf05c; DRO5b; DL17; Van18a; AH23].
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Our main result, Theorem 1.2.1, proves that the Einstein-Maxwell-Vlasov system exhibits ex-
tremal critical collapse, with critical solution D), exactly isometric to extremal Reissner-Nordstrom
in the domain of outer communication at late advanced times. As shown by Prészynski [Pr683] and
the present authors in Theorem 7.3.2, the fundamentally singular thin charged shell and charged null
dust models, respectively, exhibit extremal critical collapse, also with extremal Reissner—Nordstréom
as the critical solution. We expect this phenomenon to also occur in the spherically symmetric
Einstein—Maxwell-charged scalar field system and even for the Einstein vacuum equations, where
the critical solution is expected to be based on the extremal Kerr solution. Note that we only re-
quire the asymptotic geometry of the critical solution to be an extremal black hole in Definition 1.2.7,

which is a much weaker condition than being exactly extremal as in Theorem 1.2.1.

Remark 1.2.8. Because black holes in the spherically symmetric Einstein-scalar field model always
contain trapped surfaces [Chr91c], this model does not exhibit extremal critical collapse. In particu-
lar, since the presence of a trapped surface in this model already implies completeness of null infinity
and the existence of a black hole [Daf05b], B is open in the spherically symmetric Einstein-scalar
field model. Moreover, black holes in this model always settle down to (subextremal) Schwarzschild

[Chr87].

Remark 1.2.9. We reiterate the points of Remarks 1.1.13 and 1.1.14. It is not possible for a Kerr
solution with nonzero angular momentum (i.e., not Schwarzschild) to appear as the asymptotic state
in axisymmetric vacuum gravitational collapse. This is because the Komar angular momentum is in-
dependent of the sphere S, which is nullhomologous. Similarly, it is not possible for a Kerr—Newman
solution with nonzero charge (i.e., not Kerr) to appear as the asymptotic state in gravitational col-
lapse for the Einstein-Maxwell system. This is because the charge is independent of the sphere .S,

which is nullhomologous. The presence of charged matter is essential in Theorem 1.2.1.

Remark 1.2.10 (Stationary solutions and the extremal limit). In the 1960s and *70s, it was suggested
that astrophysical black holes could form through quasistationary accretion processes. In a landmark
work, Bardeen and Wagoner [Bar70; BW71] numerically studied axisymmetric stationary states of
the Einstein-dust system (modeling accretion disks) and found that a “black hole limit” was only
possible in the “extremal limit” of the dust configuration.? In this limit, the exterior metric of the

disk converges, in a certain sense, to the metric of the domain of outer communication of extremal

9Recall that the classical Buchdahl inequality states that a spherically symmetric stationary fluid ball is always
“far away” from being a black hole in the sense that ZTm < %, which quantitatively forbids (even marginally) trapped
surfaces [Buch9]. This bound is relaxed outside of spherical symmetry or in the presence of charge. In particular,
the sharp charged Buchdahl inequality in [And09] is consistent with becoming arbitrarily close to extremality and
forming a marginally trapped surface.
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Kerr.

However, the event horizon of a stationary black hole is necessarily a Killing horizon and therefore
an exactly stationary black hole solution cannot admit a one-ended asymptotically flat Cauchy
hypersurface.!® It follows that a sequence of one-ended stationary states cannot actually smoothly
converge to a black hole spacetime up to and including the event horizon, and that the black hole
threshold cannot be directly probed by studying limits of stationary states—black hole formation is
a fundamentally dynamical process.

Nevertheless, there is a substantial body of numerical and heuristic literature exploring “extremal
black hole limits” of stationary solutions in dust models [NM95; Mei06; Mei+08; MH11; KLM11] and
using Einstein—Yang-Mills-Higgs magnetic monopoles [LW99; LWO00]; see also references therein.
In particular, we refer the reader to [MH11] for a cogent explanation of the exact nature of the
convergence of these stationary states to extremal Reissner—Nordstrom/Kerr exteriors and throats.
It would be interesting to see if perturbing these “near-extremal” non-black hole stationary states
can provide another route to extremal critical collapse (and also perhaps to new examples of third
law violating solutions), but this seems to be a difficult and fully dynamical problem as stationarity

necessarily has to be broken in order for a black hole to form.

Remark 1.2.11 (Overcharging and overspinning). Extremal critical collapse should not be confused
with the attempt to overcharge or overspin a black hole, i.e., the attempt to destroy the event
horizon and create a “superextremal naked singularity” by throwing charged or spinning matter
into an extremal or near-extremal black hole. The fear of forming such a naked singularity provided
some impetus for the original formulation of the third law in [BCH73]!! and many arguments
for and against have appeared in the literature, see [Wal74; Hub99; JS09; SW17] and references
therein. Overcharging has been definitively disproved in spherical symmetry for the class of “weakly
tame” matter models [Daf05b; Kom13], which includes the Einstein-Maxwell-charged scalar field
and Einstein-Maxwell-Vlasov systems considered in this dissertation. We expect overcharging and
overspinning to be definitively disproved with a positive resolution of the black hole stability problem

for extremal black holes, to be discussed in Section 1.2.5 below.

10The original dust disk configuration is one-ended.

1'With this in mind, the formulation of the third law in [BCH73] can be thought of as simply outright forbidding
the formation of extremal black holes. The formulation in Israel’s work [Isr86] is more refined and specifically refers
to subextremal black holes “becoming” extremal in a dynamical process. In any case, both formulations are false as
demonstrated in this dissertation.
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1.2.5 Stability of extremal critical collapse

Before discussing the stability of our interpolating families in Theorem 1.2.1, we must first address
the expected notion of stability for the domain of outer communication of the extremal Reissner—
Nordstrém solution.

Firstly, since the asymptotic parameter ratio of the black hole is inherently unstable, we can
at most expect a positive codimension stability statement for extremal Reissner—Nordstrém. This
should be compared with the codimension-three nonlinear stability theorem of the Schwarzschild
solution by Dafermos, Holzegel, Rodnianski, and Taylor [DHRT]: Only a codimension-three “sub-
manifold” of moduli space can be expected to asymptote to Schwarzschild, which has codimension
three in the Kerr family (parametrized by the mass and specific angular momentum vector). In the
case of Reissner—Nordstrom, the set of extremal solutions has codimension one in the full family.
Indeed, any fixed parameter ratio subfamily of the Reissner—-Nordstrom family has codimension one.
See already Remark 1.2.17.

Secondly, and far less trivially, the stability problem for extremal black holes is complicated by the
absence of the celebrated redshift effect, which acts as a stabilizing mechanism for the event horizon
of subextremal black holes. The event horizon of extremal Reissner-Nordstrom (and axisymmetric
extremal black holes in general) suffers from a linear instability known as the Aretakis instability
[Arella; Arellb; Arel5; Ape22], which causes ingoing translation invariant null derivatives of solu-
tions to the linear wave equation to (generically) either not decay, or to blow up polynomially along
the event horizon as v — co. Weissenbacher has recently shown that a similar instability (non-decay
of the first derivative of the energy-momentum tensor) occurs for the linear massless Vlasov equation
on extremal Reissner—Nordstrom [Wei23].

However, the Aretakis instability is weak and does not preclude asymptotic stability and decay
away from the event horizon. Including the horizon, we expect a degenerate type of stability,
with decay in directions tangent to it, and possible non-decay and growth transverse to it (so-
called horizon hair). This behavior has been shown rigorously for a semilinear model problem on a
fixed background [Angl6; AAG20] and numerically for the coupled spherically symmetric nonlinear
Einstein-Maxwell-(massless and neutral) scalar field system [MRT13].

To further complicate matters, the massive and massless Vlasov equations behave fundamentally
differently and we state two separate conjectures. In these statements, we consider characteristic
data posed on a bifurcate null hypersurface Coyy U C},,, where Coyt is complete and C;, penetrates

—=I1n’

the event horizon in the case of trivial data. Solutions of the linear massless Vlasov equation
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decay exponentially on subextremal Reissner—Nordstrom black holes [Big23; Wei23] and Velozo Ruiz
has proved nonlinear asymptotic stability of Schwarzschild for the spherically symmetric Einstein—
massless Vlasov system [Vel23]. Based on this, [MRT13; Angl6; AAG20], and [DHRT, Conjecture

IV.2], we make the

Conjecture 1.2.12. The extremal Reissner—Nordstrom solution is nonlinearly asymptotically sta-
ble to spherically symmetric perturbations in the Einstein—Mazwell-massless Viasov model in the
following sense: Given sufficiently small characteristic data posed on a bifurcate null hypersurface
Cout U Cy, and lying on a “codimension-one submanifold” Myap, (which contains the trivial solu-
tion) of the moduli space of such initial data, the mazimal Cauchy development contains a black hole
which asymptotically settles down to the domain of outer communication of an extremal Reissner—
Nordstrom solution, away from the event horizon H*. Moreover, along the horizon, the solution
decays towards extremal Reissner—Nordstrom in tangential directions, with possibly growing “Vlasov

hair” transverse to the horizon.

Remark 1.2.13. There exist nontrivial spherically symmetric static solutions of the Einstein—massless
Vlasov system containing a black hole which are isometric to a Schwarzschild solution in a neighbor-
hood of the event horizon [And21].}2 However, these are not small perturbations of Schwarzschild
as the structure of trapping for null geodesics is significantly modified in the construction. Their

existence is therefore consistent with [Vel23] and Conjecture 1.2.12.

The massive Vlasov equation admits many nontrivial stationary states on black hole backgrounds,
which is an obstruction to decay and we do not expect a general asymptotic stability statement to
hold, even in the subextremal case. In fact, it has been shown that there exist spherically symmetric
static solutions of Einstein—massive Vlasov bifurcating off of Schwarzschild [Rei94; Jab21]. We refer
to [Vel23] for a characterization of the “largest” region of phase space on which one can expect decay
for the massive Vlasov energy-momentum tensor on a Schwarzschild background. However, one
might still hope for orbital stability of the exterior, with a non-decaying Vlasov matter atmosphere,

and that the horizon itself decays to that of extremal Reissner—-Nordstrom:

Conjecture 1.2.14. The extremal Reissner—Nordstrém solution is nonlinearly orbitally stable to
spherically symmetric perturbations in the Einstein—Mazwell-massive Viasov model in the following
sense: Given sufficiently small characteristic data posed on a bifurcate null hypersurface Cous U Ciyy

and lying on a “codimension-one submanifold” Mqap, of the moduli space of such initial data, the

12A similar construction can presumably be performed for the Einstein-Maxwell-massless Vlasov system and
Reissner—Nordstrom black holes which makes this relevant to the current discussion.
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Figure 1.7: A cartoon depiction of the conjectured structure of a neighborhood of moduli space near
an interpolating family {¥,} from Theorem 1.2.1. We have suppressed infinitely many dimensions
and emphasize the codimension-one property of the critical “submanifold” B,y which consists of
asymptotically extremal black holes in accordance with Conjectures 1.2.12 and 1.2.14. The interpo-
lating family {¥) } is a small perturbation of {¥,} which also crosses Bi; and exhibits extremal
critical collapse. Locally, 9B is foliated by “hypersurfaces” 9B(t) consisting of black hole spacetimes
with asymptotic parameter ratio v close to 1.

mazximal Cauchy development contains a black hole which remains close to an extremal Reissner—
Nordstrom solution in the domain of outer communication and asymptotically settles down to ex-

tremal Reissner—Nordstrom tangentially along the horizon, with possibly growing “Vlasov hair” trans-

verse to the horizon.

Remark 1.2.15. We emphasize that this type of nonlinear orbital stability for massive Vlasov has

not yet been proven even in the subextremal case, where we do not expect horizon hair to occur.

With the conjectured description of the stability properties of the exterior of the critical solution
at hand, we are now ready to state our conjecture for the global stability of the extremal critical

collapse families in Theorem 1.2.1. Refer to Fig. 1.7 for a schematic depiction of this conjecture.

Conjecture 1.2.16. Extremal critical collapse is stable in the following sense: Consider the moduli
space M of the spherically symmetric Finstein—Mazwell-Viasov system for particles of mass m. Let
{W,} be one of the interpolating families given by Theorem 1.2.1. Then there exists a “codimension-

one submanifold” Berix of M such that Vo € Beriy C B, which has the following properties:
1. Byt 18 critical in the sense that B and € locally lie on opposite sides of Byt -

2. Ifm =0 and U € B, the domain of outer communication of the maximal Cauchy devel-
opment of W asymptotically settles down to an extremal Reissner—Nordstrém black hole as in

Conjecture 1.2.12.

3. Ifm > 0 and U € B, the domain of outer communication of the mazrimal Cauchy de-

velopment of U remains close to an extremal Reissner—Nordstrém black hole and the event
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horizon asymptotically settles down to an extremal Reissner—Nordstrém event horizon as in

Conjecture 1.2.14.

Therefore, any nearby interpolating family {U)} also intersects By and exhibits extremal critical

collapse.

Remark 1.2.17. We further conjecture that given ¢ € [1 — ¢,1] for some € > 0, there exists a one-
parameter family of disjoint “codimension-one submanifolds” B(r) C 9B, varying “continuously” in
t, such that B(1) = B,y and if ¥ € B(r), then the maximal Cauchy development of ¥ contains a
black hole which asymptotes to a Reissner-Nordstrom black hole with parameter ratio v = ey /My,
where M is the final renormalized Hawking mass and ey is the final charge. One can then interpret
equation (8.9.5) below as saying that the families {¥,} in Theorem 1.2.1 intersect the foliation

{B(r)} transversally, as depicted in Fig. 1.7.

While one should think that 9B, in Conjecture 1.2.16 corresponds to Mg in Conjectures 1.2.12
and 1.2.14, Part 1 of Conjecture 1.2.16 is also a highly nontrivial statement about the interiors of
the black holes arising from B..;. In particular, by the incompleteness theorem, it would imply
that there are no trapped surfaces in the maximal developments of any member of Bis; see [GL19,

Remark 1.8] and the following remark.

Remark 1.2.18. Conjecture 1.2.16 implies that B is locally closed near Wg: there exists an open set
U C 9N containing ¥, such that B8 N U is closed in U. This property is not expected to hold near

other types of critical solutions, such as naked singularties or star-like solutions.

Remark 1.2.19. Using arguments from [LO19, Appendix A], one can show the following statement
in the spherically symmetric Einstein-Maxwell-(neutral and massless) scalar field model: If the
maximal Cauchy development of a partial Cauchy hypersurface'® with 0,r < 0 contains a black
hole with asymptotically extremal parameter ratio, then the development does not contain trapped
symmetry spheres. The argument uses crucially the constancy of charge and absence of T}, in this

model.

1.2.6 Extremal critical collapse of a charged scalar field and in vacuum

It is natural to conjecture the analog of Theorem 1.2.1 for a massless charged scalar field in spherical

Syminetry:

13By this, we mean an asymptotically flat spacelike hypersurface which terminates at a symmetric sphere with
positive area-radius. If the charge is nonzero and nondynamical (as in the neutral scalar field model), one cannot
have a regular center.
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Conjecture 1.2.20. Eztremal critical collapse occurs in the spherically symmetric Finstein—Mazwell-
charged scalar field model and there exist critical solutions which are isometric to extremal Reissner—

Nordstrom in the domain of outer communication after sufficiently large advanced time.

In [KU22] (see Section 4.6.2 below), we showed that a black hole with an extremal Reissner—
Nordstrém domain of outer communication and containing no trapped surfaces can arise from regular
one-ended Cauchy data in the spherically symmetric charged scalar field model (see Corollary 4.6.3).
The proof is based on a characteristic gluing argument, in which we glue a late ingoing cone in
the interior of extremal Reissner—Nordstréom to an ingoing cone in Minkowski space. The desired
properties of the spacetime are obtained softly by Cauchy stability arguments. In particular, the
method is inadequate to address whether the solution constructed in Corollary 4.6.3 is critical.

It is also natural to conjecture the analog of Theorem 1.2.1 for the Einstein vacuum equations,

Ric(g) = 0, (1.2.6)

where the role of extremal Reissner-Nordstrém is played by the rotating extremal Kerr solution.'*

Conjecture 1.2.21. FEaxtremal critical collapse occurs in vacuum gravitational collapse and there
exist critical solutions which are isometric to extremal Kerr in the domain of outer communication

after sufficiently large advanced time.

In [KU23] (refer to Section 1.1.5 in this dissertation), the present authors constructed examples
of vacuum gravitational collapse which are isometric to Kerr black holes with prescribed mass M and
specific angular momentum a, where M and a are any Kerr parameters satisfying 0 < |a|/M < ag
for some small positive constant ayg. The proof does not work for large values of a and whether
extremal Kerr black holes can form in gravitational collapse remains open.

If extremal critical collapse involving the Kerr solution does occur, then one may also ask about
stability as in Section 1.2.5. In this case, the question hangs on the stability properties of extremal
Kerr, which are more delicate than for extremal Reissner—Nordstrom. While extremal Kerr is mode-
stable [TdC20], axisymmetric scalar perturbations have been shown to exhibit the same non-decay
and growth hierarchy as general scalar perturbations of extremal Reissner—Nordstrom [Arel2; Arel5).
In light of the newly discovered azimuthal instabilities of extremal Kerr by Gajic [Gaj23], in which
growth of scalar perturbations already occurs at first order of differentiability, the full (in)stability

picture of extremal Kerr may be one of spectacular complexity!

14Recall also Remark 1.2.9: replacing “vacuum” with “electrovacuum” and “Kerr” with “Kerr-Newman with
nonzero charge” in Conjecture 1.2.21 is not possible!
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trapped \\
region

Figure 1.8: Penrose diagram of a counterexample to the third law of black hole thermodynamics in
the Einstein—-Maxwell-Vlasov model from Theorem 1.2.22. The broken curve A’ is the outermost
apparent horizon of the spacetime. This view is zoomed in on the Vlasov beam that charges up the
subextremal black hole to extremality. We refer to Fig. 8.6 in Section 8.11.1 for diagrams of the
entire spacetime.

1.2.7 Event horizon jumping at extremality

The techniques used to prove Theorem 1.2.1 can also be immediately used to disprove the third law
in the Einstein-Maxwell-Vlasov model, which complements our previous disproof in the Einstein—
Maxwell-charged scalar field model [KU22]. The present method has the advantage of constructing

counterexamples which are past causally geodesically complete, like the spacetimes in Theorem 1.2.1.

Theorem 1.2.22. There exist smooth solutions of the FEinstein—Mazwell-Vlasov system for either
massless or massive particles that violate the third law of black hole thermodynamics: a subextremal
Reissner—Nordstrom apparent horizon can evolve into an extremal Reissner—Nordstrom event horizon
in finite advanced time due to the incidence of charged Viasov matter.

More precisely, there exist smooth, spherically symmetric, one-ended asymptotically flat Cauchy
data for the Einstein—Mazwell-Viasov system for either massive or massless particles such that the

mazimal globally hyperbolic development D has the following properties.

1. D contains a nonempty black hole region and for sufficiently large advanced times, the domain
of outer communication, including the event horizon H™, is isometric to that of an extremal

Reissner—Nordstrom solution.

2. D contains a causal diamond which is isometric to a causal diamond in a subextremal Reissner—
Nordstrém black hole, including an appropriate portion of the subextremal apparent horizon.

This subextremal region contains an open set of trapped surfaces.
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3. The outermost apparent horizon A’ of D has at least two connected components. One com-
ponent of A’ coincides in part with the subextremal apparent horizon and the last component

(with respect to v) coincides with the extremal event horizon.

4. D is past causally goedesically complete, possesses complete null infinities T and T~ , and is

isometric to Minkowski space near the center {r = 0} for all time.

Refer to Fig. 1.8 for a Penrose diagram of one of these solutions. Note the disconnectedness of
the outermost apparent horizon A’, which is necessary in third law violating spacetimes—refer back
to the discussion in Section 1.1.3.3. It is striking that the Vlasov beams we construct in the proof
of Theorem 1.2.22 do not even touch the subextremal apparent horizon, which should be compared
with the hypothetical situation depicted in Fig. 1 of [Isr86]. As with Theorem 1.2.1, Theorem 1.2.22
is proved by desingularizing suitable bouncing charged null dust spacetimes which we construct in
Section 7.4.

It is now very natural to ask if some critical behavior can be seen in the examples from The-
orem 1.2.22. They are clearly not candidates for critical collapse because they contain trapped
surfaces. Nevertheless, by tuning the final charge to mass ratio of the outermost beam in Theo-
rem 1.2.22 (subextremal to superextremal as in Theorem 1.2.1), we construct one-parameter families

of solutions satisfying the following

Theorem 1.2.23. There exist smooth one-parameter families of smooth, spherically symmetric,
one-ended asymptotically flat Cauchy data {Vx}xe[—1,1) for the Einstein-Mazwell-Viasov system
for either massive or massless particles with the following properties. Let Dy be a choice of maximal
globally hyperbolic development'® of Wy for which the double null gauge (u,v) is continuously syn-
chronized as a function of \. (See already Assumption 8.11.1 and Remark 8.11.2 for the definition

of continuous synchronization.) Then the following holds:

1. For A # 0, Dy contains a black hole whose domain of outer communication is isometric to
that of a subextremal Reissner—Nordstrém black hole with mass My and charge |ex| < My for

sufficiently large advanced times.

2. Dy contains a black hole whose domain of outer communication is isometric to that of an
extremal Reissner—Nordstrom black hole with mass My and charge |eg| = My for sufficiently

large advanced times.

15 Typically, one refers to “the” maximal globally hyperbolic development [CG69], which is an equivalence class of
isometric developments. In this statement, however, it is crucial that the development comes equipped with a fixed
coordinate system.
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3. The location of the event horizon is discontinuous as a function of A\: Let uy 4+ denote the
retarded time coordinate of the event horizon 7—[;\”‘ of Dy with respect to the continuously syn-

chronized gauge (u,v). Then A — wuy 4+ is continuous from the left but discontinuous from

the right, and

im wy g+ > lm wuy gy+. 1.2.7
A—0+ AH A—0— AH ( )

4. The functions A\ — M)y and A — ey are continuous from the left but discontinuous from the

right, and
lim M, < lim M,, lim |ex| < lim |ey], (1.2.8)
A—0t A0~ A—0t A—=0~
. leal . leal : :
lim — < lim — =1, lim r < lim r , 1.2.9
A—0+ My A—0— M) A—=0+ AT A—=0— AHT ( )

where 7y 3+ = My + /M3 — e3.

In addition, for every A € [—1,1], Dy is past causally geodesically complete, possesses complete null

infinities TV and I~ , and is isometric to Minkowski space near the center {r = 0} for all time.

From the perspective of the dynamical extremal black hole Dy, an arbitrarily small perturbation
to Dy with A > 0 causes the event horizon to jump by a definite amount in u (i.e., not o(1) in \)
and the parameter ratio to drop by a definite amount. The proof of Theorem 1.2.23 relies crucially
on the absence of trapped surfaces in a double null neighborhood of the horizon in the solutions of
Theorem 1.2.22, cf. Fig. 1.8. In the asymptotically subextremal case, trapped surfaces are expected
to asymptote towards future timelike infinity ¢*. In this case, we prove in Proposition 8.11.4 below
that the location of the event horizon is continuous as a function of initial data, under very general
assumptions in spherical symmetry. Therefore, (1.2.7) is a characteristic feature of extremal black
hole formation.

We expect this “local critical behavior” to be stable in the sense of Section 1.2.5 and to play a

key role in the general stability problem for extremal black holes.

Remark 1.2.24. By a suitable modification of the characteristic gluing techniques in [KU22], Theo-
rem 1.2.23 can be proved for the spherically symmetric Einstein—-Maxwell-charged scalar field model,
but past completeness of the solutions does not follow immediately from our methods. It is also nat-
ural to conjecture analogs for Theorem 1.2.23 in (electro)vacuum; see in particular [DHRT, Section

IV.2).16

161n fact, the statement of Theorem 1.2.23 is not actually reliant on the black holes forming in gravitational collapse
and can be made sense of in terms of characteristic data as in Conjectures 1.2.12 and 1.2.14. In this case, one can study
the local critical behavior of extremal Reissner—Nordstrom in electrovacuum since Remark 1.2.9 no longer applies.
Indeed, this is precisely the context of the discussion in [DHRT, Section IV.2].
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Figure 1.9: A cartoon picture of the conjectured structure of the black hole formation threshold in
moduli space. The dashed red line represents the black hole formation threshold which is crossed
by three interpolating families of data. On the threshold we have highlighted three distinct regimes
of critical collapse: naked singularities, star-like solutions, and asymptotically extremal black holes.
These thick black lines represent codimension-one submanifolds. Near the critical extremal black
hole threshold, the structure is represented in more detail by Fig. 1.7. The figure also schemati-
cally depicts that not all extremal black holes are critical—there are codimension-one submanifolds
consisting of asympotically extremal black holes which do not like in the closure of €&, such as
those with trapped surfaces far behind the horizon. When crossing such a hypersurface in moduli
space, one might be subjected to the discontinuities of Theorem 1.2.23. Furthermore, there might
be non-critical naked singularities, but there is no a priori reason to believe that these constitute
codimension-one submanifolds.

1.2.8 The conjectural picture of moduli space

We conclude this introduction with a conjectural picture of the qualitative structure of the black hole
formation threshold and related phenomena. Refer to Fig. 1.9. The reader is warned that Fig. 1.9
is to be taken with a large grain of salt—the author has taken some artistic liberties in representing
the relative sizes, locations, number of connected components, and shapes of the highlighted areas.

Not every part of this picture will be present for every model, of course. For the spherically sym-
metric scalar field model, we have already remarked that extremal critical collapse cannot happen
(Remark 1.2.8). It is not known (or even suggested numerically) whether naked singularities occur in
spherically symmetric Einstein—Vlasov models. Therefore, while we have proved in this dissertation
that interpolating families exhibiting extremal critical collapse do occur for the spherically symmet-
ric Einstein—-Maxwell-Vlasov model, we do not yet have evidence for whether Fig. 1.9 accurately
reflects the rest of the moduli space. However, Fig. 1.9 does seem to be a reasonable conjectural

representation for the spherically symmetric Einstein—-Maxwell-charged Kein—Gordon model or the
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Einstein—-Maxwell-Vlasov system outside of symmetry.

1.3 Outline of the contents of Part I

Chapter 2: In this chapter, we set up the Einstein—-Maxwell-charged scalar field and Einstein—
Maxwell-Vlasov systems in spherical symmetry. In Section 2.1, we lay the foundations for the
study of spherically symmetric charged spacetimes and electromagnetic geodesics. In Section 2.2 we
define the spherically symmetric Einstein—-Maxwell-charged scalar field system and in Section 2.3
the spherically symmetric Einstein-Maxwell-Vlasov system. In Section 2.4, we recall Kommemi’s a
priori characterization of the spacetime boundary which is valid for both of these models. Finally,
in Section 2.5 we show that there are no nonspherically symmetric trapped or antitrapped surfaces

in a spacetime if there are no spherically symmetric trapped or antitrapped surfaces.

Chapter 3: In this chapter, we study the characteristic intial value problem for the spherically
symmetric Einstein—-Maxwell-charged scalar field and Einstein—-Maxwell-Vlasov systems. We handle
the case of a charged scalar field in Section 3.1 and charged Vlasov in Section 3.2. In Section 3.2,
we also prove the generalized extension principle for the charged Vlasov model and set up the
spacelike/characteristic initial value problem which will be utilized in the construction of extremal
critical collapse in Chapter 8. Finally, in Section 3.3 we give a detailed proof of local well-posedness

for Einstein—Maxwell-Vlasov.

Chapter 4: In this chapter, we give an overview of the characteristic gluing method and appli-
cations to black hole formation. After providing a general outline of the problem in Section 4.1,
we explain Aretakis’ work on characteristic gluing for the linear wave equation in Section 4.2. In
Section 4.3, we recall Aretakis, Czimek, and Rodnianski’s work on characteristic gluing for the Ein-
stein vacuum equations near Minkowski space. In Section 4.4, we explain our event horizon gluing
result for the spherically symmetric charged scalar field model and give an outline of the proof. In
Section 4.5, we explain our event horizon gluing result for slowly rotating Kerr in vacuum. Finally,

in Section 4.6 we give several additional applications of our characteristic gluing methods.

Chapter 5: In this chapter, we prove characteristic gluing results in the spherically symmetric
charged scalar field model and disprove the third law of black hole thermodynamics for this model.
We give a precise definition of sphere data, cone data, and characteristic gluing in Section 5.1

and Section 5.2 and define the reference sphere data in Minkowski, Schwarzschild, and Reissner—
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Nordstrém in Section 5.3. In Section 5.4, we give the precise statements of our gluing theorems,
which are then proved in Section 5.5. In Section 5.6, we construct the glued spacetimes and disprove
the third law. Finally, in the appendix Section 5.A we show that there is no local mechanism that
forces an extremal Killing horizon to not have trapped surfaces behind it (by constructing an explicit

example).

Chapter 6: In this chapter, we prove characteristic gluing of Minkowski space to Schwarzschild
and very slowly rotating Kerr in vacuum. We recall the setup of the Einstein vacuum equations in
double null gauge in Section 6.1 and Section 6.2. In Section 6.3 we define sphere data outside of
symmetry and define the reference Minkowski, Schwarzschild, and Kerr sphere data in Section 6.4. In
Section 6.5, we recall the near-Minkowski obstruction free gluing of Czimek and Rodnianski [CR22].

In Section 6.6, we prove our vacuum gluing results and then construct the spacetimes in Section 6.7.

Chapter 7: Before turning to the proof of extremal critical collapse in the Einstein—-Maxwell—
Vlasov model in Chapter 8, we show in this chapter that a singular toy model—Ori’s bouncing
charged null dust model—exhibits extremal critical collapse. We first recall the definition of the
model in Section 7.1. We then introduce a radial parametrization of bouncing charged null dust
spacetimes in Section 7.2 in which we teleologically prescribe a regular, spacelike, totally geodesic
bounce hypersurface. These spacetimes consist of an explicit ingoing charged Vaidya metric pasted
along the radially parametrized bounce hypersurface to an outgoing charged Vaidya metric through
a physically motivated surgery procedure. In Sections 7.3 and 7.4, we use the radial parametrization
to construct new examples of bouncing charged null dust spacetimes. In Section 7.3, we show that
Ori’s model exhibits extremal critical collapse (Theorem 7.3.2) and in Section 7.4, we show that the
third law of black hole thermodynamics is false in Ori’s model (Theorem 7.4.1). We then discuss the
fundamental flaws of Ori’s model in Section 7.5: the ill-posedness across the bounce hypersurface, the
singular nature of the solutions, and the ill-posedness near the center. In Section 7.6, we conclude
the chapter with the formal radial charged null dust system in double null gauge which will be

important for the setup of our initial data in Chapter 8.

Chapter 8: This chapter is devoted to the construction of extremal critical collapse for the
Einstein—Maxwell-Vlasov system, Theorem 1.2.1. The proof relies crucially on a very specific tele-
ological choice of Cauchy data which aims at desingularizing the dust examples of extremal critical
collapse in Theorem 7.3.2, globally in time. In Section 8.1, we give a detailed guide to the proof of

Theorem 1.2.1. In Section 8.2, we define the hierarchy of beam parameters and state the key ingre-
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dient in the proof of Theorem 1.2.1: the existence and global structure of outgoing charged Vlasov
beams (Proposition 8.2.3). These beams arise from data posed on a Cauchy hypersurface which is
analogous to the “bounce hypersurface” associated to Ori’s model in Chapter 7. In Section 8.3, we
solve the constraint equations and prove estimates for the solution along the initial data hypersur-
face. Section 8.4 is devoted to estimates for the “near region” establishing the bouncing character of
our Vlasov beams. To overcome certain difficulties associated with low momenta, our construction
features an “auxiliary beam” which is treated in Section 8.5. Section 8.6 is concerned with the “far
region” and in Section 8.7 we prove the sharp dispersive estimates in the case of massive particles.
In Section 8.8 we conclude the proof of Proposition 8.2.3. This proposition is then used to prove
Theorem 1.2.1 in Section 8.9. Finally, in Section 8.10 we show that in a certain hydrodynamic limit
of our parameters, the family of solutions constructed in Theorem 1.2.1 converge in a weak* sense to
the family constructed in the charged null dust model in Chapter 7. This result rigorously justifies
Ori’s bouncing charged null dust construction from [Ori91]. Section 8.11. In this final section, we
disprove the third law of black hole thermodynamics for the Einstein-Maxwell-Vlasov model (The-
orem 1.2.22) in Section 8.11.1. Section 8.11.2 is concerned with the phenomenon of event horizon
jumping at extremality. We first show in Proposition 8.11.4 that for a general class of (so-called
weakly tame) spherically symmetric Einstein-matter systems the retarded time coordinate of the
event horizon is lower semicontinuous as a function of initial data. Secondly, we show by example
(Theorem 1.2.23) that event horizon jumping can occur in the Einstein—-Maxwell-Vlasov system for

extremal horizons, which proves the sharpness of semicontinuity in Proposition 8.11.4.
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Chapter 2

Spherically symmetric charged

matter models

In this chapter, we introduce basic definitions and properties of Einstein-matter systems and elec-
tromagnetic fields in spherical symmetry and formulate the Einstein-Maxwell-charged scalar field

and Einstein—-Maxwell-Vlasov models.

2.1 The geometry of spherically symmetric charged space-

times

2.1.1 Double null gauge

Let (M, g) be a smooth, connected, time-oriented, four-dimensional Lorentzian manifold. We say
that (M, g) is spherically symmetric with (possibly empty) center of symmetry I' ¢ M if M\ T

splits diffeomorphically as Q x 52 with metric

g=gg+1%,

where (Q, gg), @ = QUT, is a (141)-dimensional Lorentzian spacetime with boundary I’ (possibly
empty), v = di? + sin? ¥ dg? is the round metric on the unit sphere, and r is a nonnegative function
on Q which can be geometrically interpreted as the area-radius of the orbits of the isometric SO(3)
action on (M, g). In a mild abuse of notation, we denote by T both the center of symmetry in M

and its projection to Q. Moreover, if T is non-empty, we assume that the SO(3) action fixes I and
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that T’ consists of one timelike geodesic along which » = 0. We further assume that (Q, go) admits

a global double-null coordinate system (u,v) such that the metric g takes the form
g = —02 dudv + 2~ (2.1.1)

for a positive function Q% = —2g(9y,d,) on Q and such that 9, and 9, are future-directed. Our
conventions are so that w =t —r and v = ¢ + r give a double null coordinate system on (3 + 1)-
dimensional Minkowski space, with r = %(v —u) and Q% = 1. We will also use the notation 4= r2y.
The constant u and v curves are null in (Q, gg) and correspond to null hypersurfaces “upstairs” in
the full spacetime (M, g). We further assume that along the center I', the coordinate v is outgoing
and w is ingoing, i.e., 9,r|r > 0, d,r|r < 0. We will often refer interchangeably to (M, g) and the
reduced spacetime (Q,r, Q?).

Recall the Hawking mass m : M — R, which is defined by
.r
m = 5(1 —g(Vr,Vr))

and can be viewed as a function on Q according to

r 40,r0,r

We will frequently use the formula
02— 4(—0y1)0yr

2m

(2.1.3)

to estimate Q% when 1 — 22 > (.
The isometric action of SO(3) on (M, g) extends to the tangent bundle T M as follows: Let
0 : SO(3) — Diff (M) be the representation of SO(3) given by the spherically symmetric ansatz, so
that the group action is given by
Rz = o(R)(x)

for R € SO(3) and = € M. For (z,p) € TM, we define

R (z,p) = (e(R)(z), o(R)«p), (2.1.4)

where of course o(R).p lies in T}y(g)(z)M.

Finally, we note that the double null coordinates (u,v) above are not uniquely defined and for
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any strictly increasing smooth functions U, V': R — R, we obtain new global double null coordinates
(@,9) = (U(u),V(v)) such that g = —Q2 dii dv + ¢, where Q2(w,0) = (U'V) 12UV (a), V=1(9))
and r(a,?) = (U~ (@), V=1(D)).

2.1.2 Canonical coordinates on the tangent bundle

Given local coordinates (9!,9%) on a (proper open subset of) S2, the quadruple (u, v, 9!, 9?) defines
a local coordinate system on the spherically symmetric spacetime (M, g). Given p € T, M, we may
expand

b= puau|a +pva’u|x —|—p16191 |x +p28192|z-

The octuple (u,v, 9,92, p*, p’,p',p?) defines a local coordinate system on TM, and is called a
canonical coordinate system on TM dual to (u,v,9%,9?). One is to think of p as the “momentum
coordinate” and x as the “position coordinate.” The tangent bundle of Q trivializes globally as

Q x R2, with coordinates p* and p¥ on the second factor. We let
T:TO — Q

denote the canonical projection.

On a spherically symmetric spacetime, we define the angular momentum function by

0:TM — [0,00)

($7p) = \/ TQgABpAva

where summation over A, B € {1,2} is implied. This function is independent of the angular coordi-
nate system chosen and is itself spherically symmetric as a function on T M.

Given a double null gauge (u,v), it will be convenient to define a “coordinate time” function
-1
T=5(v+u).
Associated to this time function is the 7-momentum coordinate

pT =L +p").
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2.1.3 The Einstein equations and helpful identities in double null gauge

A tensor field on a spherically symmetric spacetime is said to be spherically symmetric if it is itself
invariant under the SO(3)-action of the spacetime. If (M, g) is a spherically symmetric spacetime
satisfying the Einstein equations (1.0.1), then the energy-momentum tensor T is a spherically sym-

metric, symmetric (0,2)-tensor field. We may decompose
T = Ty du® + Ty (du ® dv + dv ® du) + Ty, dv* + S¢,

where

1 g 1 2

It will be convenient to work with the contravariant energy momentum tensor, which takes the form
T = T*“0, ® 0 + T" (04 ® 9y + 0y ® 0,) + T, ® D, + Sg ™!,

where

_ 1 04dmov _ 104mpuv _ 1o4mpuu
T, = :Q'T", T, =i0'T" T, =10'T"

The Christoffel symbols involving null coordinates are given by

I, = dulog O, I, = d,log 2,
u 20,7 v 20,1
AB — 7927” gAB7 AB — 7927“ ﬂAB:
0 Oy
I, = =03, I, = 53,

and the totally spatial Christoffel symbols T4 are the same as for v in the coordinates (91, 9?).
For a spherically symmetric metric g written in double null gauge (2.1.1), the Einstein equations

(1.0.1) separate into the wave equations for the geometry,

QQ
Dy Oy = —5amt 1rQiTv, (2.1.5)
2
8,0, log O = Qrgm — lodTw - %S, (2.1.6)
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and Raychaudhuri’s equations

02

9, (%;) — —Llr@2T,

au (8117‘) _ —%TQQTUU,

The Hawking mass (2.1.2) satisfies the equations

Bum = Lr2Q%(T“d,r — T"0,r),

dom = Sr2Q* (T 0,r — T"“0,r).

If X is a spherically symmetric vector field, then

X = X409, + XV0,

and X satisfies divy X = 0 if and only if

(1 Q2X") + 8, (r? Q%X ") = 0.

The contracted Bianchi identity,
divy, T = 0,

which follows from the Einstein equations (1.0.1), implies the following pair of identities:

Ou (r2QAT™™) + 9, (r?*Q*T"Y) = 9,log Q> r2Q*T™ — 4r0,rQ*S,

Dy (r2QATYY) 4 9, (r2Q4T) = d,log O 2 QT — 4r9,rQ°S.

If « is a spherically symmetric two-form which annihilates 7.S?, then it may be written as

0% f
a:—ﬁdu/\dv,

where f: @ — R is a smooth function. We then have

81) f

Ou f
Vi, = g Vi, = —
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2.1.4 Spherically symmetric electromagnetic fields

We will additionally assume that our spherically symmetric spacetime (M, g) carries a spherically
symmetric electromagnetic field with no magnetic charge. The electromagnetic field is represented
by a closed two-form F', which takes the Coulomb form

02Q

F=—
212

du A dv, (2.1.15)

for a function @ : @ — R. The number Q(u,v) is the total electric charge enclosed in the (u,v)-

symmetry sphere S, , C M, which can be seen from the gauge-invariant formula

T 4r

Q(u,v) L / *F (2.1.16)
S

where * is the Hodge star operator and we orient M by du A dv A d9 A dep.

The electromagnetic energy momentum tensor is defined by
T;];:z}\/l = FuaFua - ingFaBFaﬁy (2.1.17)

and relative to a double null gauge is given by

QQQ2 Q2
EM _
T = 1 (du®dv+dv®du)+2—r4g

in spherical symmetry. If F' satisfies Maxwell’s equation
VFua =J,
for a charge current J, then the divergence of the electromagnetic energy momentum tensor satisfies
VAT = —F,aJ. (2.1.18)
In spherical symmetry, Maxwell’s equations read (see (2.1.14))

0,Q = —3r°PJY, 0,Q = Lr*Q*J".
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Finally, we will utilize the renormalized Hawking mass

) Q?
- x 2.1.19
w=m-+ o ( )

to account for the contribution of the electromagnetic field to the Hawking mass m.

2.1.5 The Lorentz force

We next briefly recall the Lorentz force law for the motion of a charged particle. Let (M, g, F) be
a charged spacetime, where F is a closed 2-form representing the electromagnetic field. If « is the

worldline of a particle of mass m > 0 and charge ¢ € R, then it satisfies the Lorentz force equation

Dut
m - P u”
dr
where 7 is proper time and u = dvy/dr (so that g(u,u) = —1). Defining the momentum of + by

p = mu and rescaling proper time to s = m~17 (so that p = dvy/ds), we can rewrite the Lorentz

force equation as
Dp*
ds

=ecF*, p". (2.1.20)
This equation, which we call the electromagnetic geodesic equation, makes sense for null curves as
well, and can be taken as the equation of motion for all charged particles [Ori91].

Remark 2.1.1. Because the Lorentz force equation (2.1.20) is not quadratic in p, s is not an affine
parameter, which has fundamental repercussions for the dynamics of the electromagnetic geodesic
flow. In particular, trajectories of the Lorentz force with parallel, but not equal, initial velocities

will in general be distinct, even up to reparametrization.

The electromagnetic geodesic flow has two fundamental conserved quantities which will feature

prominently in this work.

Lemma 2.1.2. Let v : I — M be a causal electromagnetic geodesic in a spherically symmetric

charged spacetime, where I C R is an interval. Let p = dvy/ds. Then the rest mass

m[y] =/ —g,(p,p)

and the angular momentum

] = (v, p)
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are conserved quantities along .

Proof. To show that m is constant, we compute

d Dp
dsg(p,p) g ( Is 7p> eF(p,p) =0,

where the final equality follows from the antisymmetry of F'.
Since ¢ is independent of the coordinates chosen on S2, we may assume that (91,9?) are normal
coordinates on S? at the point (y!(so),v*(s0)). To show that £ is constant, we then compute
£4 A _B _43@ 'A'B_24 —QFA u_21-\A U BC_O
T asp”p = 4r®—yap¥ 47 = 2rfyap (-20C.5 co1') 47 =0,

S$=S80
where we used the formulas for the Christoffel symbols in spherical symmetry from Section 2.1.3. O

For an electromagnetic geodesic y(s) with angular momentum ¢ = ¢[y] and mass m = m[y], the

Lorentz force law can be written as

d ., u 20,1 2 Q .
i i A S
d 20,1 0%
TP = —0,log 0 (p°)* ~ Q; 2t e%pv, (2.1.22)
62
Q2pupv _ = + mQ, (2123)

where p* = dy“/ds, p* = dy¥/ds, and the third equation, known as the mass shell relation, is
directly equivalent to the definition of mass and angular momentum. In this work, it will not be
necessary to follow the angular position of the electromagnetic geodesics in the (3 + 1)-dimensional

spacetime. It is very convenient to rewrite (2.1.21) and (2.1.22) as

d . 20\ 2 Q.
%(QQP ) = <6v10g QQ — 1") 7‘72 - eﬁ(fﬁp ), (2124)
d 20,1\ 02 v
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2.2 The Einstein—-Maxwell-charged scalar field system

In this section we introduce the spherically symmetric Einstein-Maxwell-charged scalar field (EM-

CSF) system, which will feature in Chapter 5. The Einstein-Maxwell-charged scalar field system

R (9) = 3R(9)gu =2 (TR + T0F)
VHFHV = 2e Im((bm)v

g“VDuDu(b =0,
is invariant with respect to the following gauge transformations
b= e Xp, A A+ dy (2.2.1)

for real-valued functions x = x(u,v), where A = A,du + A,dv is the potential 1-form and e is
a dimensionful coupling constant representing the charge of the scalar field. More abstractly, the
Einstein-Maxwell-scalar field system is a U(1)-gauge theory and we refer to [Kom13] for more details.

In order to break the symmetry we will use the global electromagnetic gauge
A, =0 (2.2.2)

when discussing this model.

Definition 2.2.1. The spherically symmetric Einstein—Mazwell-charged scalar field model with
coupling constant ¢ € R consists of a spherically symmetric charged spacetime (Q,r, Q2 Q) and a

smooth complex-valued scalar field ¢ : @ — C. The system satisfies the wave equations

Dudyd = — 6““?‘9” - a“rf”‘b + ”ﬁ% e, ‘9;’};5 —ieA, D0, (2.2.3)
8Byt = —%j - 8“7;8”’" 4&;@2, (2.2.4)
9,0, log(Q2) = % + 28“:29” - %QQQ — 2Re(Dy 0, 0), (2.2.5)
the Raychaudhuri equations,
oy (‘?2”{) - fémm?, (2.2.6)
o, (% ) = 10.0P, (22.7)
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and the Maxwell equations,

0.Q = —er*Im(¢D,¢), (2.2.8)

0,Q = er’Im(¢$0, ), (2.2.9)
_ e

DoAu === 3 (2.2.10)

From these equations we easily derive

2 2
Oy (royr) = —% (1 - ?2) , (2.2.11)
2%m eQ? 022 )
0pOu(re) = — 52 Ot 4TQ¢+ 4:15 ¢ — 1eA,0,(ro), (2.2.12)
as well as
2
Dym = 207212 (=0,1)|0yp|* + %%&)r, (2.2.13)

which will be useful later.

2.3 The Einstein—Maxwell-Vlasov system

In this section, we introduce the main matter model considered in Chapter 8, the Einstein—Mazwell-
Vlasov system. This model describes an ensemble of collisionless self-gravitating charged particles
which are either massive or massless. We begin by defining the general system outside of sym-
metry in Section 2.3.1 and then specialize to the spherically symmetric case in Section 2.3.2. In
Sections 3.2.1 and 3.2.2, we formulate the fundamental local theory for this model, local existence
and a robust continuation criterion known as the generalized extension principle. Finally, in Sec-
tion 3.2.3, we define a procedure for solving the constraint equations for the spherically symmetric

Einstein—-Maxwell-Vlasov system.

2.3.1 The general system
2.3.1.1 The volume form on the mass shell

Let (M*, g) be a spacetime. For x € M and m > 0, we define the (future) mass shell at = by

P™ = {p € T, M: pis future directed and g,(p,p) = —m? p # 0}
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and the associated smooth fiber bundle
rm=J P
reM

with projection maps 7, : P™ — M.

Fix © € M and let (z#) be normal coordinates at x so that
ge = —(da®)? + (dz)? + (d2®)? + (dz®)?.

Let p* be dual coordinates to z# on T'M, defined by p* = dz#*(p) for p € T, M. For m > 0, the
restrictions of pt, p?, p? to P™, denoted by p', p?, p®, define a global coordinate system on P, with

p° determined by

P’ = Vw2 + PP+ PP+ P (2.3.1)

Definition 2.3.1. Let m > 0 and x € M. The canonical volume form p® € Q3(P™) is defined by

py = ()" dp' A dp* A dp?,

in normal coordinates at z, where p° is given by (2.3.1).

One can show that this form is independent of the choice of normal coordinates. When m > 0,

P is a spacelike hypersurface in 7, M if it is equipped with the Lorentzian metric g,. In this

-1, ,m 1

case, py = m~ wy', where wy' is the induced Riemannian volume form on P}'. The factor of m™
is needed to account for the degeneration of w™ as m — 0, since P? is a null hypersurface. For
more information about the volume form on the mass shell, see [SW77; Rinl3; SZ14]. The canonical
volume form is uniquely characterized by the following property, which can be found in [SW77,

Corollary 5.6.2].

Lemma 2.3.2. The form pJ' defined above does not depend on the choice of local coordinates on
M. Moreover, it is uniquely characterized by the following property. Let H(p) = %gm (p,p). If v is
a 3-form in Ty M defined along Pt such that

dH A o = \/—det g(z) dp® A dp' A dp® A dp?,

then in o = pr, where iy @ P — Tp M denotes the inclusion map.

We denote the integration measure associated to ui by dul. A distribution function is a non-
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negative function f € C°°(P™) which decays sufficiently quickly on the fibers so that the relevant
integrals are well-defined and are smooth functions of z. Given a distribution function f we may

now define the number current N and the energy momentum tensor T of f by

Vi@ = [ e dl. 7w = [ e e (232)

These are readily verified to be tensor fields on M. Taking divergences, we have [Rin13, Appendix
D]

vt = [ Xapder. v = [ X dar, (2:3.3)
pP» Py

where Xo = p'Opu — ') p"pPOpn € T(TTM) is the geodesic spray vector field.

2.3.1.2 The equations

Definition 2.3.3. The FEinstein—Mazwell-Vlasov system for particles of mass m € R>q and fun-
damental charge ¢ € R\ {0} consists of a charged spacetime (M, g, F) and a distribution function

f: P™ — [0, 00) satisfying the following equations:

Ry — 3Rgu =2 (T + Tw) (2.3.4)
VF,o = ¢N,, (2.3.5)
Xf=0, (2.3.6)

TEM

where is the electromagnetic energy momentum tensor defined in (2.1.17), T}, and N,, are the

Vlasov energy-momentum tensor and number current, respectively, defined in (2.3.2), and

0 i N
X =pio - (rgﬁp PP — eF*p ) g € TATM) (2.3.7)

is the electromagnetic geodesic spray vector field.

The vector field X is easily seen to be tangent to the mass shell P™, which means that the Vlasov
equation (2.3.6) is indeed a transport equation on P™. The vector field F#*,p*0,u is itself tangent

to P™ and we have the integration by parts formulas

/ FHop® 8y f dug =0, / FHop?p®Opn f dpf = —F¥ o N,
Py P
which are easily verified in normal coordinates. Combined with (2.3.3) and the transport equation
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(2.3.6), we obtain the fundamental conservation laws

V,N* =0, (2.3.8)

VHT,, = eN“F,q. (2.3.9)

We now see that the Einstein-Maxwell-Vlasov system is consistent: (2.3.8) implies that Maxwell’s
equation (2.3.5) is consistent with antisymmetry of F' and (2.3.9) implies (using also (2.1.18)) the
contracted Bianchi identity

VA (T + Tpw) = 0. (2.3.10)

for the total energy-momentum tensor of the system.

2.3.1.3 Relation to the relativistic Maxwell-Vlasov system

The system (1.2.1)—(1.2.3) includes gravity and thus generalizes the special relativistic Mazwell-

Vlasov system which is typically written in the form® (cf. [G1a96])

Orf +0-0pfi +e(E+0x B)-0yfx =0,
WE -V xB=—jk, OB+VXE=0,

V.-E=px, V- -B=0,

where fi(t,x,v) > 0 is the distribution function, (t,z,v) € R x R? x R?, E is the electric field, B is
the magnetic field, 0 = (m? + |v]|?)~'/2v is the “relativistic velocity” and has modulus smaller than

unity, and

p(t,x) =¢ | f(t,z,v)dv, jk(t,z)= e/ 0f(t,x,v)dv.
R3 R3

This system is equivalent to the covariant equations (2.3.5) and (2.3.6) in Minkowski space under

the identifications (\/m?2 + |[v|2,v) = p, fk(t, z,v) = f(t,x, /M2 + |[v|?,v), E; = Fjp, B; = %s,;ijjk,
px = eNY and (jk)" = eN*.

1The subscript K stands for “kinetic theory literature.”
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2.3.2 Spherically symmetric definitions and equations

Let (Q,7,92%) be the (1 + 1)-dimensional reduced spacetime associated to a spherically symmetric

spacetime. For m > 0, we define the reduced mass shell by
oy = {(u,v,p",p") €TQ: Q2 (u,v)p“p’ > m?,p” > 0}, (2.3.11)

where the second condition in the definition forbids Q2%p“p” = 0 in the m = 0 case. The angular

momentum function from Section 2.1.2 can be defined on the reduced mass shell by

‘g.PrrgdﬁRzo

(u,v,p", p?) = 7/ Q2pup?® — m?2.

Note that £ > 0 on Pr%d. The definition of £ can be rewritten as the fundamental mass shell relation

g?
Q*pip¥ = T+ m?. (2.3.12)

Definition 2.3.4. A spherically symmetric distribution function of massive (if m > 0) or massless

(if m = 0) particles is a smooth function
f : P;‘eld — Rzo.

We say that f has locally compact support in p if for every compact set K C Q there exists a
compact set K’ C R? such that spt(f) N P%|x C K x K'. We say that f has locally positive

angular momentum if for every K C Q compact there exists a constant cx > 0 such that £ > cx on

spt(f) N Bl k-

In order to define appropriate moments of a distribution function f on a spherically symmetric
spacetime (Q,r,Q?), we require that f decays in the momentum variables p* and p®. For o > 0,

k > 0 an integer, and K C Q compact, we define the norm

I lesrmio = D sup (p7)7T210 0,2 f), (2.3.13)

0<is iz <k Frealx

where 0,102 f ranges over all expressions involving 4; derivatives in the (u,v)-variables and iy deriva-

tives in the (p*, p¥)-variables. If the norm (2.3.13) is finite for all compact sets K C Q, we say that
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f € CX(P2). If f has locally compact support in p, then it lies in C29,.(P%).

o,loc o,loc
Remark 2.3.5. Our well posedness theory for the Einstein—-Maxwell-Vlasov system requires that

p-derivatives of f decay faster, which is the reason for the iy weight in (2.3.13).

Given a spherically symmetric spacetime (Q,r, Q?) with distribution function f, we define the

Vlasov number current by

N*(u,v) = 70> / p* f(u,v,p*, p¥) dp“dp?, (2.3.14)
Q2p“p“2m2

N*(u,v) = WQQ/ p* f(u, v, p",p") dp“dp" (2.3.15)
QZPuvam2

and the Viasov energy momentum tensor by

T (u,v) = 7792/ (p*“)? f (u,v, p*,p°) dp“dp*, (2.3.16)
Q2pupv >m?2

T (u,v) = 7792/ p“p’ f (u,v, p*, p?”) dp"dp”, (2.3.17)
szupv2m2

7 (u,0) = 762 [ ") f 1,0, p°) dp"dp”, (2:3.18)
QZPu,vam2

- T H2 2. u, v 2 U, v U g v Q2 uv
S(u,v) = 50 (Q%p"p” —wm?) f(u,v,p",p") dp"dp” < —-T""(u,v). (2.3.19)
2 szu,pvzm2 2

If f € C39,.(PRg) with o > 4, then these moments are well defined smooth functions of u and v.

Definition 2.3.6. The spherically symmetric Einstein—Mazwell-Vlasov model for particles of mass
m € R>g and fundamental charge ¢ € R\ {0} consists of a smooth spherically symmetric charged
spacetime (Q,7,Q?,Q) and a smooth distribution function f € C35,.(Pihy) for a decay rate o > 4
fixed. When m = 0, we require that f also has locally positive angular momentum. To emphasize
that the distribution functions we consider have these regularity properties in p, we say that such a
solution has admissible momentum.

The system satisfies the wave equations

QQ 2
0u0pr = ~5F <m - 2r> + 1rQiT, (2.3.20)
2 2032
0.0,log O = Qr;” - % — Lot - 2s, (2.3.21)

56



the Raychaudhuri equations

&L<i§:> = —1rQ®T", (2.3.22)
By (‘?”;;) — — L2, (2.3.23)
and the Maxwell equations
0,Q = —3er?Q*N", (2.3.24)
0pQ = +3er’ Q2N (2.3.25)

where N*, NV, T% T4 TV and S are defined by equations (2.3.14)—(2.3.19). Finally, f satisfies

the spherically symmetric Vlasov equation

Xf=0, (2.3.26)

where X € I'(T'PY,) is the reduced electromagnetic geodesic spray

. 20,1 Q
U v 2/, u\2 v 2 u, v 2 U
X =p“0y, +p“0, — <8ulogQ (") + 2 (Q°p“p” —m )+er—2p >Bpu
v 28u’f' u, U Q v
— <8v10g QZ(p )2 + W(QQP D — m2) — eﬁp ) 31,«). (2327)

Remark 2.3.7. Since f > 0 for a solution of the Einstein—-Maxwell-Vlasov system, the components
N* and NV of the number current are nonnegative. It follows from the Maxwell equations (2.3.24)
and (2.3.25) that eQ is decreasing in u and increasing in v, unconditionally. This monotonicity
property is a fundamental feature of the spherically symmetric Einstein-Maxwell-Vlasov system

and will be exploited several times in this work.

Remark 2.3.8. Both the electromagnetic energy-momentum tensor TPM and the Vlasov energy-

momentum tensor 7' of the Einstein—-Maxwell-Vlasov system satisfy the dominant energy condition.

Remark 2.3.9. As an abuse of notation, we have denoted the spray (2.3.7) on T'M and the spray
(2.3.27) on T'Q by the same letter X. It will always be clear from the context which vector field we

are referring to. They are related by the pushforward along the natural projection map P™ — PT,.

For a solution of the Einstein—-Maxwell-Vlasov system, the Hawking mass m satisfies the equa-
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tions

2

aum — %’I“QQQ(TU'U@UT _ Tvvavr) + QQ?aur, (2.3.28)
Q2

8Um = %TQQQ(T“'UQU?” — T“uaur) —|— ﬁ&,r, (2329)

which can be derived from (2.1.9) and (2.1.10). The modified Hawking mass @ can then be seen to

satisfy

Oy = 32 (T 0,r — TV 9,1) — LerQ’QN", (2.3.30)

Dy = 1r*Q} (T 0yr — T*0,r) + $erQ*QN". (2.3.31)
The particle current N satisfies the conservation law
Du (T2 N™) 4 0,(r*Q*N") = 0 (2.3.32)

by (2.1.11) and (2.3.8). Alternatively, it can be directly derived from the spherically symmetric
Vlasov equation, which we will do the proof of Proposition 3.2.3 in Section 3.3. Finally, for the

Einstein-Maxwell-Vlasov system, the Bianchi identities (2.1.12) and (2.1.13) read

Ou (P2QAT) + 0, (r*Q*T™) = 9,log O? 2 QT — 470,rQ%S — Q*QN™, (2.3.33)

Dy (P2 Q*TY) 4+ 9, (r*QAT™) = 9,1log Q* r2QA T — 4rd,rQ%S + Q*QN". (2.3.34)
Again, this follows either from (2.3.10) or directly from the spherically symmetric equations.

2.3.2.1 The spherically symmetric reduction

Proposition 2.3.10. Let (Q,7,92%,Q, fopn) be a solution of the spherically symmetric Einstein—
Mazwell-Viasov system as defined by Definition 2.3.6. Then (M,g,F,f) solves the Finstein—
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Mazwell-Vlasov system if we lift the solution according to

M=Q xS,
QQ
g= —7(du ® dv + dv ® du) + r’, (2.3.35)
F = fgdu A dv (2.3.36)
2r2 ’
f(u,v,ﬂl,ﬂQ,pu,pv,pl,p2) = fsph(u7v7pu7pv)a (2337)

where (91,9?) is a local coordinate system on S2.
Note that f in (2.3.37) is SO(3)-invariant as a function on 7'M as defined in Section 2.1.1.

Proof. As the equations (2.3.20)—(2.3.25) are equivalent to the Einstein equations and Maxwell
equations, we must only check that f, defined by (2.3.37), satisfies X f = 0, where X is given by
(2.3.7), and that the spherically symmetric formulas (2.3.14)—(2.3.19) appropriately reconstruct the
(3 + 1)-dimensional number current and energy-momentum tensor.

Let v(s) be an electromagnetic geodesic. Then X f = 0 at (y(so),¥(s0)) € P™ is equivalent to

d

e IICIORTO) R (2.3.38)

S$=S80

Using the chain rule

d dp* dp?
% fsph(’yu(s)vPYv(s)apu(S)’pv(s)) = puaufsph +pvavfsph + %aoufsph + %aovfsphv

8§=s.

the spherically symmetric Lorentz force equations (2.1.21) and (2.1.22), the mass shell relation
(2.1.23), and the spherically symmetric Vlasov equation (2.3.26), we see that (2.3.38) holds.

To compute the energy-momentum tensor in spherical symmetry, we use Lemma 2.3.2. Let
x € M and take (91,9?) to be local coordinates on S? which are normal at the spherical component
of x, so that yap = dap. We have

02 02
dH = _Tpvdpu . 7pudpv + r2p1dp1 + r2p2dp2.

Therefore, if we define

a=—r¥(p")"tdp? Adp' A dp?,
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then

dH ANa = %QQTQ dp® A dp® A dpt A dp?.

Therefore, by Lemma 2.3.2,

dp = r*(p*) " dp®dp*dp?

as measures on (0,00) x R The remaining momentum variable p* is obtained from pv, p', and

2
(»*.p?)"
p? via the mass shell relation (2.3.12). If we set tan 8 = p?/p' and use that £2 = r*((p!)? + (p?)?),
then

dp™ = r=2(p*) " dp® £ dt dg.

For any weight function w = w(p*,p?), we therefore have

2 2 2 2,.2
_ 2 + m?r? 0% + mer dp”
2 v

/(O oy wf duy = / / / ( r202pY D )fsph (vav r202pY P ) o

Integrating out 8 and applying the coordinate transformation (p¥,¢) — (p“,p") reproduces the

(2.3.39)

formulas (2.3.14)—(2.3.19) for N and T. O

Remark 2.3.11. Other works on the spherically symmetric Einstein—Vlasov system in double null
gauge, such as [DR16; Mos18; Mos23], represent the distribution function f differently, opting to (at
least implicitly) eliminate either p* or p¥ in terms of ¢ using the mass shell relation (2.3.12). This
leads to different formulas for N* and TH"¥| as these will then involve an integral over £, as in (2.3.39).

To make this precise, we can define the outgoing representation? of the spherically symmetric f by

. . 2+ r?m .
f/‘(uvvvp 78) = f <u’v’T2Q2pU’p > 9 (2340)

and (2.3.39) implies, for instance,

T °°€2+r m? Y Y
= 7’492/ / fo(u,v,p%,€)dp® £dL.

The outgoing representation may be taken as an alternative definition of the spherically symmetric
Vlasov system. We have chosen the formulation here in terms of p* and p¥ because of its explicit
symmetry, which is key for constructing time-symmetric initial data in the proof of Theorem 1.2.1.
We have also chosen to always write N* and T*" in contravariant form, so that N* is associated

with p“, etc. This causes extra factors of g,, = —%Q2 to appear in various formulas, compared to

20f course, we may also define an ingoing representation fx (u,v,p",£) by interchanging p* and p®.
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[DR16; Mos18; Mos23).

2.3.2.2 Previous work on the Einstein—-Maxwell-Vlasov system

Besides the general local existence result of [BC73], the Einstein-Maxwell-Vlasov model does not
seem to have been extensively studied. Dispersion for small data solutions of the Einstein—-Maxwell—-
massive Vlasov model (stability of Minkowski space) in spherical symmetry was proved by Noundjeu
[Nou05]. See also [NNO04] for local well-posedness in Schwarzschild coordinates and [NNR04] for the
existence of nontrivial solutions of the constraints. Many static solutions are known to exist for
the massive system, first studied numerically by Andréasson—Eklund-Rein [AER09] and proved
rigorously by Thaller [Thal9] in spherical symmetry. Thaller has also shown that stationary and

axisymmetric (but not spherically symmetric) solutions exist [Tha20].

2.4 Maximal future developments of asymptotically flat data
and the a priori characterization of the boundary

The theorems and corollaries in this dissertation are stated in the framework of the Cauchy problem
for the Einstein-Maxwell-charged scalar field and Einstein—-Maxwell-Vlasov systems. Cauchy data
for these systems consist of the usual Cauchy data (3, go, ko) for the Einstein equations, where X
is a 3-manifold, gy a Riemannian metric on X, and kg a symmetric 2-tensor field, together with
initial data for the matter fields, namely initial electric and magnetic fields, Fy and By, and finally
the scalar field ¢y and its “time derivative” ¢; or the distribution function fy. (See e.g. [Cho09,
Section VI.10] for a treatment of the Einstein-Maxwell Cauchy problem or [Rin13] for the Einstein—
Vlasov Cauchy problem.) Associated to a Cauchy data set is a unique maximal future globally
hyperbolic development (M?, g, F, A,¢) or (M* g, F, f) [Fou52; CG69]. If the Cauchy data are
moreover spherically symmetric, then the maximal development will be spherically symmetric by
uniqueness.

In the context of gluing constructions, we will not, however, actually construct our spacetimes
by directly evolving Cauchy data. Rather, we construct the spacetimes teleologically by gluing
together explicit spacetimes with the help of our characteristic gluing results and Proposition 5.2.4.
In each case, a Cauchy hypersurface ¥ is then found, within the spacetime, whose future domain
of dependence contains the physically relevant region, and contains no antitrapped spheres. At this

point, all attention is restricted to this future domain of dependence. A posteriori, by the existence
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and uniqueness theory for the maximal globally hyperbolic development, the spacetime will then be

contained in the maximal development of the induced data on the Cauchy hypersurface X.

Figure 2.1: General structure of the MFGHD of asymptotically flat Cauchy data ¥ in the EMCSF
system in spherical symmetry [Kom13]. What is depicted is the quotient manifold Q as a bounded

subset of R}Lﬁ} with boundary suitably labeled. Note that various components of the diagram can

be empty.

Since all of the examples constructed in this dissertation are maximal globally hyperbolic devel-
opments of asymptotically flat, spherically symmetric Cauchy data with no antitrapped spheres of
symmetry for Einstein-matter system satisfying the generalized extension principle, we can make use
of a general characterization of the boundary of spacetime in this context appearing in [Kom13].?
In particular one can rigorously associate a global Penrose diagram, and unambiguously identify
a nonempty null boundary component future null infinity ZT, domain of outer communication
J7(ZT), (possibly empty) black hole region BH = M\ J~(Z7), (possibly empty) event horizon
HT = 9(BH), (possibly empty) Cauchy horizon CH™, (possibly empty) r = 0 singularity S, and
(possibly empty) null boundary component A/ emanating from a (possibly absent) “locally naked”
singularity at the center. The Penrose diagram Q C ]R}:Q}l can be viewed as a global double null
chart for the spacetime, with v the “outgoing” null coordinate and u the “ingoing” coordinate. See
Fig. 2.1.4

For use in the statement and proofs of many of the results in this dissertation, we recall that the
apparent horizon is defined by

A= {d,r =0} C BH.

3The generalized extension principle is proved for EMCSF in [Kom13] and for Einstein-Maxwell-Vlasov in Sec-
tion 3.2.2 below.

4Note that the above general boundary decomposition in particular proves that one cannot form a globally naked
singularity once a marginally trapped surface has developed in the spacetime, which already rules out naked singularity
formation by supercharging a black hole in spherical symmetry, see [Kom13, Section 1.9]. It is thus not at all surprising
that ongoing numerical searches for these continue to be futile.

62



Since A might have a complicated structure (in particular, it might have nonempty interior), we
define an appropriate notion of boundary as follows. The outermost apparent horizon A’ consists
of those points p € A whose past-directed ingoing null segment lies in the strictly untrapped region
{9,7 > 0} and eventually exits the black hole region, i.e., enters J~(ZT). A’ is a possibly discon-
nected achronal curve in the (1 + 1)-dimensional reduction Q of M. Note, as depicted in Fig. 2.1,
that A’ does not necessarily asymptote to future timelike infinity i+.

For definiteness, we will make extensive use of these notions in our theorems and corollaries.
However, our notation and usage should be sufficiently familiar to readers acquainted with standard
concepts in general relativity so that they may read our diagrams and understand our theorems
without specific reference to [Kom13].

We also note that when referring to spherically symmetric subsets of (M, g), such as the event
horizon H™, we may view them as objects in M or in the reduced space Q. The context will make

it clear which point of view we are taking.

Remark 2.4.1. In the following section, we show by a barrier argument that since 9,7 < 0 in a space-
time satisfying the hypotheses of [Kom13], there are also no nonspherically symmetric antitrapped

surfaces.

2.5 General trapped and antitrapped surfaces in spherically
symmetric spacetimes

In this section we infer the absence of nonspherically symmetric trapped or antitrapped surfaces
from the absence of spherically symmetric trapped or antitrapped surfaces. This technical result
will be used later in Chapter 5.

Our definition of trapped surface is completely standard, see Definition 2.5.6 below. (Note that
we assume trapped surfaces to be closed and strictly trapped.) Our definition of antitrapped is
as in [Chr93; Koml3], i.e., an antitrapped surface is closed and past weakly outer trapped, see

Definition 2.5.7 below.

Proposition 2.5.1. Let (M*,g) be a spherically symmetric spacetime as defined in Section 2.1.1.

Then there are no trapped surfaces contained in the sets

A={peM:0,r >0}, (2.5.1)

B={peM:0,r >0} (2.5.2)
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Remark 2.5.2. Note that there could be trapped surfaces contained in AU B. There might also be

trapped surfaces which merely intersect A or B.

Proposition 2.5.3. Let (M*, g, F, A, ¢) be a spherically symmetric spacetime arising as the maz-
imal future globally hyperbolic development from one-ended asymptotically flat Cauchy data for the

EMCSF system with no antitrapped spheres of symmetry as in [Kom13]. Then:
1. If S is a trapped surface in M, then SN J~(ZT) = 0.
2. M does not contain any antitrapped surfaces.

Remark 2.5.4. Under stronger assumptions on Z+, the first part of the previous proposition would

follow from a classical result of Hawking [Haw72b; HE73, Proposition 9.2.1].

For the proofs, we recall some facts from Lorentzian geometry [Gal00]. Let H be a null hyper-
surface in a spacetime (M?*,g), i.e., H is a 3-dimensional submanifold of M and admits a future-
directed normal vector field L which is null and whose integral curves can be reparametrized to be
null geodesics. We say that L is a (future-directed) null generator of H.

The second fundamental form of H with respect to L is given by
BY(X,Y) =g(VxL,Y) (2.5.3)

for X,Y € TH. If e; and ey are an orthonormal pair of spacelike vectors at p € H, we define the

null expansion of H with respect to L by
GL = BL(el,el) +BL(€2,62) (254)

at p, and this definition is independent of the pair e; and ey. If L is another future-directed null

generator of H, then there is a positive function f on H such that L = fL. In this case, we have
oL = ror. (2.5.5)

Lemma 2.5.5 (Comparison principle for null hypersurfaces). Let Hy and Ho be null hypersurfaces
in (M*,g), with Hy to the future of Hy and generated by Ly and Lo, respectively. If Hy and Hy are

tangent at a point p, and L1(p) = La(p), then
07 (p) > 077 (p)- (2.5.6)
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Proof. By (2.5.5), it suffices to prove (2.5.6) with respect to some choice of null generators of H;
and Hy which agree at p. Let (¢,z,y, z) be normal coordinates for g based at p so that 9, is future-
directed and {%(& + 0y),0y,0,} spans T,H; = T,H,. We introduce approximate null coordinates

u=t—xand v =t + x, so that
Oy = %(& —0z), Oy = %(8,5—%81).

Note that d,, and 9, are only guaranteed to be null at p.
By the implicit function theorem, there exist functions fi(v,y, z) and fa(v,y, z) defined near p,

so that, upon defining

Cl(uavayv‘z) = fl(vayaz) - u, CQ(U,U,y7z) = f2(vay7z) —u,

we have H; = {(; = 0} for i = 1,2. Note that fi(p) = fa(p) = 0 and that p is a critical point
for f1 and fs. The vector fields Z; = grad (; are null on H; and define there future-directed null
generators. In particular, we have Z1(p) = Z2(p) = 9yp-

We first show that f; > fs near p. If a point ¢ = (u, v, ¥, z) lies to the past of Hy, then ¢;1(¢q) > 0.

If ¢ € Hs, then (2(g) = 0, so combining these inequalities yields

fl(v7yaz) = <1(q) +u > CQ(Q) +u= f2(vvyuz)7

as claimed.
‘We now show that

B7(9y,0y)(p) = BF2(9y,0,)(p), (2.5.7)

the corresponding statement and proof for 9, being the same. By (2.5.4) this will complete the

proof. Since f; > f3 near p, p is a local minimum for f; — f5. It follows that

9y(fr = f2)(p) >0 (2.5.8)
by the second derivative test. Since we are working in a normal coordinate system,
B2 (8,,0,)(p) = 9(Vo, Vi, 0,)(p) = 2 filp),

whence (2.5.8) proves (2.5.7), which completes the proof. O
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Definition 2.5.6. A closed spacelike 2-surface S in a spacetime (M?, g) is always the intersection
of two locally defined null hypersurfaces. We say that S is trapped if both of these hypersurfaces

have negative future null expansion along S.

Proof of Proposition 2.5.1. We show that there is no trapped surface S C B. The argument for
S C A is analogous after noting that A N T = @ by our definition of spherical symmetry and
convention for w.

Let S C {9, > 0} be a closed 2-surface. Let 7 : M — Q be the projection of the spherically
symmetric spacetime to its Penrose diagram. Then 7(S) is a compact subset of Q and hence u
attains a minimum wug on w(S).

Therefore, there exists a symmetry sphere Sy, ., on which 9,7 > 0 such that S lies to the future

of Cy, and is tangent to this cone at a point p € S, Note that p ¢ I" because C,,, is not regular

0,V0 "
there. The condition 9,7 > 0 means C,,, has nonnegative future expansion. By Lemma 2.5.5, one
of the two null hypersurfaces emanating from S also has nonnegative future expansion, so S is not

trapped. O

Definition 2.5.7. Let (M*%,g) be a spacetime satisfying the hypotheses of Proposition 2.5.3. A
closed spacelike 2-surface S which bounds a compact spacelike hypersurface €2 is said to be an-
titrapped if its future-directed inward null expansion is nonnegative. Here the (locally defined)
inward null hypersurface Hj, emanating from S is chosen to be the one which smoothly extends the

boundary of the causal past of ).

Proof of Proposition 2.5.3. 1. Since r — oo at Z+ [Kom13], Raychaudhuri’s equation (2.2.7) implies
yr > 0in J~(ZT). Let S be a closed 2-surface such that SN J~(ZT) # (). Let 7 : M — Q be the
projection to the Penrose diagram. Then w attains a minimum wug on 7(S). By the causal properties
of J7(ZT), there exists a symmetry sphere Sy, ,, C J~(Z1) such that S lies to the future of C,,
and is tangent to the cone at p € Sy, .- Arguing as in the proof of Proposition 2.5.1, we see that
one of the null hypersurfaces emanating from S has positive future expansion, so S is not trapped.

2. Let m : M — Q be again the projection. Then v attains a maximum vy on 7(S) and again

there exists a non-central symmetry sphere Sy, such that 9,7 (ug,v9) < 0, S lies to the past of

0,0

Cy,, and is tangent to the cone at a point p € S, Now C,, is tangent to Hj, at p and lies to the

0,70 "

future, so by Lemma 2.5.5, Hj, has negative null expansion at p. Therefore, S is not antitrapped. [
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Chapter 3

The characteristic initial value

problem in spherical symmetry

3.1 The Einstein—-Maxwell-charged scalar field system

In this section, we give a detailed explanation of the setup and characteristic initial value problem
for the Einstein equations with charged scalar fields in spherical symmetry, with a view towards the

characteristic gluing problem. See [Kom13] for more details on the EMCSF system.

3.1.1 Bifurcate characteristic data

We first define precisely what we mean by a C* solution. For now, we may restrict attention to

solutions away from the center.

Definition 3.1.1. Let k € N. A C* solution for the Einstein-Maxwell-charged scalar field system in
the EM gauge (2.2.2) consists of a domain @ C RL*! and functions r € C*T1(Q) and O2,¢,Q, A, €
C*(Q), such that r > 0, Q2 > 0, ¢ is complex-valued, 0¥t A4, € C°(Q), and the functions satisfy'

equations (2.2.3)—(2.2.7).

Next, we formulate the characteristic initial value problem for this class of solutions. Let R},! de-

note the standard (1+1)-dimensional Minkowski space. We introduce the bifurcate null hypersurface

INote that the wave equations (2.2.3) and (2.2.5) can readily be interpreted for k = 1.
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CUC c Rt where

U,

C=C_1={u=-1}n{v >0}

C=Cy={v=0}n{u>-1}
The special point (—1,0) is called the bifurcation sphere. We pose data for ¢, Q, r, 2% and A, for
the Einstein—-Maxwell-charged-scalar field system on C'UC.

Definition 3.1.2. Let k € N. A C¥ bifurcate characteristic initial data set on CUC for the Einstein—
Maxwell-charged scalar field system in the EM gauge (2.2.2) consists of continuous functions r > 0,
02 >0, ¢ (complex-valued), @, and A, on C UC. It is required that » € C*¥*1 02 € C* ¢ € C¥,
Q € C% and A, € C* on CUC.? Finally, the data are required to satisfy equations (2.2.8)(2.2.7),
which implies also 0%t 4, € C°(C).

Given characteristic initial data on a portion of C U containing the bifurcation sphere, we can

solve in a full double null neighborhood to the future. The proof is a standard iteration argument.

Proposition 3.1.3. Given a C* bifurcate characteristic initial data set for the EMCSF system on

fu=-1}x{0<v<vHU{-1<u<u}x{v=0}H cCcCuC,

where ug > —1 and vy > 0, there exists a number § > 0 and a unique spherically symmetric C*

solution of the EMCSF system on

({-1<u< 1438 x{0<v <)) U{-1<u<ue}x{0<v<d))

which extends the initial data on C'UC.

3.2 Einstein—Maxwell-Vlasov

3.2.1 Local well-posedness in spherical symmetry

Electromagnetic geodesics, in contrast to ordinary geodesics, can have limit points in M. By stan-

dard ODE theory, this can only occur if p(s) — 0 as s — +00.> On a fixed spherically symmetric

2By “C* on C'U(C” is meant that v derivatives are continuous on C' and u derivatives are continuous on C.

3This does not occur for ordinary geodesics because of the following homogeneity property: If s + 7(s) is a
geodesic, then so is s — ~(as) for any a > 0. See [ONe83, Lemma 5.8], where homogeneity is used to identify radial
geodesics emanating from the same point with parallel velocity.
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background, one can show that an electromagnetic geodesic v cannot have a limit point if either
m[y] > 0 or £[y] > 0. However, even in the massless case, an electromagnetic geodesic with initially
positive momentum will still have positive momentum for a short (coordinate) time. Therefore, one
can show that local well-posedness in double null gauge holds in the case of massive particles or

massless particles with momentum initially supported away from zero.

Remark 3.2.1. Bigorgne has shown that the relativistic Maxwell-massless Vlasov system is classically
ill-posed if the initial data are allowed to be supported near zero momentum [Big22]. We expect a

similar result to hold for the Einstein—-Maxwell-massless Vlasov system.

We now state our fundamental local well-posedness result for the spherically symmetric Einstein—
Maxwell-Vlasov system. We formulate this in terms of the characteristic initial value problem,
though the techniques used apply to the Cauchy problem as well. Note that we work in function
spaces that allow for noncompact support in the momentum variables, although this is not needed
for the applications in this dissertation (but is useful in the context of cosmic censorship [DR16]).
The proof of local existence is deferred to Section 3.3.

Given Uy < Uy and V < V4, let

C(UO’U17‘/07V1) = ({UO} X [V(Javl]) U ([UO’Ul] X {Vo}),

R(Uy, Uy, Vo, Vi) = [Uy, Ur] x [Vo, V4.

We will consistently omit (Uy, U1, Vp, V1) from the notation for these sets when the meaning is clear.
A function ¢ : C — R is said to be smooth if it is continuous and @|u,yx(vy,v4] and |, v1]x {vo}

are C'™ single-variable functions. This definition extends naturally to functions f : P |c — Rxo.

Definition 3.2.2. A smooth (bifurcate) characteristic initial data set for the spherically symmetric
Einstein-Maxwell-Vlasov system with parameters m, ¢, and o consists of smooth functions 7, (022, Q :
C — R with # and Q2 positive, and a smooth function f : P™|c — Rsg, where P™, | is defined

using (22. Moreover, we assume that the norms

Ifllerpy = Y. ( sup  (pT)7TOROR I+ sup <p7>"+i"‘|333§;2f|>

0<is+ia<k \F"l{Ug)xivo,v1) Prliug,u11x (vo}

are finite for every k£ > 0. In the case m = 0, we also assume that f has locally positive angular
momentum. Finally, we assume that Raychaudhuri’s equations (2.3.22) and (2.3.23), together with

Maxwell’s equations (2.3.24) and (2.3.25) are satisfied to all orders in directions tangent to C.
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Proposition 3.2.3. Foranym >0,¢e € R, 0 >4, B > 0, and cy > 0, there exists a constant €15 > 0
with the following property. Let (f,QQ,CQQ,f) be a characteristic initial data set for the spherically

symmetric Einstein—Mazwell-Viasov system on C(Uy, Uy, Vp, V1). If Uy — Uy < €1oc, V1 — Vo < €loc;

[log #[lc2(c) + log [lcz(ey + 1Qllcre) + I flloxpm, o) < B,

and in the case m =0, £ > ¢4 on spt(f), then there exists a unique smooth solution (r,Q% Q, f) of
the spherically symmetric Finstein—-Mazwell-Viasov system on R(Uy, U1, Vo, V1) which extends the

initial data. Iffo has locally compact support in p, then so does f. Moreover, the norms

log 7| e (r) [10g || cx(r)s 1Qlcx () I1f o (pm. 1)

are finite for any k and can be bounded in terms of appropriate higher order initial data norms.

The proof of the proposition is given in Section 3.3.2.

3.2.2 The generalized extension principle

Recall that a spherically symmetric Einstein-matter model is said to satisfy the generalized extension
principle if any “first singularity” either emanates from a point on the spacetime boundary with
r = 0, or its causal past has infinite spacetime volume. This property has been shown to hold for
the Einstein-massless scalar field system by Christodoulou [Chr93], for the Einstein—massive Vlasov
system by Dafermos and Rendall [DR16], and for the Einstein—-Maxwell-charged Klein—Gordon
system by Kommemi [Kom13]. We now extend the generalized extension principle of Dafermos—

Rendall to the Einstein—-Maxwell-Vlasov system:

Proposition 3.2.4 (The generalized extension principle). Let (Q,7,9%, Q, f) be a smooth solution
of the spherically symmetric Finstein—Mazwell-Viasov system with admissible momentum, which is
defined on an open set Q C R2 . If Q contains the set R' = R(Uy, U1, Vo, V1) \ {(U1,V1)} and the

following two conditions are satisfied:

1. R’ has finite Lorentzian volume, i.e.,

// 02 dudv < oo, (3.2.1)
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2. the area-radius is bounded above and below, i.e.,

sup [log r| < oo, (3.2.2)
R/

then the solution extends smoothly, with admissible momentum, to a neighborhood of (Uy, V7).

Therefore, since this system satisfies the dominant energy condition (Remark 2.3.8), the Einstein—
Maxwell-Vlasov system is strongly tame in Kommemi’s terminology [Kom13], under the admissible
momentum assumption. This is an important “validation” of the Einstein—-Maxwell-Vlasov model
over the charged null dust model and means the model enjoys Kommemi’s a priori boundary char-
acterization [Kom13], which will be used in Section 8.11.2.1 below.

Proposition 3.2.4 is also used crucially in the proof of Theorem 1.2.1 because it provides a
continuation criterion at zeroth order. This allows us to avoid commutation when treating the
singular “main beam” in the construction of bouncing charged Vlasov beams.

We now give the proof of Proposition 3.2.4, assuming the “fundamental local spacetime estimate”
to be stated and proved in Section 3.2.2.2 below. The proof of the local estimate is based on
a streamlining of the ideas already present in [DR16] together with the monotonicity of charge
inherent to the Einstein-Maxwell-Vlasov system and a quantitative lower bound on the “coordinate

time momentum” p“ 4 p¥ obtained from the mass shell relation.

Proof of Proposition 3.2.4. By Lemma 3.2.5 below, (3.2.1) and (3.2.2) imply that

B = |logr|lc2(rry + [log Q|| c2(rry + [Qllcr ey + 1 fllcrpm ) < 00

red

Let Uy > Uy and V{ > V; be such that the segments [Uy, Uj] x {Vo} and {Up} x [V1, V{] lie inside of
Q and let ¢, > 0 be a lower bound for £ on spt(f) N PYylc(w,,v:,vo,vy) if m = 0. Let e1oc > 0 be the
local existence time for the spherically symmetric Einstein—-Maxwell-Vlasov system with parameters
(m,e,0,2B,cp) given by Proposition 3.2.3. Fix (U, 17) € R with U; — U < g1pc and V4 — V < e10c.

Observe that if Uy > U is sufficiently close to Uy and V5 > V] is sufficiently close to V7, then

B = |llog 7l ¢z ey + og [l czey + 1Qllcrey + I flloxpm ) < 2B

and £ > cg on spt(f) N Plyls if m = 0, where C = C(f], U, V,Va). Indeed, this is clear for logr,
log Q2, and @Q by smoothness of these functions on Q. For f, we can also easily show this using the

mean value theorem and the finiteness of || f[[cz(pm |,) on compact sets K C Q. For ¢, this follows
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immediately from conservation of angular momentum and the domain of dependence property if
UQSU{ andVQSV{
Therefore, by Proposition 3.2.3, the solution extends smoothly, with admissible momentum, to

the rectangle R(ﬁ, U,, V., Va), which contains (Uy, V;). This completes the proof. O

3.2.2.1 Horizontal lifts and the commuted Vlasov equation

Local well-posedness for (r, 22, Q, f) takes place in the space C? x C? x C'! x O, since the Christoffel
symbols and electromagnetic field need to be Lipschitz regular to obtain a unique classical solution
of the Vlasov equation (2.3.26). In order to estimate 9202 and 92Q2, one has to commute the
wave equation for Q2 (2.3.21), with 8, and 9,. This commuted equation contains terms such as
0, T™, which can only be estimated by first estimating 0, f and J,f. On the other hand, naively
commuting the spherically symmetric Vlasov equation, (2.3.26), with spatial derivatives introduces
highest order nonlinear error terms such as 9202 9, f.* Therefore, it would appear that the system
does not close at this level of regularity.

However, as was observed by Dafermos and Rendall in [DR05a] in the case of Einstein—Vlasov

(see also the erratum of [RR92]), the horizontal lifts

Ouf = Buf — p dulog Q%8 f,

8Avf = 8vf_pvav10g92ap”f

of 0, f and 0,f with respect to the Levi-Civita connection satisfy a better system of equations
without these highest order errors. In the case of Einstein—-Maxwell-Vlasov, we directly commute

(2.3.26) with {3y, 8y, dpu,dpe } to obtain

X(Duf) = p 8,log Q20 f + (p"0u1og Q20pu (™ — 8, C" — D log Q2CY) Dy f
+ (0u0,log 2 (p*)? — 9uC¥ + p“Dulog V*0pu(”) Dpe f, (3.2.3)

X(évf) = pYdylog 020, f + (auavlog Q2(p”)? — 0,¢C" + pUd,log Q28pu(“) Opu f

+ (p"0u1og Q200 ¢” — 0,CY — Bylog Q*CY) Dy f, (3.2.4)
X (8puf) = —=Ouf + (3p"0ulog 02 — 0puC)Dpu f — Bpu (Vo f, (3.2.5)
X(ap“f) — —évf — 8pvgu8pu‘f + (3p“8vlog QQ — apv Cv)apvf, (326)

4This is clearly not an issue for local well-posedness since the “time interval” of the solution can be taken sufficiently
small to absorb (the time integral of) this term.
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where

Q
7 (Vp"p" —m?) —egp".

. 20,r
C’U.

rQ)2 ’

20,1
Qqu_ 2 X u
(Qp"p?” —m%) +eTp 0

¢ =
r

Upon using the wave equation (2.3.21), we see that the right-hand sides of (3.2.3)—(3.2.6) do not

contain second derivatives of Q2.

3.2.2.2 The fundamental local spacetime estimate

Lemma 3.2.5. For anym >0, ¢e € R, 0 > 4, and Cy > 0, there ezists a constant C, < oo with the
following property. Let (r,Q2 Q, f) be a solution of the spherically symmetric Einstein—Mazwell-
Vlasov system with admissible momentum for particles of charge ¢, mass m, and momentum decay
rate o defined on R’ = R(Uy, U1, Vo, Vi) \{(U,V)}. Assume Uy —Uy < Cy, Vi — Vo < Cy, the initial

data estimates

log rllce(e) + Hog @lcze) + 1 Qllere) + I lespmier < Con (3:27)

re

the global estimates

// Q2 dudv < Cy, (3.2.8)
sup [logr| < Cy, (3.2.9)
R/

and in the case m = 0, assume also that

inf  ¢>Cyt. (3.2.10)

spt(f)NPreyle

Then we have the estimate

log rllc2(rr) + [og 2|2y + QN rry + I fllcr(pmyinn < Co-

Proof. In this proof, we use the notation A < 1 to mean that A < C, where C'is a constant depending
only on m, ¢, and o, and Cy. When writing area integrals, we will also make no distinction between
R and R’, though the integrands are strictly speaking only assumed to be defined on R'.

From (3.2.7) and the monotonicity properties of Maxwell’s equations (2.3.24) and (2.3.25), it

follows that

sup|@Q| < 1. (3.2.11)
R/
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Rewriting (2.3.20), we obtain

2
QAT = 20,0,r% + Q2 <1 — c22) . (3.2.12)
T

Integrating over R’ and using (3.2.7), (3.2.8), and (3.2.9) yields

/ / QT dudv < / / 2T dudy < / / Du0yr? dudv + / / Q2 dudv < 1. (3.2.13)
R R R R

Rewriting (3.2.12) slightly, we obtain

Oy (10 _ 1——2 Lp2qdque 3.2.14
b (10pT) = 1 2 + 37 ) (3.2.14)

Integrating this in « and using (3.2.7), (3.2.9), and (3.2.11), we have

U1 Ul
Q2 (u,v) du + / QYT (u,v) du
Ug

sup  |rdyr| <1 -l—/
[Uo,Ur]x{v} Uo

for any v € [0, V]. Integrating this estimate in v and using (3.2.9), (3.2.8), and (3.2.13) yields

\%1 Vi
/ sup  |Oyr|dv S / sup  |rdyr|dv < 1. (3.2.15)
Vo [Uo,Ur]x{v} Vo [Uo,Ur]x{v}

By Raychaudhuri’s equation (2.3.22), 9,7 changes signs at most once on each ingoing null cone.

Therefore, by the fundamental theorem of calculus and (3.2.9),
Ui
sup / |0ur|(u, v) du < 2 <supr - 17r11lf r> S L (3.2.16)
R/

v€([Vo,V1] Y Up

Combining (3.2.15) and (3.2.16) yields

Vi U,
// |0y r0yr| dudv < / sup  |Oyr| dv sup / |0ur|(u,v) du | < 1. (3.2.17)
R Vo [Uo,U1]x{v} ve[Vy, V1] J Uy

Using the definition of the Hawking mass (2.1.2), (3.2.9), and (3.2.8), we readily infer

// Q?|m| dudv < 1 (3.2.18)
R

By the wave equation (2.3.21), the fundamental theorem of calculus, and the estimates (2.3.19),
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(3.2.8), (3.2.9), (3.2.11), (3.2.13), and (3.2.18), we have

sup |log Q| <1+ ‘/ Dy 0ylog Q% dudv
R/ R
<1+ // (Q% + Q%|m| 4+ Q'T") dudv
R

<1,

We now prove estimates for the electromagnetic geodesic flow. Let v : [0,S] — R’ be an

electromagnetic geodesic such that (v(0),p(0)) € spt(f) N P2 |c. We aim to prove that

(S| ()

for s € [0, S], where the implied constant does not depend on ~.
It suffices to prove this estimate for p*, as the proof of the estimate for p? differs only in notation.
Following [Mos18] (see also [Daf06]), we write an integral formula for log(2%p*), which can then be

estimated using our previous area estimates. Rewriting the mass shell relation (2.3.12) as

62 £2 2 u, v

we deduce from the Lorentz force equation (2.1.24) that

2
4 log(Q2%p*) = ( ,log Q? — 20,7 ¢ p’ — eg.
ds r r?

Integrating in s and changing variables yields

O2pu(s) 20,r 0? QR
1 = dylog O — =~ d —/ — ds'.
Og <Q2pu(0)> /,Y([O’S]) ( Og r ) <£2 +m27“2> v 0 er2 7(5/) y

We use the fundamental theorem of calculus on the first integral to obtain

20,r 02
)1 QQ _ v
/v([o,sb <81 % r ) <g2 +m2r2) dv
7" (s) " (Sw) )
L 2 ()
0 () Jo r 02 4+ m?r
2 2
+/ (alegQQ_ &’r) < 2 : 2 Z)dva
{0}x[0,7¥(s)] r 2 + m2p

where s, € [0, 5] is defined by v"(s,) = v. Using now the wave equations (2.3.20) and (2.3.21), we
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arrive at

Q2p(s) V) 1302m 302Q% Q2 i
10g ( o5y | = - - T - Q%S ) (5 | dud
() =L | CF e ) (e

Y7(s) v (sv)
2
+ /yv © A (23u7’3v7" — &ﬂ’@vlog Q ) m dudv

20, 5
+/ <8U10g 02— 6‘7") dv — / e%
{0}x[0,7%(s)] r o T

We now bound each of the four terms in (3.2.20). Using (3.2.8), (3.2.9), (3.2.11), (3.2.13), and

ds'. (3.2.20)

(3.2.18), the first double integral in (3.2.20) is readily seen to be uniformly bounded. To estimate

the second double integral, we integrate the wave equation (2.3.21) in u to obtain

U
sup  |0,log Q% <1 —|—/ (Q%m| + Q% + Q'T) (u,v) du
[0,U]x{v} 0

for any v € [0, V]. Integrating this estimate in v and using the previous area estimates yields

v
/ sup |0,log Q% dv <1
0 [0,U]x{v}

which when combined with (3.2.16) gives
// |0u7]|0plog Q2| dudv < 1. (3.2.21)
R

Combined with (3.2.17), we now readily see that the second double integral in (3.2.20) is uniformly
bounded. The integral along initial data is clearly also bounded by assumption.

Using (3.2.9) and (3.2.11), we estimate
=

/ 19 g <S. (3.2.22)
0

To estimate S, define the function 7(s) = 7|,(s), which is strictly increasing and satisfies 0 < 7(s) <1

for every s € [0,.5]. Using the mass shell relation (2.3.12), we have

4 (02 dr
| Z+m?) <p = —. 2.
02 (r2+m>_p Is (3.2.23)

Since either m > 0 or (3.2.10) holds, it follows that dr/ds is uniformly bounded away from zero,

which implies S < 1 for any electromagnetic geodesic in the support of f. Combined with (3.2.22),
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this uniformly bounds the final term in (3.2.20) and completes the proof of (3.2.19).

Since f is constant along (y(s),p(s)), we therefore have

(7 (5))7 f(v(5),p(3)) S (p7(0))7 f(7(0), p(0)),

which implies

£ legem i +sup (N* + N° T+ T +T* + 5) S 1.

By (2.3.24) and (2.3.25),

Sgp(laqu +10,Q|) S 1.

By integrating (3.2.14) and also using that 0, (rd,r) = 0,(rdyr), we now readily estimate
sup (|0yr] + [0yr|) < 1.
’R/
As this bounds the Hawking mass pointwise, we can now estimate
sup (|(“)u10g QQ| + |0,log Q2| + |0y 0ylog QQD <1
R/
using (2.3.21). It then follows immediately from (2.3.20), (2.3.22), and (2.3.23) that
sup (|02r] + [0u0ur| + [027]) S 1.
R/
Along an electromagnetic geodesic v lying in the support of f, we have that

X @0uf)] S 210uf |+ (071X @ )] + (071X (30 ),
X (D0 /) S 27100 f1 4 ()X (B )] + (7)1 X (0 )],
X @ )] S 10uf |+ 071X (e )] + 271X (B0 ),

X )] S 1001+ 71X (0 f)] + 97| X (00 )]

by (3.2.3)-(3.2.6) and all of the estimates obtained so far. It follows that, defining

F(s) = (007 0uf. 07700 f. (07) 7 0y £, (7)1 0y ) (5)
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along ~(s), we have

d
_ < T
‘dsf’ SpIFL

By Gronwall’s inequality and (3.2.23), it follows that |F| < 1 along . Recovering 9, f and 9, f from

D f and Dy f, we now readily bound

red

[ fllexpm jrry + s;p(|8uT“”| + 10,7 | + 0,S] + [0,8]) < 1.
Commuting the wave equation (2.3.21) with 9, and 9,, we obtain the final estimates
sup (|021og 2| + [0210g %) S 1,
which completes the proof. O

3.2.2.3 Local existence in characteristic slabs

The spacetime estimate Lemma 3.2.5 can also be used to improve Proposition 3.2.3 to local existence

in a full double null neighborhood of a bifurcate characteristic hypersurface of arbitrary length:

Proposition 3.2.6. Foranym >0,e € R, 0 >4, B > 0, and ¢, > 0, there exists a constant eqa, >
0 with the following property. Let (7, le, 6,02, f) be a characteristic initial data set for the spherically

symmetric Einstein—Mazwell-Viasov system on C(Uy, Uy, Vp, V1) with admissible momentum. If

log #llc2(cy + [log [l c2(cy + RNl ety + 1flcxpm je) < B
and either m > 0 orm = 0 and ¢ > ¢4 on Spt(f), then there exists a unique smooth solution

(r,Q%,Q, f) of the spherically symmetric Einstein—-Mazwell-Viasov system with admissible momen-

tum on
R (U, Up + min{eqian, U1 — Uo}, Vo, Vi) U R(Uy, Ur, Vo, Vo + min{egian, Vi — Vo })

which extends the initial data.

Proof. We prove existence in the slab which is thin in the wu-direction, the proof in the other slab
being identical. Let Cy = 10B and let C, be the constant obtained from the fundamental local

spacetime estimate Lemma 3.2.5 with this choice. Let A C [V;, V4] denote the set of V such that the
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solution exists on R(Uy, U7, Vo, V) where U] = Uy + min{egap, U1 — Up} and satisfies the estimates

sup  |logr|+ sup  |log 02| < C. (3.2.24)

R(Uo,U{, Vo, V) R(Uo,U!,Vo,V)
We will show that if ega, = min{eoc(Cs), B(Uy —Up) ~1C; 1}, then A is nonempty, closed, and open.
Nonemptyness follows from Proposition 3.2.3 and closedness by continuity of the bootstrap as-
sumptions. Let now V € A. To improve the bootstrap assumptions, we note that |0u0ylogr| < Cy on
R(Uy, U}, Vo, V) by Lemma 3.2.5, whence [log 7| < egap(Us — Up)Cy +3B < 1Cj by the fundamental
theorem of calculus. A similar argument applies for log Q2. Therefore, by applying Proposition 3.2.3

again, a simple continuity argument shows that v+ n € A for n > 0 sufficiently small. O

3.2.3 Time-symmetric seed data and their normalized developments

In the proof of Theorem 1.2.1, we will pose data for the Einstein—-Maxwell-Vlasov system on a mixed
spacelike-null hypersurface, with the Vlasov field f supported initially on the spacelike hypersurface
and away from the center. The initial data is given by a compactly supported distribution function
f on the spacelike hypersurface, a numerical parameter that fixes the location of the initial outgoing
null cone, together with the mass and charge of the particles. As we will only consider time-symmetric

initial configurations, these data are sufficient to uniquely determine the solution.

Definition 3.2.7. A time-symmetric seed data set S = (f,rg,m, ¢) for the spherically symmetric
Einstein-Maxwell-Vlasov system consists of a real numbers r; € Ry, m € R>g, and ¢ € R, to-
gether with a compactly supported nonnegative function f € C™((0,00), x (0,00)pu X (0,00),v)
which is symmetric in the second and third variables, f(, pt,pY) = f(, pY,p"), and satisfies

spt (f(+,p*,p")) C (0,72] for every p*,p” € (0, c0).

Given a seed data set S = (f,rg,m, ¢) and r € [0, 2], we define

r) = 7T/oo /Oo fv,p*,p*) dp*dp®, (3.2.25)

N™(r) = / / fr,p*, p*) dp*dp®, (3.2.26)
T (r) =T (r / / (r,p", p") dp“dp", (3.2.27)
T (r / / p* f(r,p",p") dp“dp". (3.2.28)

Remark 3.2.8. These formulas are missing a factor of Q2 compared to (2.3.14)—(2.3.19). This is
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vacuuim

(0,0)

" totally geodesic &

Figure 3.1: Penrose diagram of a normalized development U of a time symmetric seed S. The
spacelike hypersurface {7 = 0} is totally geodesic, i.e., time symmetric, and the outgoing cone
{u = —ry} has f = 0. To the left of the support of f, the spacetime is vacuum: both the Hawking
mass m and charge @ vanish identically. For the significance of the cone {v = 7y}, see already
Remark 3.2.13.

because 2 is not explicitly known on the initial data hypersurface and is accounted for by extra

factors of Q2 in the constraint system (3.2.29)—(3.2.30) below.

Let the functions 1 = m(r) and Q = Q(r) be the unique solutions of the first order system

d . r? 2\ 2 /- w v | S @2
%m v (1 - ) (T F2T™ + T ) + 972 (3.2.29)
d . 1 , 20\ 2 /o

with initial conditions 7(0) = 0 and Q(0) = 0. If

2m
sup — <1,
r€l0,rz] r

then m and Q exist on the entire interval [0, 2] and we say that S is untrapped. We also define

Finally, we say that S is consistent with particles of mass m if QQ(T)p“p” > m? for every (r,p%,p®) €
spt f .

Remark 3.2.9. We have not attempted to formulate the most general notion of seed data for the
spherically symmetric Einstein-Maxwell-Vlasov Cauchy problem here as it is not needed for our

purposes.

Associated with time-symmetric seed data as in Definition 3.2.7, we will introduce normalized
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developments of such data in the following. For ro > 0, let

Cro ={r>0}N{v>u}n{u>-r} CR],

and let 4L, denote the collection of connected relatively open subsets U C {v > u} C RZ’U for which

there exists a (possibly empty) achronal curve ¢ C C,,, extending from the center {u = v} and

reaching the cone {u = —ra}, such that i = C,, N{u+v < (*+("}and {7 =0}N{0 < v <ry} CU.

See Fig. 3.1.

We also define the cones

Cuo =UN{u=1up}, C, =UN{v=1p}.

~vo

Definition 3.2.10. Let § = (f,rg,m, ¢) be an untrapped time-symmetric seed data set which is

consistent with particles of mass m. A normalized development of S consists of a domain U € 4., and

a spherically symmetric solution (r, 2%, Q, f) of the Einstein-Maxwell-Vlasov system for particles

of mass m and fundamental charge ¢ defined over U \ {u = v} such that the following holds.

1. For every (v,p*,p¥) € (0,73] x (0,00) x (0, 00),

T(iva) =,
8UT(_U>’U) = %a
auT'(f’U,’U) = 78127'(*@7'0)3

Q% (—v,v) = Q%(v),

2/ 1 [(de
8719 ( ’U,U) - 2 er (1))7
Dulog V% (—v,v) = —0,log V*(—v,v),

o

f(_v’v’pu’pv) = f(vvpuapv)'
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(3.2.32)
(3.2.33)

(3.2.34)

(3.2.35)

(3.2.36)
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2. Along the initial outgoing null cone C_,,,

r(=r2,v) = ira + Jo, (3.2.38)
02 = 02(ry), (3.2.39)

Q= Qra), (3.2.40)

f=0. (3.2.41)

3. The functions 7, 02, @, and m extend smoothly to the center I' = U N {u = v} and satisfy
there the boundary conditions

r=m=0Q=0, (3242)

Our <0, Oyr > 0. (3.2.43)

4. Let v:[0,8) = U\T be a future-directed electromagnetic geodesic such that r(y(s)) — 0 as
s — 8.5 Then (v%“(s),7%(s),p"(s),p"(s)) attains a limit on T', say (us,v.,p%, p?), and there
exists a unique electromagnetic geodesic v' : (5,5 +¢) — U\ T for some ¢ > 0 such that
(7 (8),7" (), "(5), 0" (5)) = (us, v, p¥,pY) as s — S. We then require that

1' u v (7 v — 1 u /v /u /v .
Tim F((9),77(9),p"(5), P"(5)) = Jimy F(77(5), 7" (5), 2" (5), P (5))

We use the adjective “normalized” to emphasize the choice of a development with double null gauge

anchored to the data as in points 1. and 2. above.

Remark 3.2.11. The “time-symmetric” aspect of the development is captured by the first equalities
in (3.2.27) and (3.2.28), and the equations (3.2.33) and (3.2.36). One can moreover easily verify,
using (3.2.33), (3.2.36), and the formulas for the Christoffel symbols in Section 2.1.3, that {7 = 0}

is a totally geodesic spacelike hypersurface with respect to the (3 4 1)-dimensional metric (2.1.1).

5Such a curve necessarily has ¢ = 0.
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For a normalized development of seed data, we clearly have

N :QQ./\"[u’ NV :Q2N1)7
T 59227°-uu’ TV — Qin-'uv’
o 04 . .
TwW — QQT’U,U, S = ?Tuv o sz2é,
Q=0 w =

along {7 =0} NU.

Proposition 3.2.12. Let S be an untrapped time-symmetric seed data set which is consistent with
particles of mass m. Then there exists a § > 0 and a unique normalized development (r,Q2,Q, f) of

S defined on {0 <71 <6} NC,,.

Proof. Using essentially the same methods as the proof of Proposition 3.2.3 in Section 3.3, we obtain
a unique local smooth solution (r,Q2,Q, f) to the system of equations (2.3.20), (2.3.21), (2.3.24),
and (2.3.26), with initial data given by (3.2.31)—(3.2.41). It remains to show that the constraints
(2.3.22), (2.3.23), and (2.3.25) hold.

By the same calculation as in the proof of Proposition 3.2.3, equation (2.3.26) implies the con-

servation law (2.3.32) for N. Let v € (0,72). By integration of (2.3.24),

u

Qu,v) = Q(v) — / 2er? QPN du/

—v

for w > —wv. Differentiating in v, using (3.2.30), (2.3.32), and the fundamental theorem of calculus
yields (2.3.25) at (u,v).

To prove that (2.3.22) and (2.3.23) hold, we argue as in the proof of Proposition 3.2.3. Therefore,
it suffices to show that (2.3.23) holds on initial data (the corresponding argument for (2.3.22) being
the same). By (3.2.38) and (3.2.41), (2.3.23) clearly holds on the initial outgoing cone. By taking

the absolute v-derivative of 8,7(—v,v) = 3, we obtain 02r(—v,v) = 0,0,7(—v,v). Therefore, using
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(2.3.20), (3.2.29), and (3.2.35), we readily compute

021 — 9yrdylog O + lrQ4T”” = 0y 0pr — L d 1— 2 - + lrQ‘LT”“
v v 4 uwrr 402 dr r 4

20%m  Q2Q% 1

— _ - Q4Tuv
22 T s T
1 204 QS 04Q? 1
o - o Tuu 2Tuv Tvv - Q4Tm;
492( o Ty TR AT+ r3>+4r

:O’

where every function is being evaluated at (—v,v). This is equivalent to (2.3.23) and completes the

proof. O

Remark 3.2.13. Let rg € (0,r2) be such that f(r,p“,p”) =0if r € (0,79). Since f is assumed
to be compactly supported, such an ry necessarily exists. Then if (U, r, Q2 Q, f) is a normalized
development of S, the portion of the triangle {v < rg} inside of U is identically Minkowskian in the

sense that

on UN{v < rp}. In fact, we may therefore assume that any normalized development of S contains

the full corner C,, N {v < rp}.

Remark 3.2.14. One can verify that a normalized development as in Definition 3.2.10 defines a
solution of the constraint equations associated to the (3 + 1)-dimensional Einstein-Maxwell-Vlasov
system after applying the correspondence of Proposition 2.3.10. In particular, the lift of 7 = 0 will

be totally geodesic in the (3 + 1)-dimensional spacetime.

Remark 3.2.15. One can “maximalize” Proposition 3.2.12 to show the existence of a maximal globally
hyperbolic development of S, but this requires treating the local existence and uniqueness problem
for the spherically symmetric Einstein-Maxwell-Vlasov system at the center of symmetry, which we
do not address here.® Indeed, since our charged Vlasov beams spacetimes will always be vacuum near
r = 0, existence and uniqueness near the center will be completely trivial in our specific construction

and is established in the following lemma.

6Tn the case m > 0 one could directly appeal to [BC73] to get local well-posedness near r = 0.
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Lemma 3.2.16. Let ug < vg < vy, 9 > 0, Ag > 0, and « : [ug,v9] = Rso and 5 : [vg,v1] : Rsg be

smooth functions satisfying the relations

1 vo

= — a(u) du'.
4\ wo ( )

a(ug) = B(ve), alvg) =4X5, 7o

Then there exists a unique smooth solution (r,Q% Q,f) of the spherically symmetric Einstein—

Mazwell-Viasov system on
[wo, vo] X [vo,v1] U ({v>u}N{u>ve}N{v<wv1})

with Q and f identically vanishing, satisfying the boundary conditions of Definition 3.2.10 along

{u = v}, together with
r(ug,vo) =10, Our(ug,v9) = Ao, QQ|[u0,vO]X{UO} = q, Q2‘{u0}><[7jg,v1] = 8.

The solution is given by the explicit formulas

- i ! v U’—L uaul ! 2uv :a(u)ﬂ(v)
) =rot et [ awan - o [, 02 = S0

for (u,v) € [ug,vo] X [vo,v1] and

Ao v 4o
r(u,v) = Buo) /u B dv',  Q*(u,v) = B(UO)Qﬁ(u)B(U)
for (u,v) e {fv>u}N{u>vo}N{v<wp}.
Remark 3.2.17. From the last formula, it follows that
0u? (u, 1) = 0,9 (u, u). (3.2.44)

3.3 The characteristic initial value problem for spherically
symmetric nonlinear wave-transport systems

In this section, we prove local well-posedness for the spherically symmetric Einstein—-Maxwell-Vlasov

system in small characteristic rectangles away from the center. In fact, we consider the general system
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of equations

0,0,0 = F(U, 90, Q, M[f], M*[f]), (3.3.1)
2,Q = K (¥, M*[f]), (3.32)
X(p*,p*,0,0¥,Q)f =0, (3.3.3)

where U : wa — R¥ is a vector-valued function taking the role of the “wave-type” variables  and

Q% Q: R}, — R is the charge, f: TR2 , — Rx is the distribution function,
e A A e A A L T A AT
o Jo o Jo o Jo

are moments of f, F = (Fy,...,Fy) and K are smooth functions of their variables, and X is a

vector field on R?  of the form

X<pu7pv7 \Ila 8\117 Q) = puau + pva’u + fu(puapv7 \117 a\I’a Q)ap“' + gv(pu,pv, \I]a 8\115 Q)ap“7

where &% and £V are smooth functions of their variables. Letting a € {u,v}, we can write X using
Einstein notation as

X =p®0q + £“Opa.
We assume that there exist functions Gj, : R>g — R for £ > 0 such that
|D$,8‘1J,Q8;2€u(pu7pv7 \I]a 8‘11, Q)| + |D$,8\P,Qa;li72€v(pu7pva \Ija 8\117 Q)| < Gk(M) <pT>2_i2 (334)

if (U] +|0¥|+|Q| < M and iy + iy = k, where (s) = v/1+ 5% and p” = 1(p"+p"). Here Dg,am Qaf,?
denotes any expression involving i, derivatives in the (¥, 0¥, @Q))-variables and i derivatives in the

(p¥, p¥)-variables. We also assume that there exists a constant m > 0 such that
§'p"+ & =0 (3.3.5)

whenever pUp’ = m2. These structural assumptions are verified for a renormalized version of the

spherically symmetric Einstein-Maxwell-Vlasov system.
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Given Uy < Uy and V) < V7, let

C(U07U17%’V1) = ({UO} X [VO&Vl]) U ([UO’Ul] X {VU})’

R(Uo, Ur, Vo, Vi) = [Uo, Un| x [Vo, Vi].
We will consistently omit (Up, Uy, Vp, V1) from the notation for these sets. We also define

P™ = {(u,v,p",p") € TR? : p* > 0,p" > 0,p” > 0,p"p" > m?},

H" = {(u’v,pu,pv) € TR? p* > 0,p" >0,p" > "3}

and set P = P% A function ¢ : C — R is said to be smooth if it is continuous and Bl vy x [Vo,v1]
and @iy, u,]1x{v,} are C* single-variable functions. This definition extends naturally to functions
f: P™e — R. A smooth characteristic initial data set for the system (3.3.1)—(3.3.3) consists of
a triple (¥, Q, f) and numbers x > 0, ¢ > 4, where ¥ : C — RN, Q : {Up} x [Vp,Vi] — R, and
fr P™|¢c — R>¢ are smooth. We additionally assume that spt(f) C H"|c for some k > 0 (which is

only an extra assumption when m = 0) and that

Ifllespier = > ( sup ()TN O fl 4 sup <pf><’+i2|a::a;?f|>
0<irtiz<k \F"lUgrxvy,va] P™| (0,01 x{Vo}

(3.3.6)

is finite for every k > 0. For f : P™|gr — R>o and k > 0, we define the norms

I fllexpir) = Z sup (p7)7 %2105 03 f1,

0<ir iz <k PMIR
where 02! denotes i; derivatives in the (u,v)-variables.

Proposition 3.3.1. For any B >0, k > 0, and o > 4 there exists a constant € > 0 (depending also
on F, K, and X ) with the following property. Let (\I/, 602, f) be a smooth characteristic initial data

set for the system (3.3.1)—(3.3.3) on C(Up, U1, Vo, V1). If Uy — Uy < e, V1 — Vh < g, and
1W)lc2e) + 1Rl cr ey + I fllca(pley < B. (3.3.7)

then there exists a unique smooth solution (U, Q, f) of (3.3.1)=(3.3.3) on R(Uy, Uy, Vo, V1) which

extends the initial data. Moreover, the distribution function f is supported in H®/? and for any
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k >0, the norm

[k ry + 1RQllerr) + I fllck(pir)
is finite and can be bounded in terms of initial data norms.

Remark 3.3.2. While we assume that the initial data (\If, Q. f) are smooth (and that f satisfies the
nontrivial bound (3.3.6) at any order), the existence time ¢ in the proposition depends only on the

estimate (3.3.7).

Remark 3.3.3. If we assume that f has compact support in the momentum variables, then (3.3.6)

is automatic by smoothness.

3.3.1 Proof of Proposition 3.3.1

In this section, we assume the hypotheses and setup of Proposition 3.3.1. We also set Uy = V5 =0
and define 7 = %(v + u). Therefore, 0 <7 <eon R.

We will construct the solution (¥, Q, f) as the limit of an iteration scheme.

Lemma 3.3.4. There exist sequences of constants {Cy} and {C.} such that the following holds. For
any € sufficiently small and every n > 1, there exist functions (U, Qn, fn) € C°(R) x C°(R) x

C>(P™|r) solving the iterative system

auavll’n = F(\I/n—la a\I’n—ly Qn—lv M[fn—l]a M™Y [fn—l])v (338)
8UQ7L = K(\Ilnflv M? [f’nfl])v (339)
X(puapv7\I’n—laamn—lan—l)fn - 07 (3310)

where we set (Vg, Qo, fo) to be identically zero, with initial conditions

Uple =0, Qule=0Q, fulpe = /- (3.3.11)

Moreover, spt(f,) C H*"/? and these functions satisfy the bounds

[¥]lor(r) < Cre™, (3.3.12)
1Qnllcrr)y < Cry1edvH7, (3.3.13)
| fallorpir) < Cryre“H17, (3.3.14)
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It is convenient to set

F(Wn, 0¥n, Qu, M(fn], M [f0]),

K (W, MY[fn]),

Fy
Ky
Xn

= X (p",p", ¥y, 0¥, Q)

for n > 0. We first require a preliminary lemma about integral curves of the vector field X,,.

Lemma 3.3.5. Forn > 0, let I'™" denote the set of maximal integral curves ¥ = (y,p) : I = TR
(where I is a closed interval containing 0) of the vector field X,, subject to the condition that 5(0) €
H"N P™. Assume that U, satisfies (3.3.12) for k = 1 and Q,, satisfies (3.3.13) for k = 0. Then
for e sufficiently small (depending in particular on k) and any 5 € Ty, 7 is a future-directed causal

curve in R connecting C with the future boundary of R, 5(s) € P™ N H"/? for every s € I, and

%pT(O) < p(s) < 27 (0) (3.3.15)

for every s € I.
Proof. Let 4 = (v,p) € I'), and set 79 = ~7(0). By definition,

' . dp _ga
clsip7 ds "

a

for a € {u,v}, where £2 = &%(p*, p*, ¥,,, 0¥, Q,). Observe that X,, is tangent to the the boundary
of P™, {(u,v,p%,p") € TR : p*p’ = m?}, by (3.3.5), so § remains within P™. Reparametrizing 7

by 7 gives
d

) =2+ €0).

Using (3.3.4), the assumptions on ¥,, and @, and Gronwall’s inequality, we have
pT(T)Q < eO(E) (pT(To)Z —|—O(8)) < 2p7-(7_0)2

for 7 in the domain of 4 and for ¢ sufficiently small. This proves the second inequality in (3.3.15).

To prove the first inequality, we observe that by the estimate we have just proved,

(™ (7)? = (7 (10))*] < esup &+ &nl < ep™ (m0)?

89



Choosing ¢ perhaps even smaller proves (3.3.15) and completes the proof of the lemma. O

Proof of Lemma 3.3.4. The proof is by induction on n and induction on k for each fixed n. As the ex-
istence and estimates for the base case n = 0 are trivial, we assume the existence of (¥,,_1, Qn—1, frn—1)
satisfying (3.3.12)—(3.3.14), where the constants are still to be determined. We will choose the con-
stants to satisfy Cj, < Cj, < C~'k+1, which we use without comment in the sequel. By (3.3.12)—(3.3.14)

for (¥,,—1,Qn-1, fn_1) and iterating the chain rule, it is easy to see that

|0* My 1] < C(Chyr)eC 7 (k> 0), (3.3.16)
|F,_1| < C(Cy), (3.3.17)
05 F, 1| < C(Chryr)eC 7 (k> 1), (3.3.18)
|Kn_1] < C(C), (3.3.19)
0P K 1| < C(Chyr)eCsT (k> 1), (3.3.20)

where M,,_1 € {M[fn_1], M"[fr-1], M**[fr—1]}. We also define the number
B' = [F(¥,0¥,Q, M[f], M"[f])|(0.0) + 1K (¥, M"[f])|0.0)-
Step 1. The function ¥, is defined by the explicit formula
U, (u,v) = /Ou /0 Fo_1 (v, 0" dv'du’ + U (u,0) + ¥(0,v) — ¥(0,0). (3.3.21)
It follows by inspection of this representation formula and (3.3.17) that
19, ]| (=) < 10B (3.3.22)

if & is sufficiently small depending on C;. We estimate k-th order derivatives (k > 2) of the form
ok, 0%20,0,¥,, and OFV,, separately. For the first type, we simply differentiate the represen-

tation formula (3.3.21) k times to obtain

|OF W, | < (data) —|—/ |OF1F, | dv' < C + %ec’” < CherT
0 ke

for appropriate choices of Cj, and Cj. For mixed derivatives, we differentiate the wave equation to
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obtain

108720,0,0,,_1| < o ]|0§_2Fn71| - / 10,0" 2 F, 1| du’ < C(Ch—1) + —C(Cck’“)ecﬂ < CrerT
0} x[0,Vo 0

for appropriate choices of C). and C). The estimate for 8§\I/n is similar to 85\?”. For later use, we
derive a slightly improved estimate for 92¥,,. Using the mean value theorem and (3.3.18), we have
|Fn,1 — B/| < C(CQ)T
We also have
|02W,, — (data)| + |02¥,, — (data)| < C(Cy)T.

Therefore, for € sufficiently small depending on Cy, combined with (3.3.22), we infer
19, llo2(ry < 20(B + B'). (3.3.23)

This completes Step 1.

Step 2. The function @, is defined by the explicit formula
Qn(u,v) = / K, (v, v)du' + 602(0, v).
0

It follows by inspection of this representation formula and (3.3.19) that

1Qllcory < 10B

for € sufficiently small depending on Cy. For k > 1, we estimate

C(Cr41)

6Ck+17' < ék+160k+1T,
Crt1

|85Qn| < (data) Jr/ |85Kn_1|du/ <C+
0

C(Cr1)

eCOr+17 < é'kJrleCkJrlT
Crt1

0519,00] < sup |8 K| + / 08K, 1| du’ < C(Ch) +
{0} x[0,Vo] 0

for appropriate chices of C’kH and Ck11. Arguing as in Step 1, for ¢ sufficiently small depending on
C5, we also infer

1Qnllcr(r) < 20(B+ B'). (3.3.24)
This completes Step 2.
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Step 3. For f, we do not have an explicit representation formula and must instead infer its
existence from general properties of flows of vector fields. A slight technical issue is that the “initial
data hypersurface” P|c is not smooth because of the corner in C. Therefore, in order to prove the
existence of a smooth f,,, we will construct it as a smooth limit of smooth solutions to the X,,_1
transport equation, corresponding to initial data where we smooth out the corner in C. To carry

out this idea, we first extend f to C°(P™|g) according to
gf(uu U7pu7pv) = f(u707pu7pv) + f(07v7pu7pv) - f(O, 07pu7pv)
and set, for j > 1,

S ={(u,v) ER :uv =277},

R; ={(u,v) €ER :uv >277.}

For any j > jo sufficiently large that S; # (), there exists a unique function f, ; € C*°(P™|g,) such
that
Xn—lfn,j =0 (3325)

in R;, with initial data f,; = & f on P™|s,. The existence follows immediately from the flowout
theorem (see [Leel3, Theorem 9.20]), the fact that X,,_; is transverse to P™|s;, and Lemma 3.3.5.
It also follows from Lemma 3.3.5 that spt(f, ;) C H*/2. We will use the fact that p™ > /2 for any
5 € T2 often and without further comment in the sequel.

We now claim that we can choose C’k and C}, such that
I illcxpir,) < Crare7 (3.3.26)
for every n > 0, j > jo, and k > 0. Let F, ;1 denote the vector with (kf’) components of the form
(p7) 720102 f (3.3.27)
where i1 + io = k. We will show inductively that ék+1 and C41 can be chosen so that

sup | Fr x| < CryreCT, 3.3.28
5T

Pm|7;>_j
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which would imply (3.3.26).
Orders kK = 0 and k = 1 are slightly anomalous in our scheme and we handle them first. We
require the estimate

P7)205 6 |+ 7)o 4 S 1, (3.3.29)

which follows from (3.3.4), (3.3.23), and (3.3.24). Using (3.3.25), we compute

X (07)° fug) = G077 THE L+ €0 s

From (3.3.29) we then infer

[ Xn-1 ()7 i) S @7)7 fug-

Let 4 € I be parametrized by coordinate time 7. Then along ¥ we have

d
‘dT]:n,j,O

5 |]:n,j70|,
whence by Gronwall’s inequality

|Fngol SNEfllcopir) S Ifllcocple)-

Next, we compute

|Xn—1((p7)gaxfn,j)‘ S (p7)0+1|8xfn,j + (pT)U|[Xn—1a8x]fn,j|-

The commutator is estimated using (3.3.29) by

|[Xn717 6x]fn,j| 5 |5z5371 | ‘8Pfﬂ,j

S (pT)Qlapfn,j |

The p derivative of f,, ; satisfies

X1 (P 0p fad)l S (07) 7 10p fr il + (P17 [ Ko, Bpl fr s

where the commutator is now estimated by

Hanla ap]fn’j| 5 |awfn,j

+ |ap 271||6mfn’j| 5 |awfn,j

+p7‘apfn,j|-
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Putting these estimates together, we find that

Fnja

d
’ S | Fagals

dr

whence again by Gréonwall’s inequality we conclude a uniform bound

| Frgil S ||f||c;(P|c)- (3.3.30)

Having now established cases k = 0 and k = 1 of (3.3.28), we now assume (3.3.28) up to order
k —1. Let ¢;, s, be a component of F, ;. We adopt the convention that if either i; or iy are

negative, then ¢;, ;, is interpreted as identically zero. Using (3.3.4) and (3.3.29), we estimate

| X1 (@iva)l S 0172 7HE L + €0 111070 Fugl + (0172 | [Xnm1, 0% f ]

S |9inial + (PT) 72D 0a, 0507 fg| + (07) 7260 1 Ope, 02 O] frgl. (3.3.31)

The first commutator, [p?®d,,d% 8;2] fn,j, vanishes unless ¢; > 1 and therefore consists of terms of

the form 9119271 f,, j, which implies

(") 2|, 03032 fr sl S D700 41001 S DT Fnjik

. (3.3.32)

The second commutator can be estimated by

(60 10pe, OLOZIFI S > 00O || 0T f, ).
1<j1+J2
j1<i1,52 <12

By inspection, 97t 5‘]{;253_1 is linear in 9J:*1W,,_;, which is the worst behaved term in our inductive

hierarchy. Therefore, using again (3.3.4), we may estimate
0205611 S (C(C0) + Cjyaenerm) ()2
and therefore infer

) 10, 02 0p 1 gl ST Y0 (CCW) + Chone€® T ) (Pl

Asgitie
J1<i1,J2<1i2
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If j; < k, then Cj, 1“1 +17 < O(Cy). If j; = k, then j, = 0 and

(C(Ck) + CM'J‘1+1€C"1*”) | Fng et 1= —ia | = (C(Ck) + C'k+1ec’“*”) |Fnial S C(Cr)Cryre®s17,
(3.3.33)

where we have used (3.3.30). Therefore, the sum in (3.3.1) can be estimated by
< OCx) (1F sl + Crne7)
Putting (3.3.31), (3.3.32), (3.3.1), and (3.3.33) together, we arrive at
[ Xn—1Fn k| S C(Cr)p” (\]:n,j,kl + ék+1€C’““T) :

As before, a simple Gronwall argument now establishes (3.3.26) for appropriate choices of Cj11 and
Cr1-

Having now established the boundedness of the sequence f, j, we may take the limit j — oo
(after perhaps passing to a subsequence). This shows the existence of a function f, € C*°(P™|g)
with spt(f,,) C H"/?, satisfying the estimates (3.3.14), and attaining f on P™|c. Finally, uniqueness

of f, is immediate since it is constant along the integral curves of X,,_1. O

Proof of Proposition 3.3.1. We prove first that the sequence iterative sequence (¥, @, f,) con-
structed in Lemma 3.3.4 is Cauchy in C? x C! x C!. We claim that if ¢ is sufficiently small, then

the following estimate holds for every n > 2:

[Wn, = Wnillc2r) + [1@n — Qu-tllcr(r) + 1 fn — fa-1llcr(pir)

1
<3 (N1 = W alle2r)y + 1Qn-1 = Qu-zllcr(®) + | fa1 = fa—2llcr(pir)) - (3:3.34)

Using the mean value theorem and the boundedness of the iterative sequence, we immediately

estimate

[Fn1—Fn2llerr) S I¥n-1-Yo2llc2(r) +Qn—1—Qn—-2llcr(r) + | fa—1— frn—2llcr(pr)- (3.3.35)

Using the formula

(‘I’n — \I/n_l)(u,v) = / / (Fn—l — Fn_g) dv’du’
0 0

we readily infer that for e sufficiently small, ¥,, — ¥,,_; and 9¢(¥,, — ¥,,_;) for a € {u,v} and
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i € {1,2} are bounded by an arbitrarily small multiple of the right-hand side of (3.3.34). To
estimate the mixed second partial derivative, we simply use the fundamental theorem of calculus to

bound

Vh1 = Vnallorr) + 1Qn-1 — Qu_zllcor) + [Mn-1 = Mn_2|lcor)

by an arbitrarily small multiple of the right-hand side of (3.3.34) and then use the mean value

theorem to estimate

|8uav(\1’n - \I/n—l)‘ < ||Fn—1 - Fn—2||C°(R)

SI¥no1 = Yaallorr) + 1Qn-1 — Quzllcor) + [Mn-1 — Myu_2llcor).-

The argument for bounding ||Q, — Qn—1|lc1(r) is essentially the same and is omitted.

To estimate f, — fr_1, we examine the quantity

Fu=0") (fn = fa-1,0:(fn — fn—l)ypTap(fn — fn=1))

along integral curves of X,,_;. First, note that F, # 0 only along curves in I}, U, By

Lemma 3.3.5 (and choosing & perhaps smaller), any value 4,,_2(s) for a curve 4,_o € F:‘:’_F”Q can be

m,k/2

realized as an initial value 7,_1(0) for a curve 3,,_1 € I',”"/ . Therefore, it suffices to observe that
m,k/2,

the following estimate holds along any curve 4,1 € I' )77

d
Fag

S|Fal +1¥n1 = Vnallc2r) + |Qn-1 — Qu-zllcr(r) + |fa-1 — fu—2llc1(pr);

which is obtained by simply differentiating F,, and using the estimates proved in Lemma 3.3.4.

Therefore, since F,, vanishes along P™|¢, Gronwall’s inequality implies

1Fal Se(Wno1 — ¥ozllezr) + [|Qn-1 — Qu-zllcr(r) + | fa—1 — fn—2||cg,(P|R)) .

After choosing e sufficiently small, the proof of (3.3.35) is complete.

Therefore, (V,,, Q, fn) converges to a solution (¥, Q, f) of the system (3.3.1)—(3.3.3) in C? x
C' x C', which is moreover C™ smooth by the higher order estimates proved in Lemma 3.3.4.
Uniqueness of the solution can be proved along the same lines as the proof of the estimate (3.3.34)

and is omitted. O
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3.3.2 Proof of local well posedness for the Einstein—-Maxwell-Vlasov sys-

tem

In this section, we prove Proposition 3.2.3, local well-posedness for the Einstein-Maxwell-Vlasov
system in small characteristic rectangles. The proof has 3 steps: In the first step, we solve the
wave equations (2.3.20) and (2.3.21), the ingoing Maxwell equation (2.3.24), and the Maxwell-
Vlasov equation (2.3.26) using Proposition 3.3.1. In order to directly quote Proposition 3.3.1, we
in fact consider a renormalized system that fixes the location of the mass shell to the fixed family
of hyperbolas p*p¥ = m?. In step 2, we show that the outgoing Maxwell equation holds as a result
of conservation law (2.3.32), which follows from the Maxwell-Vlasov equation (2.3.26). Finally, in
step 3, we show that Raychaudhuri’s equations (2.3.22) and (2.3.23) hold, using now the Bianchi
identities (2.3.33) and (2.3.34), which again follow from (2.3.26). Steps 2 and 3 may be thought of

as propagation of constraints, as they require the relevant equations to hold on initial data.

Proof of Proposition 3.2.3. Step 1. Consider the wave-transport system

0% 0,10, 02 -
auav’r - 5 — ! L + ™ / Nuﬁvf(uvvvﬁuvﬁv) dﬁudﬁv7 (3336)
4r T 4 PUpY>m2
02 20,r0,r TwO? ~
0uOplogQ? = — 4 24720 4 70 55° f(u, v, Y, ) dptdp®
27‘2 7‘2 2 pUpY >m?
(22 SU SV £ U~V JSU ]SV
-5 (P*p" —m?)f(u,v,p",p") dp“dp", (3.3.37)
pupv>m?
0,Q = —er’Q / P f(u,v, 5%, 5°) dp*dp”, (3.3.38)
2 ﬁ’(lrﬁ’UZmQ
Xj=o (3.3.39)

where

5oL . . ey 2007, - QQ .
X =p"0y +p"0s — (&JOg Q(p")? — Dylog QP P + . Lt —m?) + efp“) D

20,1

~v ~q ~v ~u ~v QQ ~v
-~ (2060 ~ 2utog st + 22 g — ) - 225 0

r

with initial data ¥ = (logﬂlogm), 602, and f(um,ﬁ“,ﬁ”) = f(u,vf)‘lﬁu,fl_lﬁ”). Since 10g§022 is

3
o 2

bounded on C and either m > 0 or ¢ > ¢, on spt(f), there exists a x > 0 such that spt(f) C H”. Fur-
thermore, the structural conditions (3.3.4) and (3.3.5) are easily verified for X, so Proposition 3.3.1
produces a unique local smooth solution to (3.3.36)—(3.3.39) if €jo¢ is chosen sufficiently small. Mak-

ing the change of variables p* — Qp* and p¥ — Qp?, defining f(u,v,p*,p¥) = f(u, v, Qp*, Qp¥), and
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observing that

Xf=0"'Xf=0,

we have obtained a unique local smooth solution (r,Q2,Q, f) for the system (2.3.20), (2.3.21),
(2.3.24), and (2.3.26) on R which extends the initial data.

Step 2. We first aim to prove (2.3.32) using only (2.3.26). At this point, one could apply Propo-
sition 2.3.10 and (2.1.11) to derive (2.3.32), but we give now a direct proof.

First, using the definitions (2.3.14) and (2.3.15), we have

292 QQ2 o] [e’e) 0o o]
8u <’I‘ Nu) + 81, (T Nv) _ au/ / 7"294puf dpudpv 4 81}/ / T2Q4pvf dpvdpu
™ ™ 0 0

m?/(Q%p?) m?/(Q2p*)

_ / (2r0, QP f + 22048, log Q2p* f + 12Q1p4d, f) dpdp"
QZPupv Zm2
+ / (27‘8U7"Q4p“f + 212020, log V2p° f + 7‘294]9”8@]”) dp*dp"
5221)“[)” 2m2

%) 4.2 [e’e] 4,2
+ / T Dulog O f dp” + / BT 0,log Q2 f dp". (3.3.40)
o () o (p%)

Adding both terms involving spatial derivatives of f and using (2.3.26) yields

[eS) )
/ 7,294 (puauf +pvavf) dpudpv _ / / T2Q4Eu8pufdpudpv
Q2pup®>m? 0 Jm2/(Q%pv)

+ / / r2 QY=Y 0,. f dp®dp®, (3.3.41)
0 Jm2/@2pv)

where

20,1 Q
=u - 20, u\2 ol 52 2 u
E% = 9ylog Q% (p*)? + W(Q pUp¥ — m?) + e3P
20,1

(Pp“p” —m?) — Ly

2Y = d,log 0 (p")* + .

rQ2

Integrating the first term on the right-hand side of (3.3.41) by parts, we find

/ / r2QYE O, f dptdp” = — / (2r?Q*0,log Q%p" + 2rd,rQ'p" + eQ'Q) f dp"dp®
0 m2/(Q2pv) Q2pupr>m?2
e} 4,2 QQ2
- / <“”"28u10g92+em Q> fdp”, (3.3.42)
0 (»v) DY
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where f is evaluated at p* = m?/(Q2%p"), and for the second term,

/ / TZQ4E“8pi;fdp“dp“ = —/ (2r2Q48v10g Q%Y + 2rd,rQtpt — eQ4Q) fdp“dp®
0 m2/(Q2p) Q2ptpv >m?2
0o 4,2 292
7/ (mgﬁvlog 02— Q) Fdp*, (3.3.43)
o \() P

where f is evaluated at p” = m?/(Q%p"). Combining (3.3.40)—(3.3.43) yields (2.3.32) after noting

o0 mQQQ o0 mQQQ
|eara = [ ar .
0 p 0 p

that

We can now derive the ingoing Maxwell equation (2.3.25). By (2.3.24), we have

Q(u,v) = Q(Uy,v) — /“ %er2Q2N” du’

Up

on R. We then derive

0,Q(u,v) = 0,Q(Uy,v) f/ 81)(%er2QQN“) du’
Ug

= 0,Q(Uy,v) + Uu Du(5er*Q*N*) du' = $er*Q* N (u,v),
0
where in the final equality we used the fundamental theorem of calculus and the assumption that
(2.3.25) holds on {Up} x [Vy, V1]
Step 3. By a lengthy calculation which is very similar to the one performed in step 2, one may
use (2.3.26) to derive the Bianchi identities in the form (2.3.33) and (2.3.34). Using the Maxwell
equations (2.3.24) and (2.3.25), this implies the Bianchi identities in the form (2.1.12) and (2.1.13),

where
Q2

QQ,,A’

Q2
T =7T", S=85+—.
+ 2rt

T’LL’LL — TU/’U,’ Tu’U — T’LLU +

By another lengthy calculation, using now also the wave equations (2.3.20) and (2.3.21), one can

derive the pair of identities

Oy (raﬁr — 10urd,log O + ir2Q4T””> =0,

1
Ou <T8§r — 1dyrdylog O + 4TQQ4T“"> =0.

These identities, together with the assumption that (2.3.22) holds on [Up, U] x {Vo} and (2.3.23)
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holds on {Uy} x [Vb, V1], prove that (2.3.22) and (2.3.23) hold throughout R.
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Chapter 4

Formation of black holes via

characteristic gluing

In this chapter, we give a brief outline of the characteristic gluing constructions used in Chapter 5

and Chapter 6.

4.1 The problem of characteristic gluing

Characteristic gluing is a powerful new method for constructing solutions of the Finstein field equa-
tions by gluing together two existing solutions along a null hypersurface. The setup of characteristic

gluing is depicted in Fig. 4.1 below and we will repeatedly refer to this diagram for definiteness.

Figure 4.1: Penrose diagram depicting the setup of characteristic gluing. The null hypersurface C'
is declared to be “outgoing.”

In Fig. 4.1, the two dark gray regions PR; and R carry Lorentzian metrics and matter fields

which satisfy (1.0.1). The goal is to embed these regions into a spacetime (M, g, ...) which satisfies
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(1.0.1) globally, in the configuration depicted in Fig. 4.1. The characteristic gluing problem reduces
to constructing characteristic data along a null hypersurface C' going between spheres S7; C Ry and
Sy C Ao, so that after constructing the light gray regions in Fig. 4.1 by solving a characteristic
initial value problem, the resulting spacetime is of the desired global regularity.

Characteristic gluing is a useful tool for constructing spacetimes that share features of two
existing solutions, and therefore display interesting behavior. Moreover, the causal structure of the
glued spacetime can be immediately read off from the construction, which makes it well suited to

constructing examples of black hole formation.

4.2 Characteristic gluing for the linear wave equation

The study of the characteristic gluing problem was initiated by Aretakis for the linear scalar wave
equation

0,6 =0 (4.2.1)

on general spacetimes (M3+1, g) in [Arel7]. Aretakis showed that there is always a finite-dimensional
(but possibly trivial) space of obstructions to the characteristic gluing problem. More precisely, he
showed that there are at most finitely many (possibly none) conserved charges that are computed
from the given solutions at S7 and S5 in Fig. 4.1 that determine whether characteristic gluing can be
performed. These charges are conserved along C' for any solution of (4.2.1). This gives a definitive
answer' to the characteristic gluing problem for (4.2.1): There is a precise characterization of which
solutions can be glued—the matching of all conserved charges is both necessary and sufficient.

The gluing problem along characteristic hypersurfaces for hyperbolic equations and associated
null constraints already appears for the linear wave equation on Minkowski space. On R3*!, let

u=z(t—r),v= %(t + ), and let ¢ be a spherically symmetric solution to the wave equation, i.e.

1
2
040y (r¢) = 0. (4.2.2)

Let C'UC be a spherically symmetric bifurcate null hypersurface, that is, C = {u = up} N {v > vo}
and C = {u; > u > up} N {v = vg}. The wave equation (4.2.2) implies that 9, (r¢) is conserved
along the outgoing cone C. This implies that d,¢ cannot be freely prescribed along C, but is in
fact determined by 0,¢ on the bifurcation sphere C N C. Indeed, as we have seen, the characteristic

initial value problem is well posed with just ¢ itself prescribed along C'U C—the full 1-jet of ¢ can

L[Arel7] only deals with C' characteristic gluing, but is definitive in this regularity class.
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then be recovered from (4.2.2). For general spacetimes, the question of null gluing for the linear
wave equation was studied by Aretakis [Arel7].

For a general wave equation, ingoing derivatives satisfy transport equations along outgoing null
cones. The general C* characteristic gluing problem is to be given two spheres S; and S, along an
outgoing null cone C, and k ingoing and outgoing derivatives of ¢ at S; and Ss. One then seeks to
prescribe ¢ along the part of C' between S; and S; so that the outgoing derivatives agree with the
given ones and the solutions of the transport equations for the ingoing derivatives have the specified
initial and final values. In general, the linear characteristic gluing problem is obstructed due to the

presence of conserved charges stemming from conservation laws along C.

Remark 4.2.1. Even in the absence of conservation laws at any order, C*° gluing of transverse
derivatives may be obstructed in linear theory. This can be seen already for the (1 4 1)-dimensional
wave equation 0,0,¢ = f(u,v)¢ for generic f € C°(R'*1). For such an f, there are no conservation
laws at any order and by imposing trivial data at S; and very rapidly growing (in k) 9%-derivatives
at So, one can show that C'°° gluing cannot be achieved. Note that in 1 4+ 1 dimensions, S; and Ss

are points.

4.3 Characteristic gluing for the Einstein vacuum equations
near Minkowski space

The characteristic gluing problem for the Einstein equations amounts to the following:

Question 4.3.1. Which spheres S1 and So in which vacuum spacetimes can be characteristically
glued as in Fig. 4.1 as a solution of the Finstein vacuum equations? Are there any nontrivial

obstructions? If so, can they be characterized geometrically?

For example, a genuine obstruction arises from Raychaudhuri’s equation (see already (2.3.23)),
which implies that Sy cannot be strictly outer untrapped if Sy is (marginally) outer trapped. Another
genuine obstruction arises from the rigidity of the positive mass theorem, which implies that if Ry
is Minkowski space, then PR is either Minkowski space or must be singular or incomplete in some
sense.

Characteristic gluing for the Einstein vacuum equations (1.1.6) was initiated by Aretakis, Czimek,
and Rodnianski in a fundamental series of papers [ACR21; ACR23b; ACR23a]. They study the
perturbative regime around Minkowski space, that is, when both spheres S; and Ss in Fig. 4.1 are

close to symmetry spheres in Minkowski space. Their proof uses the inverse function theorem to
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reduce the nonlinear problem to a linear characteristic gluing problem for the linearized Einstein
equations in double null gauge around Minkowski space, in the formalism of Dafermos—Holzegel—-
Rodnianski [DHR]. In the course of their argument, they discover that the linearized Einstein
equations around Minkowski space in double null gauge possess infinitely many conserved charges.
However, it turns out that all but ten of these charges are due to gauge invariance of the Einstein
equations (cf. the pure gauge solutions of [DHR]). The remaining charges, which we define precisely
in Definition 6.5.2 below, are genuine obstructions to the linear characteristic gluing problem. The
inverse function theorem then gives nonlinear gluing close to Minkowski space, provided that, a
posteriori, the 10 transported gauge-invariant charges at So agree with the prescribed charges on S
(which is in fact also perturbed to deal with the gauge-dependent charges).

The conserved charges of Aretakis—Czimek—Rodnianski can be identified with the ADM energy,
linear momentum, angular momentum, and center of mass. This identification is used in [ACR23a|
to give a new proof of the spacelike gluing results of [Cor00; CS06; CS16] using characteristic gluing.

Later, Czimek and Rodnianski [CR22] made the fundamental observation that the linear conser-
vation laws can be violated at the nonlinear level by certain explicit “high frequency” seed data for
the characteristic initial value problem.? They then use these high frequency perturbations to adjust
the linearly conserved charges in the full nonlinear theory, so that the main theorem of [ACR21]
applies. The result, which we state as Theorem 6.5.3 in Section 6.5.2 below, is that two spheres
close to Minkowski space can be glued if the differences of the conserved charges satisfy a certain
coercivity condition. Roughly, the assumption is that the change in the Hawking mass be larger
than the changes in the other conserved charges and that the change in angular momentum is itself
much smaller than the distance of S; and S; to spheres in Minkowski space. Their result has the
remarkable corollary of obstruction-free spacelike gluing of asymptotically flat Cauchy data to Kerr
in the far region.

We note at this point that the analysis of [ACR21; ACR23b; ACR23a; CR22] is limited to C2
regularity in the ingoing direction u, but allows for arbitrarily high regularity in v and angular
directions.® It is not clear whether their analysis (especially [CR22]) can be generalized to higher
order transverse derivatives.

The linearized characteristic gluing problem for (1.1.6) was redone in Bondi gauge and extended

to incorporate a cosmological constant and different topologies of the cross sections of the null

2The high frequency perturbations are becoming singular in the Minkowski limit and hence do not linearize in a
regular fashion.

31n this paragraph we are referring to the results in [ACR21; ACR23b; ACR23a; CR22] that have to do with char-
acteristic gluing as is depicted in Fig. 4.1. Aretakis—Czimek—Rodnianski also consider another type of characteristic
gluing, bifurcate characteristic gluing, which works to arbitrarily high order of differentiability.

104



hypersurface C' by Chrudciel, Cong, and Gray [CC22; CCG24]. This work also addresses linearized

characteristic gluing of higher order transverse derivatives.

Question 4.3.2. [s there a general geometric characterization of conservation laws associated to
the linearized FEinstein equations around a fixed background? Is there always a finite number of

conservation laws? Is the generic spacetime free of conservation laws at the linear level?

One might also wonder if there is a precise connection between the conservation laws observed
in the null setting with the cokernel of the linearized constraint map studied in the spacelike gluing

problem [Cor00; CS06; CDO03]. We refer the reader to [CC23] for more discussion about these issues.

Remark 4.3.3. More recently, Mao, Oh, and Tao [MOT23] have developed a different approach
to obstruction-free gluing in the asymptotically flat regime using an explicit solution operator for
the linearized spacelike constraints. This method gives solutions to the spacelike constraints of

arbitrarily high regularity.

4.4 Event horizon gluing for the Einstein—Maxwell-charged
scalar field system in spherical symmetry

In the context of black hole formation, we are however interested in a different regime of gluing.
We wish to glue two specific null cones: a light cone in Minkowski space and a Reissner—Nordstrom
event horizon, as a solution of the EMCSF null constraint system. On the one hand, this is a genuine
“large data” gluing problem, as these cones are very dissimilar in a gauge invariant sense and there
is no known spacetime around which one could reasonably linearize the equations. On the other
hand, we study our problem in spherical symmetry, which makes it considerably more tractable. We
refer to Section 5.2 below for a precise definition of characteristic gluing in spherical symmetry.
We will now state the rough version of our main null gluing theorem, which concerns gluing a

null cone in Minkowski space to a Reissner—Nordstrom event horizon.

Theorem 4.4.1 (Rough version). Let k € N be a regularity index, ¢ € [—1,1] a charge to mass
ratio, and ¢ € R\ {0} a fized coupling constant. For any M sufficiently large depending on k, q, and
e, there exist spherically symmetric characteristic data for the Finstein—-Mazwell-charged scalar field
system with coupling constant e gluing a Minkowski null cone of radius %M to a Reissner—Nordstrom

event horizon with mass M and charge e = qM up to order k.

We also refer to Fig. 4.2 for an illustration of our construction.
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Figure 4.2: Setup of Theorem 4.4.1.

For the precise version of Theorem 4.4.1 we refer to Theorem 5.4.1 and Theorem 5.4.2 in Sec-
tion 5.4. In fact, more generally, we can replace the Minkowski sphere with certain Schwarzschild
exterior spheres at v = 0, which is important for constructing counterexamples to the third law of
black hole thermodynamics (see already Section 1.1.3). Furthermore, when q = 0 we may take the
scalar field to be real-valued, in which case the EMCSF system collapses to the Einstein-scalar field

system.

Remark 4.4.2. For the proofs of Corollary 4.6.1 and Corollary 4.6.3 below, we will use versions of
Theorem 4.4.1 where the top sphere is not located on a horizon. See Theorem 5.4.4 and Theorem 5.4.7

in Section 5.4 below.

Remark 4.4.3. With our methods one can also construct characteristic data which are exactly
Minkowski initially and then settle down, but only asymptotically, to a Schwarzschild or (sub-

)extremal Reissner—Nordstrom event horizon of prescribed mass and charge. The rate of decay can

1

be chosen to be [0,¢| = v™P, p > 3,

in a standard Eddington-Finkelstein gauge for Schwarzschild
or subextremal Reissner—Nordstrom black holes. This provides examples of “global” characteristic

data settling down at certain prescribed rates as assumed in [Vanl8b; GL19; KV21].

4.4.1 Outline of the proof of Theorem 4.4.1

In the Einstein—-Maxwell-charged scalar field model in spherical symmetry, the spacetime metric is
written in double null gauge as

g = —0%dudv + r’gge,

where Q? is the lapse and r the area-radius. We also have a complex-valued scalar field ¢ and a

real-valued charge Q, which is related to the only nonzero component of the electromagnetic tensor
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F. We choose an electromagnetic gauge in which A = A, du, where A is a gauge potential for F.
The dynamical variables to be glued along an outgoing cone (which we will call C_; = {u = —1})
are (1,92, ¢,Q, A,). The charge Q solves first order equations in u and v, A, is computed from Q
via F = dA, and the variables r, 22, and ¢ solve coupled nonlinear wave equations involving also Q
and A,. See already equations (2.2.3)-(2.2.10). Since the value of Q2 along any given null cone (or
bifurcate null hypersurface) can be adjusted by reparametrizing the double null gauge, we impose
that Q2 = 1.

We first consider Raychaudhuri’s equation (see already (2.2.7)), which reads in the gauge Q2 = 1

O2r = —r|0,0)°. (4.4.1)

This equation gives a nonlinear constraint on C_; and completely determines  on C'_; given r and
J,r at one point of C_; and ¢ along C_;. Thus, in the gauge Q2 = 1 along C_1, up to specifying
the dynamical quantities at a sphere, the free data in this problem is exactly ¢ on C'_;: All other
dynamical quantities and their derivatives (both in the w and v coordinates) along C'_; can be
obtained from ¢ and the equations (2.2.3)—(2.2.7).

We will choose ¢ to be compactly supported on the textured segment in Fig. 4.2 and set

9up(0) = -+ = 05p(0) =0,

where k is the order at which we wish to glue. A first attempt to solve the gluing problem would be
to set (1,92 Q, A,) and derivatives to have their “Minkowski values” at the sphere v = 0 and then
prescribe ¢(v) so that the dynamical variables reach their “Reissner—Nordstrom values” at v = 1.
However, specifying a “Minkowski value” for d,r is essentially another gauge choice, and the gauge
invariance of the equations enables a much more convenient strategy.

Given that ¢ vanishes to order k at v = 0, to know that the sphere v = 0 is a sphere in Minkowski
space to order k, we merely need to know that r(0) > 0 and that the charge @ and the Hawking
mass (see already (2.1.2)) both vanish. See already Lemma 5.5.1. This reduces to the statement
that in the gauge Q2 =1,

0ur(0)0,7(0) = —%.

Since r solves a wave equation (see already (2.2.4)), 9, solves a first order equation in v, so it is

determined on C_; by 9,7(0) alone. Given ¢, we solve Raychaudhuri’s equation (4.4.1) backwards,
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i.e., we teleologically normalize r at the final sphere by setting

r(l):r+£(1+ 1—q2)M

9,r(1) =0

and then set

yr(0) = 4

1
9,7(0)

Therefore the only “constraint” is that 9,7(0) > 0, which will be automatically satisfied by the
monotonicity property of Raychaudhuri’s equation as long as r > 0.

The charge @ is determined by Mazwell’s equation (see already (2.2.9))
0,Q = er’Im(¢0, ).
Integrating this forwards in v yields the charge condition
1 —_
/ er?Tm(¢p0,¢) dv = qM. (4.4.2)
0

At this point we note that if 7(0) > 2 M, then the left-hand side of this equation is ~ M? [ Im(¢9,¢).
So by modulating f Im(¢d,¢), we can hope to satisfy this equation just on the basis of scaling ¢

itself.

(O%:]

RN horizon
sphere

851

«— Minkowski sphere

Figure 4.3: Schematic illustration of the pulses.

Our ansatz for the scalar field will be

Ga= D> ;e

1<5<2k+1

where a = (ay,...,a011) € R?**1 and the ¢;’s are smooth compactly supported complex-valued

functions with disjoint supports. We assume q # 0 now, the g = 0 case being in fact much easier.
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The charge condition (4.4.2) is examined on every ray R, & € R?*+1 & € S?*. We show that for a
given choice of baseline profiles ¢;, there is a smooth starshaped hypersurface 0% ¢ R?**1 which
is isotopic to the unit sphere S?* and invariant under the antipodal map o — —a such that (4.4.2)
holds for every a € Q%*.

The condition that M is large depending on k, ¢, and ¢ in Theorem 4.4.1 comes from natural
conditions that arise when attempting to construct the hypersurface Q2*. The charge condition
(4.4.2) implies [¢[M?|a|? ~ |q|M on Q?*. However, to keep r > £M on C_;, we find the condition
la| < 1, see already Lemma 5.5.6. These conditions are consistent only if |e|M 2 |q|. Furthermore,
this condition is crucially used to propagate the condition 0,7 < 0, see already Lemma 5.5.10.

The remaining equations (2k real equations since the scalar field is complex)
Dpa(1)=0 1<i<k (4.4.3)

can naturally be viewed as odd equations as a function of a. So when restricted to o € Q%*, we can
use the classical Borsuk—Ulam theorem to find a simultaneous solution. Once we have an a € £2F

such that (4.4.3) is satisfied, ¢, will glue all relevant quantities to k-th order, as desired.

Theorem 4.4.4 (Borsuk-Ulam [Bor33]). If f : S¥ — R* is a continuous odd function, i.e., f(—x) =

—f(z) for every x € S*, then f has a root.

For a nice proof using only basic degree theory and transversality arguments, see Nirenberg’s

lecture notes [Nir01].

4.5 Event horizon gluing in vacuum: the very slowly rotating
case
The spherically symmetric gluing outlined in Section 4.4.1 can be summarized as follows:

(i) The Hawking mass is glued by judiciously initiating the transport equations at S; or Sy and

directly exploiting gauge freedom in the form of boosting the double null gauge by hand.

(ii) The charge of the Maxwell field is glued by exploiting a monotonicity property of Maxwell’s

equation specific to spherical symmetry.

(iii) Transverse derivatives of the scalar field are glued by exploiting a parity symmetry of the

Einstein—Maxwell-charged scalar field system specific to spherical symmetry and invoking the
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Borsuk-Ulam theorem.

The argument for vacuum gluing has two crucial ingredients: the implementation of idea (i) above
in the context of the Einstein vacuum equations, and the obstruction-free characteristic gluing of
Czimek—Rodnianski [CR22|, which replaces the Borsuk—Ulam argument in vacuum. See already
Section 4.5.1 for the outline of our proof.

Our first theorem shows that the characteristic gluing of Minkowski space to (positive mass)
Schwarzschild solutions is completely unobstructed, provided that we aim to glue to a symmetry

sphere in Schwarzschild. In the statements of our theorems, refer to Fig. 4.1.

Theorem 4.5.1. Let M > 0. Let S5 be any non-antitrapped symmetry sphere in the Schwarzschild
solution of mass M. Then So can be characteristically glued to a sphere S1 as depicted in Fig. 4.1,
to order C? as a solution of the Einstein vacuum equations (1.1.6), where Sy is a spacelike sphere

in Minkowski space which is arbitrarily close to a round symmetry sphere.

For the precise statement of this theorem, see already Theorem 6.6.11 in Section 6.6.2 below.
Our method also immediately generalizes to very slowly rotating Kerr, and gives the following

particularly clean statement about event horizon gluing:

Theorem 4.5.2. There exists a constant 0 < ag < 1 such that if So is a spacelike section of the
event horizon of a Kerr black hole with mass M > 0 and specific angular momentum a satisfying
0 < l|a|/M < ag, then So can be characteristically glued to a sphere Sy as depicted in Fig. 4.1, to
order C? as a solution of the Einstein vacuum equations (1.1.6), where Sy is a spacelike sphere in

Minkowski space which is close to a round symmetry sphere.

This theorem is a special case of Theorem 6.6.13 in Section 6.6.3 below.

Remark 4.5.3. There is an apparent asymmetry in the statements of Theorem 4.5.1 and Theo-
rem 4.5.2 about the allowable So’s. In fact, in Theorem 6.6.13 below, we show that any Kerr
coordinate sphere can be connected to a sphere in Schwarzschild with smaller mass, but the maxi-
mum value of allowed angular momentum depends on the sphere in a non-explicit way that we prefer

to explain later, see already Section 6.4.

Remark 4.5.4. In Theorem 4.5.1, the bottom sphere S; can be made arbitrarily close to an exact
symmetry sphere in Minkowski, whereas in Theorem 4.5.2, the closeness to an exact symmetry

sphere is limited by the size of a/M.

Remark 4.5.5. The C? regularity of the spacetime metric in Theorem 4.5.1 and Theorem 4.5.2 is
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due to limited regularity in the direction transverse to C. The regularity of the metric in directions

tangent to C' can be made arbitrarily high (but finite).

Theorem 4.5.1 above can be viewed as a generalization to vacuum of the first step in the proof
of Theorem 1.1.1. We conjecture that the second step, making the black hole extremal, can also be

generalized to vacuum:

Conjecture 4.5.6. The Schwarzschild symmetry sphere of mass M; and radius R; can be char-
acteristically glued to any non-antitrapped Kerr coordinate sphere with radius Ry > R; in a Kerr

solution with mass My > M; and specific angular momentum 0 < |as| < Mj.

If this conjecture holds, Schwarzschild can be spun up to extremality, which would likely lead to

a proof of Conjecture 1.1.12.

Remark 4.5.7. By using negatively charged pulses in [KU22], we can design characteristic data that
also “discharges” the black hole. It would be very interesting to find a mechanism that can both
“spin up” and “spin down” a Kerr black hole, or move the rotation axis without changing the angular

momentum much.

4.5.1 Outline of the proof

In this section we give a very brief outline of the proof of Theorem 4.5.1. The gluing is performed
in two stages and should be thought of as being performed backwards in time.

S2

. round Schwarzschild sphere
fully nonperturbative
approximate gluing

Sk ) .
obstructionfree approximate Schwarzschild sphere, small mass

perturbative gluing

S

genuine Minkowski sphere, close to round

Figure 4.4: Two-step process for the proof of Theorem 4.5.1.

First, a fully nonperturbative mechanism is used to connect the exact Schwarzschild sphere Sy of
mass M and radius R to a sphere data set S, which is very close to a Schwarzschild sphere of mass
0 < M, < R and radius =~ R. See already Proposition 6.6.1 below. In the second stage of the gluing,
we use the main theorem of [CR22], which we state below as Theorem 6.5.3, as a black box. In order

to satisfy the necessary coercivity conditions required for obstruction-free characteristic gluing, we
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choose 0 < ¢y € M, < R, where ¢4 measures the closeness of S, to the (M., R)-Schwarzschild
sphere.

The nonperturbative mechanism which glues S, to Sy involves the injection of two pulses* of
gravitational waves (described mathematically by the shear ) along C' = [0, 1], x 52, of amplitude
§'/2 = O(ey), together with a choice of outgoing null expansion try at S such that [try| < 6. In
order to fix the Hawking mass of Sy to be M, the ingoing null expansion tr x is then chosen to be
~ —6 ! at S».5 The Hawking mass of S, is fixed to be arbitrarily close to M, by tuning ¥ and using
the monotonicity of Raychaudhuri’s equation; see already Lemma 6.6.8.5 We then step through the
null structure equations and Bianchi identities as in [Chr09, Chapter 2] and establish a §-weighted
hierarchy for the sphere data at S,; see already Lemma 6.6.10. Finally, we boost the cone by 9,
which brings S» to a reference Schwarzschild sphere and S, within €4 of a reference Schwarzschild
sphere with mass M, . This construction may be thought of as a direct adaptation, in vacuum, of the
idea used to prove Schwarzschild event horizon gluing in spherical symmetry for the Einstein-scalar

field system in Section 5.5.1.

4.5.2 Relation to Christodoulou’s short pulse method

After the boost, one can interpret the above approximate nonperturbative gluing mechanism as a
“short pulse” data set defined on [0,4] x S? as in [Chr09], but fired backwards. In this context,
our equation (6.6.9) below should be compared with the condition (4.1) in [LY15] (see also [LM20;
AL22b]). This condition guarantees that certain components of the sphere data at S, are a posteriori

closer to spherical symmetry.

4.6 Further applications of characteristic gluing

4.6.1 Gravitational collapse with a piece of smooth Cauchy horizon

Another corollary of our method is the construction of regular one-ended Cauchy data which evolve
to a subextremal or extremal black hole for which there exists a piece of Cauchy horizon emanating
from i*. We refer to Fig. 4.5 for the Penrose diagram of the spacetime constructed in Corollary 4.6.1.

The proof of Corollary 4.6.1 is given in Section 5.6.3.

4By the Poincaré—Hopf theorem, the shear ¥ vanishes somewhere on each sphere. This means that in any charac-
teristic gluing problem in vacuum where the null expansion tr x has to change everywhere, the zero of x has to move
along the sphere as v increases. In our setting, we choose the first pulse to be supported away from the north pole
and the second pulse to be supported away from the south pole.

5tr x < 0 on S2 means that S is not antitrapped.

6In [KU22], we use a similar monotonicity to glue the charge.
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Corollary 4.6.1 (Gravitational collapse to RN with a smooth Cauchy horizon). For any regularity
index k € N and nonzero charge to mass ratio q € [—1,1] \ {0}, there exist spherically symmetric,
asymptotically flat Cauchy data for the Einstein—Mazwell-charged scalar field system in spherical
symmetry, with ¥ = R3 and a regular center, such that the mazimal future globally hyperbolic

development (M*, g) has the following properties:

o The spacetime satisfies all the conclusions of Theorem 1.1.4 with q # 0, including C*-reqularity

of all dynamical quantities.

e The black hole region contains an isometrically embedded portion of a Reissner—Nordstrom

Cauchy horizon neighborhood with charge to mass ratio q.

Figure 4.5: Penrose diagram depicting Corollary 4.6.1: Gravitational collapse to Reissner—Nordstréom
with nonempty piece of Cauchy horizon CH ™.

Remark 4.6.2. When |q| = 1, the spacetime constructed in Corollary 4.6.1 does not contain trapped
symmetry spheres in the dark shaded region in Fig. 4.5. By a slight modification of the argument
in Proposition 2.5.1 below, this implies no trapped surfaces intersect the dark shaded region. In
particular, the trapped region (in the sense of [HE73, p. 319]) of the spacetime (if nonempty) avoids
a whole double null neighborhood of the event horizon. Nevertheless, the event horizon agrees with

the outermost apparent horizon for late advanced times.

4.6.2 Black hole interiors for which the Cauchy horizon closes off space-
time

Our horizon gluing method can also be extended to glue Reissner—Nordstrom interior spheres to a
regular center along an ingoing cone, see already Theorem 5.4.7. Using this, we construct asymp-

totically flat Cauchy data for which the future boundary of the black hole region BH is a Cauchy
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horizon CH ™ which closes off spacetime. We refer to Fig. 4.6 for the Penrose diagram of the spacetime

constructed in Corollary 4.6.3. The proof of Corollary 4.6.3 is given in Section 5.6.4.

Corollary 4.6.3 (Cauchy horizon that closes off the spacetime). For any regularity index k € N, and
nonzero charge to mass ratio q € [—1,1]\ {0}, there exist spherically symmetric, asymptotically flat
Cauchy data for the Einstein—-Mazwell-charged scalar field system, with ¥ = R? and a regular center,

such that the mazimal future globally hyperbolic development (M?*,g) has the following properties:
o All dynamical quantities are at least C*-regular.
e The black hole region is non-empty, BH = M\ J~(Z1) # 0.
o The future boundary of BH is a C*-regular Cauchy horizon CH™ which closes off spacetime.

o The black hole exterior is isometric to a Reissner—Nordstrom exterior with charge to mass

ratio q. In particular, null infinity % is complete.
e The spacetime does not contain antitrapped surfaces.
o When |q| = 1, the spacetime does not contain trapped surfaces.

< regular
~

Figure 4.6: Penrose diagram depicting Corollary 4.6.3: The Cauchy horizon is regular and closes off
the spacetime in a regular fashion.

Remark 4.6.4. In contrast to our previous constructions, the Cauchy surface ¥ in Corollary 4.6.3
could contain trapped surfaces and ¥ intersects the black hole region. It would be interesting to

construct a spacetime as in Corollary 4.6.3 which depicts genuine gravitational collapse, i.e., for

which © C J—(Z7).
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In the subextremal case, the behavior exhibited by our construction can be seen as exceptional
as one generically expects a Cauchy horizon which forms in gravitational collapse to be a weak null
singularity [Daf03; Van18b; LO19]. In particular, in the case where the Cauchy horizon CH™ is
weakly singular, Van de Moortel [Van23] showed that the Cauchy horizon CH™ cannot close off
spacetime in the sense of Fig. 4.6. Thus, our construction in Corollary 4.6.3 makes [Van23] sharp in
the sense that the singularity assumption of CH™ in [Van23] is needed. Restricted to the extremal
case, however, on the basis of a more regular Cauchy horizon as in [GL19], one may speculate that
there exists a set of data (open as a subset of the positive codimension set of data settling down to

ERN) for which the Cauchy horizon closes off spacetime as depicted in Fig. 4.6.

4.6.3 Vacuum gravitational collapse with a spacelike singularity

By performing characteristic gluing as in Theorem 4.5.1 of Minkowski space to spheres in a Schwarzschild

solution lying just inside the horizon and using Cauchy stability, we also obtain:

Corollary 4.6.5 (Gravitational collapse with a spacelike singularity). There exist one-ended asymp-

totically flat Cauchy data (go, ko) € H* x g2/

e ae for the Finstein vacuum equations (1.1.6) on

Y = R3, satisfying the constraint equations, such that the maximal future globally hyperbolic devel-

opment (M*, g) contains a black hole BH = M\ J~(Z) and has the following properties:

o The Cauchy surface ¥ lies in the causal past of future null infinity, > C J—(ZT). In particular,

Y does not intersect the event horizon H™ = O(BH) or contain trapped surfaces.

o For sufficiently late advanced times v > vy, the domain of outer communication, together with
a full double null slab lying in the interior of the black hole, is isometric to a portion of a
Schwarzschild solution as depicted in Fig. 4.7. The double null slab terminates in the future

at a spacelike singularity, isometric to the “r = 07 singularity in Schwarzschild.

We will sketch the proof of this result in Section 6.7 below.
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“r = 0” spacelike singularity it

Figure 4.7: Example of gravitational collapse with a piece of a spacelike singularity emanating from
timelike infinity ¢*. Characteristic gluing is performed along the textured line segment, where the
top gluing sphere has radius very close to the Schwarzschild radius of the black hole to be formed.
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Chapter 5

Characteristic gluing for the
charged scalar field model and the
third law of black hole

thermodynamics

In this chapter, we establish the characteristic gluing method for the spherically symmetric Einstein—
Maxwell-charged scalar field model and use this to construct examples of gravitational collapse to

Reissner—Nordstrom black holes with specified parameters.

5.1 Sphere data and cone data

5.1.1 Determining transversal derivatives from tangential data

We use here the notation of Section 3.1. According to Proposition 3.1.3, characteristic data on the
bifurcate null hypersurface C'U C extends (locally) to a solution of the system (2.2.3)—(2.2.7). We
can then use the equations to compute all the partial derivatives of the solution along C'U C. We
now describe a procedure for determining all u-derivatives on C just in terms of r, Q2, ¢, Q, and A,

(as functions of v) and their u derivatives at the bifurcation sphere.

Proposition 5.1.1. Let (r,Q%, ¢,Q, A,) be a C* bifurcate characteristic initial data set as in Defi-

nition 3.1.2. Then the EMCSF system can be used to determine as many u-derivatives of r,Q?, ¢, Q,
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and A, on C as is consistent with Definition 3.1.1, explicitly from the data on C' U C.

Proof. Since (r,Q2,¢,Q, A,) are all given on C, we can compute as many u-derivatives of these
quantities at the bifurcation sphere (—1,0) as the regularity k allows. We describe an inductive
procedure for computing u-derivatives of (r,9% ¢, Q, A,) on C, starting with d,r. Since 9,7(—1,0)
is known, and the wave equation (2.2.4) can be written as

Ovr Q0 0,
<av+ r >a“r__4r+4r3Q’

where everything on the right-hand side is already known, 9,7(—1,v) can be found by solving this
ODE. In the same manner, d,¢(—1,v) and then 9, log(9?)(—1,v) can be found. To find 9,Q(—1,v),
differentiate (2.2.8) in v and then integrate. (Alternatively, differentiate (2.2.9) in w.) Finally,
OuAy(—1,v) is found by differentiating (2.2.10) in v and then integrating.

Proceeding in this way, by commuting all the equations with 9!, every partial derivative of
(r,Q% ¢,Q, A,) which is consistent with the initial C* regularity can be found. We finally note
that 0k*t1r(—1,v) is found from differentiating (2.2.6) an appropriate number of times, since the
wave equation it satisfies is not consistent with the level of regularity of the rest of the dynamical

variables. ]

Remark 5.1.2. Both Proposition 3.1.3 and Proposition 5.1.1 exploit the null condition satisfied by
the EMCSF system in double null gauge. For a general nonlinear wave equation, the solution may
not exist in a full double null neighborhood of the initial bifurcate null hypersurface as in Proposi-
tion 3.1.3. Indeed, the null condition means the transport equations for transversal derivatives in

Proposition 5.1.1 are linear and hence do not blow up in finite time.

5.1.2 Sphere data

In order to define a notion of characteristic gluing later, we introduce a notion of sphere data inspired
by [ACR21; ACR23b]. Given a C* solution of the EMCSF system in spherical symmetry, for every
(ug,v0) € Q one can extract a list of numbers corresponding to 7(ug,vo), Q%(ug,v0), ¢(uo,v0),
Q(uo,vo), Our(ug,vo) etc. Our definition of sphere data formalizes this (long) list of numbers and
incorporates the constraints (2.2.8)—(2.2.7), so we may refer to the data induced by a C* solution

on a sphere without reference to an actual solution of the equations themselves.

Definition 5.1.3. Let k£ > 1. A sphere data set with reqularity index k for the Einstein—-Maxwell-
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charged scalar field in the EM gauge (2.2.2) is the following list of numbers!:
1'Q>O7Q}L7"'7Q§+17Q%""7Q5+1ER

1 ko1 k
2. w>0,wy,...,w,,wy,...,wy €ER

1 k 1 k
3. D Pur s Py PPy €C
1 1
4‘ Q7qua"'7q57qv7"'7q5€R
1 k 1 k k+1
5. a,al,...,ak al, ... ak¥ a1l e R

subject to the following conditions:

(i) 0+? can be expressed as a rational function of g/™!, witl »/*1 and af for 0 < j < i by

formally differentiating (2.2.6),

(ii) 0% can be expressed as a rational function of ¢/ ™!, wi™t and ¢J*! for 0 < j < by formally

differentiating (2.2.7),

(iii) g5 can be expressed as a polynomial of ¢/, ¢J,, and a?, for 0 < j < i by formally differentiating

(2.2.8),

(iv) ¢i*! can be expressed as a polynomial of ¢/, and ¢/ for 0 < j <4 by formally differentiating

(2.2.9), and

(v) aitl can be expressed as a rational function of ¢/, w’, and ¢/ for 0 < j < i by formally

v

differentiating (2.2.10),

where we have adopted the convention that o) = p, etc. We denote by Dy the set of such sphere

data sets with regularity index k.

Gauge freedom is a very important aspect of the study of the EMCSF system. Our next definition
records the gauge freedom present in sphere data. We need to consider both double null gauge

transformations

where f and g are increasing functions on R and EM gauge transformations (2.2.1)

by e Xp, A A+dy,

where x is a function of u alone, i.e. 9,x = 0, in order to satisfy (2.2.2).

LOne should think that formally r(uo,vo) = 0, #(uo,vo) = @, Q%(uo,v0) = w, Oir(uo,vo) = 0%, etc.
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Definition 5.1.4. We define the full gauge group of the Einstein-Maxwell-charged scalar field

system in spherically symmetric double null gauge with the EM gauge condition (2.2.2) as

G =A{(f,9): f,9 € Diff { (R), f(0) = g(0) = 0} x C=(R),

with the group multiplication given by?

((f2:92),x2) - ((f1,91),x1) = ((f2© f1,92 0 91), x2© fi "+ x1)-

The gauge group defines an action on sphere data as follows. Given sphere data D € Dy, assign
functions 7(u,v), Q%(u,v), ¢(u,v), Q(u,v), and A,(u,v) whose jets agree with the sphere data D.

For 7 = ((f,9),x) € G, let

(u,v) = r(f(u), g(v)) (5.1.1)
O (u,0) = f'(w)g' () (f(u), g(v)) (5.1.2)
Ou,v) = e XD g(f(u), g(v)) (5.1.3)
Q(u,v) = Q(f(u), 9(v)) (5.1.4)
Au(u,0) = f'(w)Au(f (w), g(0) + /(@)X (f(u)). (5.1.5)

The components of 7D are then defined by formally differentiating equations (5.1.1)—(5.1.5) and

evaluating at u = v = 0. For example, 7(0) = 0, 7(0}) = ¢’ (0)o}, and 7(pL) = (1 —iex’(0))e X0,

If one is given a bifurcate characteristic initial data set (r, 2, ¢, Q, A, ), the lapse Q2 can be set
to unity on C'U C by reparametrizing v and v. In the sphere data setting, we have an analogous

notion:

v

Definition 5.1.5. A sphere data set D € Dy, is said to be lapse normalized if w = 1 and w!, = w

for 1 <14 < k. Every sphere data set is gauge equivalent to a lapse normalized sphere data set.

5.1.3 Cone data and seed data

In the previous subsection, we saw how a C* solution (r, 22, ¢, Q, A, ) on Q gives rise to a continuous
map Q — Dy. For the purpose of characteristic gluing, it is convenient to consider one-parameter

families of sphere data which are to be thought of as being induced by constant u cones in Q.

20ne can view this as a left semidirect product.
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More precisely, if we consider a null cone C' C Q, parametrized by v € [v1,v2], then a solution of
the EMCSF system induces a continuous map D : [v1,v2] — Dy, by sending each v to its associated
sphere data D(v). In fact, this map can be produced by knowing only D(v;) and the values of
(r,Q% ¢,Q, A,) on C. Arguing as in Proposition 5.1.1 with D(v;) taking the role of the bifurcation

sphere gives:

Proposition 5.1.6. Let k € N, v; < vy € R, 7,4, € C*([v1, 1)), and Q%,6,Q € C*([v1,v2])
which satisfy the constraints (2.2.9), (2.2.10), and (2.2.7) on [v1,ve]. Let D1 € Dy such that all
v-components of Dy agree with the corresponding v-derivatives of (1,92, ¢,Q, Ay) at vi. Then there
exists a unique continuous function D : [v1,vs] = Dy such that D(v1) = Dy and upon identification
of the formal symbols o(D(v)), oL(D(v)), etc., with the dynamical variables (r,Q?, ¢,Q,A,) and
their u- and v-derivatives, satisfies the EMCSF system and agrees with (r,Q% ¢,Q, A,) in the v-

components for every v € [vy, va].

Definition 5.1.7. Let k € N and v; < v3 € R. A C* cone data set for the Einstein-Maxwell-
charged scalar field in spherical symmetry is a continuous function D : [vq,va] — Dy satisfying the

conclusion of Proposition 5.1.6, i.e., formally satisfying the EMCSF system.

We now discuss a procedure for generating solutions of the “tangential” constraint equations,

(2.2.9), (2.2.10), and (2.2.7), which were required to be satisfied in the previous proposition.

Proposition 5.1.8 (Seed data). Let k € N, v1 < va € R, and D1 € Dy be lapse normalized.
For any ¢ € C*([v1,v2]) such that 3ig(vi) = ' (D1) for 0 < i < k, there exist unique functions
r, Ay € CF([v1,ve]) and Q € C*([v1,v2]) such that (r, Q% 6,Q, A,) satisfies the hypotheses of

Proposition 5.1.6 with Q?(v) = 1 for every v € [v1, va).

Proof. When Q? = 1, Raychaudhuri’s equation (2.2.7) reduces to
81217ﬁ = _r|8v¢|27

which is a second order ODE for 7(v). Setting r(v1) = o(D1) and d,r(vy) = oL(D1), we obtain a

unique solution 7 € C**1([v1, v5]). The charge is obtained by integrating Maxwell’s equation (2.2.9):

Q(v) = g(D1) + / " er?(o ) Im( (') By (7)) .
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Finally, the gauge potential is obtained by integrating (2.2.10):

By i Co RN

Au(v) = a(Dy) 2r2(v')

The v-derivatives of (r, Q2, ¢, Q, A,) agree with the v-components of D; by virtue of the definitions.
O

5.2 Characteristic gluing in spherical symmetry

In this section we give precise statements of our main theorems. In order to do this, we carefully

define the notion of characteristic gluing.

Definition 5.2.1 (Characteristic gluing). Let k¥ € N. Let Dy, Dy € Dy be sphere data sets. We
say that Dy can be characteristically glued to Dy to order k in the Einstein—-Maxwell-charged scalar
field system in spherical symmetry if there exist v; < vy and a C* cone data set D : [vy, vs] — Dy,

such that D(vy) is gauge equivalent to Dy and D(v9) is gauge equivalent to Ds.

Remark 5.2.2. Tt is clear that if D; and Dy can be characteristically glued and 7,70 € G, then 71 D1

and 1 D5 can be characteristically glued.

Remark 5.2.3. Definition 5.2.1 on characteristic gluing along an outgoing cone has a natural analog
defining characteristic gluing along an ingoing cone by parametrizing the cone data with « and

letting v denote the transverse null coordinate, but keeping the definition of sphere data unchanged.

By Proposition 5.1.8, characteristic gluing is equivalent to choosing an appropriate seed ¢ in the
following sense. By applying a gauge transformation to D, we may assume it to be lapse normalized.
Then cone data sets with Q2 = 1 agreeing with D; at v; are parametrized precisely by functions
¢ € C*([v1,vs); C) with the correct v-jet at vy. Therefore, characteristic gluing reduces to finding ¢

so that the final data set D(vs) produced by Proposition 5.1.6 is gauge equivalent to Ds.

5.2.1 Spacetime gluing from characteristic gluing

If the two sphere data sets in Definition 5.2.1 come from spheres in two spherically symmetric
EMCSF spacetimes, we can use local well posedness for the EMCSF characteristic initial value
problem, Proposition 3.1.3, to glue parts of the spacetimes themselves. This principle underlies all

of our constructions in Section 5.6.
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equivalent
to D 2
characteristic
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to D1
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Figure 5.1: Spacetime gluing obtained from characteristic gluing. The two spacetimes (dark gray)

are glued along the cone u = —1. Note that the dark gray regions are causally disconnected except
for the cone u = —1. Such a spacetime exists if and only if Dy and Dy can be characteristically
glued.

Proposition 5.2.4. Let (Q1,71,92,¢1,Q1, Au1) and (Qa, 72,93, ¢2, Qa, Ay2) be two CF solutions

of the EMCSF system in spherical symmetry, where each Q; is a double null rectangle, i.e.,

Q1 = [uo,1,u1,1] X [vo,1,v1,1]

Qs = [ug,2,u1,2) X [v0,2,V1,2].

Let Dy be the sphere data induced by the first solution on (ug1,v1,1) and Dy be the sphere data
induced by the second solution on (u12,v0,2). If D1 can be characteristically glued to Dy to order
k, then there exists a spherically symmetric CF solution (Q,r, Q% ¢,Q, A,) of the EMCSF system
with the following property: There exists a global double null gauge (u,v) on Q containing double

null rectangles

R = [~1,uz] X [vo, v1],

mQ = [UO;_l] X [UQ,’Ug],

such that the restricted solutions (R, 7, 0%, ¢,Q, Ay) are isometric and gauge equivalent to the solu-
tions (Qi, i, 02, ¢i, Qi, Ayi) for i = 1,2, the sphere data induced on (—1,v1) is equal to Dy to k-th

order, and the sphere data induced on (—1,vq) is gauge equivalent to Do to k-th order.

Proof. In this proof, we will refer to spherically symmetric solutions of the EMCSF system by their

domains alone.
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By Definition 5.2.1, since Dy and D5 can be characteristically glued, we obtain v; < vo, functions
r,Q% ¢,Q, and A, on [v1,vs], and a gauge transformation 7 € Dy, which acts on Dy. We now build
the spacetime out of two pieces which will then be pasted along u = —1 and match to order C*. See
Fig. 5.2.

First, we prepare the given spacetimes. We relabel the double null gauge on Q; by changing the
southeast edge to be u = —1 and the northeast edge to be v = v;. This also determines us and vg
and we apply no further gauge transformation to Q1. We denote this region by fR;.

Next, the gauge transformation 7 is extended and applied to Q. We relabel the double null
gauge to have u = —1 on the northwest edge and v = v2 on the southwest edge. We denote this
region by fRs.

We now construct the left half of Fig. 5.2 as follows. Extend the cone v = —1 in Ry until
v = v3, and extend the functions (r, 22, ¢,Q, A,) on u = —1 by taking them from the definition of
characteristic gluing for v € [v1, v3], and then from the induced data on u = —1 in Ry for v € [vg, v3].
We now appeal to local existence, Proposition 3.1.3, the EMCSF system in spherical symmetry to

construct the solution in a thin slab Sy to the future of

({u = —1} x [v,v3]) U ([-1,u2] X {v=12v1}).

This completes the construction of Ry U S;.

The region RoUS, is constructed similarly, with the cone u = —1 now being extended backwards,
first using the characteristic gluing data and then using the tangential data induced by R on v = —1.
Again, Proposition 3.1.3 is used to construct the thin strip Ss.

Finally, the spacetime is constructed by taking Q = (R US;)U (R US) and pasting r, 2, ¢, Q,
and A,. From the construction, it is clear that the dynamical variables, together with all v-
derivatives consistent with C* regularity are continuous on Q. To show that all u-derivatives are
continuous across © = —1, we observe that all transverse quantities are initialized consistently to
k-th order at (—1,v;) and that the tangential data agrees by construction. Now Proposition 5.1.1
implies that the transverse derivatives through order %k are equal on v = —1 in both Ry U S; and

Ro USs. This completes the proof. O

Remark 5.2.5. If the characteristic gluing hypothesis is C* but no better and the original solutions
Q; and Q, are more regular than C*, then one expects (k+ 1)-th derivatives of dynamical quantities

to jump across any of the null hypersurfaces bordering the light gray regions in Fig. 5.1.
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Figure 5.2: Proof of Proposition 5.2.4.

5.3 Sphere data in Minkowski, Schwarzschild, and Reissner—
Nordstrom

Before stating our main gluing results, we need to precisely define the terms Minkowski sphere,

Schwarzschild event horizon sphere, and Reissner—Nordstrém event horizon sphere.

Definition 5.3.1 (Minkowski sphere data). Let & € N and R > 0. The unique lapse normalized

sphere data set satisfying

e all other components zero,
is called the Minkowski sphere data of radius R and is denoted by D%{k.

Definition 5.3.2 (Schwarzschild sphere data). Let k € N, R > 0, and 0 < 2M < R. The unique

lapse normalized sphere data set satisfying
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° Q}} = %(1 —2M/R), and
e all other components zero,

is called the Schwarzschild sphere data of mass M and radius R and is denoted by D%’R’k. Note

that D§ = DY .

Definition 5.3.3 (Reissner—Nordstrém horizon sphere data). Let k € N, M > 0, and 0 < |e| < M.

The unique lapse normalized sphere data set satisfying

e p=ry =M+ VM?—e?

L4 Q}L:_%v
e 0, =0,

e g=¢,and
e all other components zero,

is called the Reissner—Nordstrom horizon sphere data with parameters M and e and is denoted by

RNH RNH _ S
Dyp ey Note that Dyrgs = Doy -

We will also define sphere data for general Reissner—Nordstrom spheres. To do so, we extend the

Hawking mass (2.1.2) to a function on sphere data sets D € Dy, by setting

4 1,1
m(D) = 2 (1+ QZQ’f).

We also define the modified Hawking mass of a spherically symmetric spacetime with charge by
and extend it to sphere data sets by

In a Reissner—Nordstrom spacetime of mass M and charge e, any sphere data set D associated to a
symmetry sphere has (D) = M. Note that given o > 0, o} < 0,w, and ¢, o} is determined uniquely

by w(D).
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Recall that the horizons of Reisser-Nordstrom with parameters |e| < M are located at

re =M+ /M2 — e2.

Definition 5.3.4 (Reissner-Nordstrom sphere data). Let k € N, e € R, and R > 0 satisfy M >

e?/(2R). A lapse normalized sphere data set satisfying

L4 Q:Ra
°*g=ce,
o w=M,

los] = 5, or |oy| = 5, or o} = 0l =0,

all other components zero

is called a Reissner—Nordstrom sphere data set of modified Hawking mass M, charge e, and radius

R and is denoted by DAR}?L,R,,C.

Remark 5.3.5. A Reissner—Nordstrom sphere data set of modified Hawking mass M, charge e, and
radius R, D]FG}L R,k 8lves rise to unique sphere data if either g = p. = 0, or one additionally

specifies sgn(o}) € {+,—} or sgn(o}) € {+, -}

5.4 Main gluing theorems

With the previous definitions of Section 5.2 and Section 5.3 at hand, we are now in a position to
state our main gluing results.

Our first gluing theorem concerns gluing a sphere in Minkowski space to a Schwarzschild event
horizon with a real scalar field. When the scalar field ¢ in the EMCSF system is real-valued,
Maxwell’s equation decouples from the rest of the system and the charge @) is constant throughout
the spacetime. Since ) must vanish on any sphere in Minkowski space, it vanishes everywhere and

the EMCSF system reduces to the Einstein-scalar field system.

Theorem 5.4.1. For any k € N and 0 < R; < 2My, the Minkowski sphere of radius R;, D%,;,k; can
be characteristically glued to the Schwarzschild event horizon sphere with mass My, Dﬁ/[fyk, to order

C* within the Einstein-scalar field model in spherical symmetry.
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The proof of Theorem 5.4.1 is given in Section 5.5.1. We have separated out Minkowski to
Schwarzschild gluing as a special case because it is simpler and highlights our topological argument.
We will actually use this special case as the first step to produce our counterexample to the third
law in Section 5.6.2.

Our second gluing theorem concerns gluing a sphere in the domain of outer communication of a
Schwarzschild spacetime to a Reissner—Nordstréom event horizon with specified mass and charge to

mass ratio.

Theorem 5.4.2. For any k € N, q € [-1,1], and ¢ € R\ {0}, there exists a number My(k,q,¢) >0
such that if My > My, 0 < M; < %Mf, and 2M; < R; < %Mf, then the Schwarzschild sphere of
mass M; and radius R;, Dﬁ/[i, R ko can be characteristically glued to the Reissner—Nordstrom event
horizon with mass My and charge to mass ratio q, DJF\{/}YéMf,k, to order C* within the Einstein—
Mazwell-charged scalar field model with coupling constant e. The associated characteristic data can

be chosen to have no spherically symmetric antitrapped surfaces, i.e. Oy,r < 0 everywhere.

The proof of Theorem 5.4.2 is given in Section 5.5.2.

Remark 5.4.3. The data constructed in the proof of Theorem 5.4.1 will automatically not contain
spherically symmetric antitrapped surfaces because of a special monotonicity property in the absence

of charge. Namely,
Q2

0o (rdur) =~ (5.4.1)

80 10y 1 is decreasing. In particular, since rd,r is negative in Minkowski space, the sign will propagate

in view of (5.4.1) for the Einstein-scalar field model.

Our next gluing theorem supersedes Theorem 5.4.1 and Theorem 5.4.2 by relaxing the require-
ment that the final sphere lie on the event horizon. The proof is slightly more involved than

Theorem 5.4.2 but has the same basic structure and is given in Section 5.5.3 below.

Theorem 5.4.4. For any k € N;q € R, ¢ € R\{0} andt > 0, there exists a number My(k,q,e,t) >0
such that if My > My and

M
Ry > Tf(l +1)%, (5.4.2)

then there exists R; € (0, Ry) such that the Minkowski sphere of radius R;, D%,w can be charac-
teristically glued to the Reissner—Nordstrom sphere with modified Hawking mass My, charge qMy,
and radius Ry, DAR/}}I,qu,Rf,k with o} < 0, to order C* within the Einstein-Mazwell-charged scalar
field system with coupling constant e. The associated characteristic data can be chosen to have no

spherically symmetric antitrapped surfaces, i.e., Oy,r < 0 everywhere.

128



Remark 5.4.5. Reissner—Nordstrom spheres with modified Hawking mass M, charge qM and ra-
dius R < %qz have non-positive Hawking mass, m < 0. In this sense, the assumption v > 0 in

Theorem 5.4.4 is necessary. Indeed, one immediately sees that (5.4.2) implies

t
> M
1+t
so that t > 0 ensures m > 0.

Remark 5.4.6. Theorem 5.4.4 also allows for gluing of Minkowski space to Reissner—Nordstrom
Cauchy horizons located at 7 = r_. This is achieved by setting t = ¢q2/4 in Theorem 5.4.4, see

already the proof of Corollary 5.6.7.

While all the above theorems are stated as gluing results along outgoing cones, by mapping
u — —v and v — —u, they also hold true for gluing along ingoing cones, recall Remark 5.2.3. In

particular, restating Theorem 5.4.4 for gluing along ingoing cones gives

Theorem 5.4.7. For anyk € N;q € R, ¢ € R\{0} andt > 0, there exists a number My(k,q,e,t) >0
such that if My > My and

M
Ry > Tf(l +1)9%, (5.4.3)

then there exists R; € (0, Ry) such that the Reissner—Nordstrom sphere with modified Hawking mass
My, charge qMy, and radius Ry, Df}}jaMthk with o} > 0, can be characteristically glued along an
ingoing cone to the Minkowski sphere of radius R;, D%Ii,k, to order C* within the Einstein—Mazwell-
charged scalar field system with coupling constant e. The associated characteristic data can be chosen

to have no spherically symmetric trapped surfaces, i.e., d,r > 0 everywhere.

5.5 Proofs of the main gluing theorems

We begin with two lemmas which identify the orbits of Schwarzschild and Reissner-Nordstrém sphere
data under the action of the full gauge group. This essentially amounts to a version of Birkhoff’s

theorem for sphere data.

Lemma 5.5.1 (Schwarzschild exterior sphere identification). If D € Dy, satisfies
e o=R>0,
e 0, <0,
* 0, >0,
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o 30(1+4o,0)) = M,
e ¢=0, and
o YL, =¢,=0for0<i<k,
then R > 2M and D is equivalent to D]SM’R’,C up to a gauge transformation.

Proof. First, we observe that by the relations obtained from Maxwell’s equations, ¢¢, = ¢} = 0 for
1 <i < k. Since ¢!, = ¢% = 0, we can perform an EM gauge transformation to make a’, = 0 for
0<i<k. Also,a’ =0for1<i<kfrom F = d(A,du). Next, we can normalize the lapse. Finally,

R > 2M follows from the definitions and o}l < 0. O

Lemma 5.5.2 (Reissner—Nordstrom horizon sphere identification). If D € Dy, satisfies

e p=(14++1—9g>)M forqe[-1,1] and M > 0,

* 0, <0,
® 0, =0,
e g=qM, and

o Y, =¢,=0for0<i<k,
then D is equivalent to DJI\D“/[I?IqM’k up to a gauge transformation.

Proof. As before, the charge vanishes to all orders and we normalize the gauge potential and lapse.

We then use the additional double null gauge freedom u + Au, v = A~1v to make o = —%. O

Remark 5.5.3. Without the condition ol < 0 in the previous lemma, the sphere data in the extremal

case could also arise from the Bertotti—Robinson universe.

With these lemmas and Remark 5.2.2 in mind, we follow the strategy discussed in Section 5.2.
We fix the interval [0, 1], set Q2 = 1, and solve Raychaudhuri’s equation, Maxwell’s equation, and
the transport equation for transverse derivatives of ¢ with appropriate initial and final values. We
do not have to track transverse derivatives of 9,r, Q2, Q, or A,, because these will be “gauged

away” at the end of the proof.
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5.5.1 Proof of Theorem 5.4.1

In this subsection we prove Theorem 5.4.1. We first note that if the scalar field is chosen to be
real-valued, the Einstein—-Maxwell-charged scalar field system collapses to the Einstein-scalar field
system. If the initial data has no charge (Q(0) = 0), then this is equivalent to setting ¢ = 0 and A,
and all its derivatives to be identically zero.

We will first set up our scalar field ansatz as a collection of pulses. To do so, let
O=v9 <01 < " <V <Vpy1 =1
be an arbitrary partition of [0,1]. For each 1 < j < k + 1, fix a nontrivial bump function
Xi € CZ((vj-1,v5); R).

In the rest of this section, the functions xi,...,xr+1 are fixed and our constructions depend on
these choices.

Let a = (aq,...,ap41) € RFF and set

a(v) = d(v;a) = Z a;x;(v). (5.5.1)

1<j<k+1

We set Q?(v; ) = 1 along [0,1] and define 7(v; «) as the unique solution of Raychauduri’s equation

(2.2.7) with this scalar field ansatz,

OZr(v;a) = —r(v; a)(Bpda(v))?, (5.5.2)
with prescribed “final values”
r(1;a) = 2M;
Opr(1;a) = 0.

Let 0 < ¢ < 2My — R;. By Cauchy stability and monotonicity properties of Raychaudhuri’s
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equation (5.5.2), there exists a 6 > 0 such that for every 0 < |a] < 4,

sup [r(-;a) —2My| < e,
[0,1]

inf 0,7(-; ) > 0,
(0,1]

Oyr(0; ) > 0.

The final inequality follows from the fact that o # 0.
We now consider the sphere S¥ = {a € R**! : |a| = §}. For each a € S¥, define D,(0) € Dy, by

setting

e o=7(0;a) >0,

[ ]
i)
<

|
&
2
2
£

\Y,
o

all other components to zero.

By Lemma 5.5.1, D, (0) is equivalent to D%O‘Q)  up to a gauge transformation.
For each a € SZ;“, we now apply Proposition 5.1.6 and Proposition 5.1.8 to uniquely determine
cone data

Da : [Oa 1] — Dkv

with initialization D, (0) above and seed data ¢, given by (5.5.1). By standard ODE theory, D, (v)
is jointly continuous in v and «. Note that o(Dy(v)) = r(v; @) and ¢(Dy(v)) = ¢(v; ) by definition.
We now use the notation

0,0(vi @) = ¢, (Da(v))

fori =1,...,k to denote the transverse derivatives of the scalar field obtained by Proposition 5.1.6.

By construction, the data set D,(1) satisfies

* 0=2Mjy,
e 0, <0,
e 0, =0,
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o i =0for 0<i<k.

The second property follows from the initialization of ol in D, (0) and the monotonicity of

(rdur)(vi @) = 0(Da(v)) 0y (Da(v))

in the Einstein-scalar field system discussed in Remark 5.4.3.
In order to glue to Schwarzschild at v = 1, by Lemma 5.5.2, it suffices to find an «, € S(’;“ for
which additionally
Bup(1; ) = -+ = Ohp(1;00) = 0.

The following discrete symmetry of the Einstein-scalar field system plays a decisive role in finding
Oy

A function f(v;«) is even in « if f(v; —a) = f(v;a) and odd in « if f(v;—a) = — f(v; @).

Lemma 5.5.4. As functions on [0,1] x S¥, the metric coefficients r(v;a), Q*(v;a) and all their
ingoing and outgoing derivatives are even functions of a. The scalar field ¢p(v; ) and all its ingoing

and outgoing derivatives are odd functions of a.. In particular, the map

F:St 5 RF (5.5.3)

a (0u0(Lia),...,00(1a))

is continuous and odd.

Proof. The scalar field itself is odd by the definition (5.5.1). Since Raychaudhuri’s equation (5.5.2)
involves the square of 9,¢(v; ), r(v;a) will be automatically even. Next, 9,r(v;«) is found by
integrating the wave equation for the radius (2.2.4), forwards in v with initial value determined by
D, (0). Since ¢ enters into this equation with an even power (namely zero), 9,7 (v; ) will also be
even. The wave equation for r¢ in the Einstein-scalar field model can be derived from (2.2.12) and
reads

02%m

0u0y (r¢> = _W T,

and the right-hand side is odd in « (the Hawking mass is constructed from metric coefficients so is
also even). Recall from Proposition 5.1.6 that this wave equation is used to compute ¢, (Dy(v)).
By inspection 9,(r¢) is odd, whence 9,¢(v; @) is also odd. The proof now follows by inductively

following the procedure of Proposition 5.1.1, taking note of the fact that the transport equations
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for ingoing derivatives of  and Q2 only involve even powers of ¢ and its derivatives, whereas the
transport equations for ingoing derivatives of ¢ only involve odd powers.
The claim about the map F’ follows from the oddness of ingoing derivatives of ¢ and the continuity

of all dynamical quantities in «, per standard ODE theory. O

We now complete the proof of Theorem 5.4.1. By the Borsuk—Ulam theorem stated as Theo-
rem 4.4.4, F(a,) = 0 for some a, € S¥, where F is as in (5.5.3). By Lemma 5.5.2, D, (1) is gauge

equivalent to Dﬁ/[f e

M

So far we have glued D,

. to Dﬁ/lh,w and since 7(0; @) > R;, we extend the data trivially in

order to glue D%Ii,k to D%h > Which concludes the proof of Theorem 5.4.1. O

5.5.2 Proof of Theorem 5.4.2

In this subsection we prove Theorem 5.4.2. We assume that q # 0, the q = 0 version of this
result being essentially a repeat of the arguments in the previous section combined with the new
initialization of d,7(0;a) in (5.5.17) below.

In this subsection we adopt the notational convention that A < B means A < CB, where C'is a
constant that depends only on £ and the baseline scalar field profile, but not on q, ¢, M;, My, or a.
The notation A =~ B means A < B and B < A.

Let

0:'UO<U1<"'<'U2k<UZk+1:1

be an arbitrary partition of [0,1]. For each 1 < j < 2k + 1, fix a nontrivial bump function
Xj € CZ((vj-1,v;); R).

In the rest of this section, the functions xi,...,x2k+1 are fixed and our constructions depend on
these choices.

For a = (ay,...,agp11) € R+ set

Pa(v) = d(via) = D ajx;(v)e ™. (5.5.4)

1<j<2k+1

Remark 5.5.5. If ¢ > 0, this choice of ¢ will make @ > 0, with is consistent with ¢ > 0. If ¢ > 0 and
q < 0, then we replace —iv in the exponential with +:v. Similarly, the cases ¢ < 0, ¢ > 0 and ¢ < 0,

q < 0 can be handled. Therefore, we assume without loss of generality that e > 0, ¢ > 0.
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For & € S?* (the unit sphere in R?**1) and 3 > 0, it is convenient to define r(v; 8, &) = r(v; B&),
etc. We again set Q2(v; ) = 1 and study the equations (2.2.7) and (2.2.9) for v € [0, 1] with the @,

ansatz:

03r(v;a) = —laf*r(v;@)|0s0a(v)]?, (5.5.5)

9, Q(v; @) = elal*r(v; a)*Im(¢a(v), 64 (v))- (5.5.6)

In addition, we again define r at v =1 by

7"(17 Oé) =T+,
Ovr(l;a) =0,
and @ at v =0 by
Q(0;a) =0, (5.5.7)

which together with (5.5.5) and (5.5.6) uniquely determine r and @ on [0,1]. Note that we will
initialize 0, only later in (5.5.17).

We first note that basic calculations yield
‘311¢6¢|2 = Z é‘? (X? + X;‘Z)
1<j<2k+1

and

Im (¢ 0v0a) = Z a5x;.

1<j<2k+1
Therefore,

1 1
/ |0y b4 |* dv z/ Im(¢a0y¢a) dv ~ 1
0 0
for any & € S2F.

Lemma 5.5.6. There exists a constant 0 < ¢ < 1 such that if 0 < 8 < ¢, then for any & € S?F,

r(-; B&) satisfies

r(v; Bé) > 41y (5.5.8)

Oyr(v; B&) >0 (5.5.9)
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for v € [0,1], where

ry = (1+ﬂ) M;.

Furthermore,
0,7 (0; B&) > 0. (5.5.10)
Proof. This is a simple bootstrap argument in v. Assume that on [vg, 1] C [0, 1], we have

inf >0
[vo,1]

inf O,r > 0.

[vo,1]

This is clear for vy close to 1 by Cauchy stability. From Raychaudhuri’s equation (5.5.5), r > 0

implies 9,7 is monotone decreasing, hence is bounded above by 9,7 (vg), which can be estimated by
1
Our(u) = [ Frionsal? dv S (5.511)
vo
since r < r4 on [vg, 1]. Tt follows that
1
r(vo) =1y — / dyrdv >ry — CpPry (5.5.12)
Vo

for some C' < 1. Choosing 8 > 0 sufficiently small shows r(vg) > %hr which improves the bootstrap
assumptions and proves the desired estimate (5.5.8). Finally, note that (5.5.10) holds true as 9,r is

monotone decreasing and r is not constant (5 > 0 and the scalar field is not identically zero). O

Lemma 5.5.7. By potentially making the constant ¢ from Lemma 5.5.6 smaller, we have that for

any 0 < B < c and & € S?*, the following estimate holds

%Q(l;@d) > 0.

Proof. Integrating Maxwell’s equation (5.5.6) and using (5.5.7), we find

1 [
Q(1;8,4) :/ %2 Im (a0, 04 ) dv.

0
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A direct computation yields

1
95Q(1: 8, 4) = 2¢8 /O (r2 + Brogr)Im(¢aduda) do.

Note that Im(¢40,¢4) > 0 pointwise and is not identically zero. Since 0 < 8 < ¢, we use Lemma 5.5.6
to estimate

2 + Brogr > iri - Cpri = Ti(i - Cp),

where we also used |0gr| < r4+ which follows directly from differentiating (5.5.5) with respect to

B = |a|. Therefore, by choosing ¢ even smaller, we obtain dzQ(1; 3, &) > 0. O

Lemma 5.5.8. If eMy/q is sufficiently large depending only on k and the choice of profiles, then
there is a smooth function Bg : S* — (0,00) so that Q(1; Bg(&),&) = qMy for every & € Sk,

which also satisfies

(5.5.13)

Ba(=d) = Bo(d) (5.5.14)

for every & € S2F.

Proof. As in the proof of Lemma 5.5.7 we have
1 —_—
Q(135.6) = ¢6 | r*n(64D,a).
0
If B is sufficiently small so that Lemma 5.5.6 and Lemma 5.5.7 apply, we estimate
Q(1;8,a) = ef*rt.

For eM/q sufficiently large as in the assumption, we apply now the intermediate value theorem, to

obtain a fg(&) satisfying 0 < Bg(&) < ¢ such that
Q(L; B, &) = qMj. (5.5.15)

Note that Bg(&) is unique since Q(1;-, &) is strictly increasing as shown in Lemma 5.5.7. Moreover,
since Q(1;-,-) is smooth (note that & € S?* and 8 > 0 enter as smooth parameters in (5.5.6) which

defines @), a direct application of the implicit function theorem using that dgQ(1;-, &) # 0 shows
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that Bg : S?F — (0, 00) is smooth.

Moreover, by (5.5.2) and (5.5.15), B¢ satisfies
eBHr ~ qM;

which shows (5.5.13). Finally, note that Q(1; 5, —&) = Q(1; 5, &), from which (5.5.14) follows. O

Lemma 5.5.9. Let eM;/q be sufficiently large (depending only on k and the choice of profiles) so

that Lemma 5.5.8 applies. Then

PQ - G2k _y 2k

& — Bol(a)d

is a diffeomorphism, where

Q% = {Bo(a)a: & € S} c RP*F!

is the radial graph of Bg. Moreover, 02 is invariant under the antipodal map A(a) = —a and PQ

commutes with the antipodal map.

Proof. By definition of Q% and the facts that (8¢ is smooth, positive, and invariant under the

antipodal map as proved in Lemma 5.5.8, the stated properties of Q%% and pq follow readily. O

Having identified the set %* which guarantees gluing of the charge @, for the rest of the section

we will always take a € Q2. Recall from (5.5.13) that for every a € Q2*:

qMy

N (5.5.16)

o] =

Before proceeding to choose sphere data, we will need to examine the equation for d,r because
this will place a further restriction on « which must be taken into account before setting up the
topological argument. We continue by using the definition of the Hawking mass m in (2.1.2), to

impose the condition

m(0; o) = M;
by initializing
2M, 1
ja)=—1(1-— . 0.1
Our(03e) ( r(O;a)) 40,7(0; o) (5.5.17)
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The transverse derivative 9,7 (v; ) is now determined by solving (2.2.4),

L 1 Our(v; @) Oyr (v; @)
Ouur(v; ) = 4r(v; a)? r(v; a)? +

(5.5.18)

with initialization (5.5.17).

Note that (5.5.17) is well-defined by (5.5.10) and (5.5.8) from Lemma 5.5.6. Furthermore,

7 2M; >174Mi>0
r(0;a) — My ’
S0
0ur(0; ) < 0. (5.5.19)

Having initialized 9,7 at v = 0, we determine 9,7 (v;a) using (5.5.18), and we will now show

that for eMy/q sufficiently large, 0,r(v; o) < 0 for all v € [0,1].

Lemma 5.5.10. If eM;/q is sufficiently large depending only on k and the choice of profiles and if
0<M; < %Mf, then

sup 9,r(v;a) <0 (5.5.20)
v€e(0,1]

for every a € Q%

Proof. Since r > 0 on [0, 1], it suffices to show that

sup rd,r < 0.
(0,1]

First, by (2.2.11),

2
ool =|; (1- % )| 51 (552

as

Qv;a) < Q(L;e) = gMy Sr(v;a),

where we used (5.5.8). Integrating (5.5.21), we have

sup 7(v)9,r(v) < r(0)9,r(0) + C1, (5.5.22)
v€e[0,1]
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where C; <1 is a constant. Analogously to (5.5.11), we estimate

Our(0:0) S faf?re < 3,
where we used (5.5.16). Now, using (5.5.17),
—r(0)3ur(0) = T(f()%; (20])”
2 5(%Mf — 2M;)
> ng.

Therefore, we improve (5.5.22) to

sup 7(v)0,r(v) < —CQEMf + C4
ve[0,1] q

for some Cy S 1. Thus, if eM//q is sufficiently large we obtain (5.5.20). O

To continue the proof of Theorem 5.4.2, we now put our construction into the framework of the

sphere data in Section 5.3. For each o € Q2*, define D, (0) € Dy, by setting
e 0=r(0;a) > 3y (see (5.5.8)),
e ol = 0,7(0;) > 0 (see (5.5.10)),
e ol =0,r(0;a) <0 (see (5.5.17) and (5.5.19)),

e w=1, and

all other components to zero.

By Lemma 5.5.1, D, (0) is equivalent to DJS\L» r(0;a),k UP tO & gauge transformation.

s

For each a € 9% we now apply Proposition 5.1.6 and Proposition 5.1.8 to uniquely determine

cone data

Da : [Oa 1] — Dkv

with initialization D, (0) above and seed data ¢, given by (5.5.4). By standard ODE theory,
D, (v) is jointly continuous in v and a. Note that o(D,(v)) = r(v;a), ¢(Ds(v)) = ¢(v; @), and
¢(Da(v)) = Q(v; @) by definition. As in the proof of Theorem 5.4.1, we use the notation

0,0(vi ) = ¢, (Da(v))
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fori =1,...,k to denote the transverse derivatives of the scalar field obtained by Proposition 5.1.6.

Note also that

dur(v;a) = o}, (Da(v)),

where 0,7(v; @) is as in (2.2.4) above.

By construction, the data set D,(1) satisfies

0= 2Mf,

ol <0 (see Lemma 5.5.10),

q = qM; (definition of Q%), and

ot =0for 0 <i<k.
In order to glue to the appropriate Reissner—Nordstrom event horizon sphere, by Lemma 5.5.2,
it suffices to find an a, € Q2% for which additionally

Budp(l; ) = -+ = Ohd(1;) = 0.

Analogously to Lemma 5.5.4 we first establish

Lemma 5.5.11. The metric coefficients r(v; ), Q2(v;a), the electromagnetic quantities Q(v;a),
A, (v; @), and all their ingoing and outgoing derivatives are even functions of a. The scalar field

¢(v; @) and all its ingoing and outgoing derivatives are odd functions of a.

Proof. The proof is essentially the same as Lemma 5.5.4, noting that equations (2.2.8), (2.2.9), and
(2.2.10) are also even in ¢. O

We now complete the proof of Theorem 5.4.2. Recall from Lemma 5.5.9 that pg : Sk Q% isa
diffeomorphism which commutes with the antipodal map. We now argue similarly to Section 5.5.1.

By Lemma 5.5.11, the function

F.Q% - C*

o (Bu6(L;0),...,0k(1:0))
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is continuous and odd. Therefore, the Borsuk—Ulam theorem, stated as Theorem 4.4.4, applied to
(ReFY, ImF!, ... ReF* ImF¥)opg : S% — R,

where [ is the ith component of F, shows that there is an a, € Q2* such that F(a,) = 0. By
Lemma 5.5.2, D,, (1) is gauge equivalent to D%}j?’é Mk which concludes the gluing construction.
Since we have already established that 9,7 < 0 for all v € [0,1] in Lemma 5.5.10, this concludes the

proof of Theorem 5.4.2. O

5.5.3 Proof of Theorem 5.4.4

In this section we extend our characteristic gluing result Theorem 5.4.2 to allow for sphere data
at the final sphere which is not necessarily located on a horizon. Recall Definition 5.3.4 for the
definition of general Reissner—Nordstrém sphere data. As the steps in the proof below are direct

generalizations of the proof of Theorem 5.4.2, our presentation here will have fewer details.

Proof of Theorem 5.4.4. We only consider the case q # 0, the case ¢ = 0 being strictly easier and
requiring only “gluing 3” below. Without loss of generality, we may also assume Ry < 3M; as for
r > 3My we can extend trivially with Reissner-Nordstrém data satisfying d,r > 0 and d,r < 0. In
the following proof, we use the convention that all constants appearing in <, 2 and = to also depend

~) ~

on ¢,t and e. The theorem is proved as a consequence of the following three intermediate gluings:
1. D%ﬁ & is glued to D?f,{Qf_’ R, & With a complex scalar field,
2. DE\}Qf’th is glued to DI\R/}\,I,QﬁRQ’k trivially (i.e., with identically vanishing scalar field), and

3. D%ﬁQme]C is glued to D?}j@fﬂf’k with a real scalar field,

where R; = Ry — M}/

, 0 < M’ < My is an intermediate modified Hawking mass, Qf = qMj,
Ry, Ry are intermediate radii which satisfy R; < Ry < Rs.

Gluing 1. In the interval v € [0,1] we impose the ansatz (5.5.4). At v =0, we set

1 M2
r(0) = R;, m(0)=Q(0)=0, 8,r(0)= — d,r(0) = % (5.5.23)
!

The pulse parameters «, which achieve gluing of transverse derivatives of ¢ are determined by
the procedure of Section 5.5.2, with charge condition Q(1; ) = Q. As in Section 5.5.2 we find that

the gluing can be performed with parameters satisfying |a.|? < M 7 . Using this estimate on a,,
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we obtain from Raychaudhuri’s equation (2.2.7) and (5.5.23) that %M}/Q > Oyr > %M;/Q for every

v € [0,1] by choosing My(k, g, ¢, t) sufficiently large. This also implies R; <r < R; + %M;m. Using
r> Ry — M?M and the estimate analogous to (5.5.21) we infer |rd,r — r(0)9,r(0)| < 1 for every
v € [0,1], ie., 0 < =01 < Mf_1/2. We now estimate the Hawking mass at v = 1 by integrating
(2.2.13),

1 1 2
m(1) = / 212 (—0r)| D2 dv +/ %&ﬂ" do S MMV MY S M2 (55.24)
0 0

Setting Ry = r(1) and M" = m(1) + Q%/(2Ry), we have shown that R; < Ry < R; + %M}/Q. The
condition (5.4.2) shows that Q%/(2Rf) < My/(1+¢). In particular, since Ry > Ry — MJ‘}M we

estimate
QF 1 1 2+t
M =m(1 — < (1 M, = M 5.2
m()+2312< +1—|—t> I (5.5.25)

by possibly taking My(k, q,e,t) larger. This completes the first gluing step.
Gluing 3. It is more convenient to now carry out the third gluing step and simply ensure that

Ry > R;. We use a collection of k 4+ 1 real-valued pulses as in (5.5.1) on v € [0, 1]. We impose
T‘(l) = Rf7 auT(l) = —]\4f7 Q(l) = Qf, w(l) = Mf. (5.5.26)

This uniquely determines J,7(1) which can have either sign but satisfies [0,7(1)| S M L. We also
note that as long as |a|? < Mf_3/2, we have |0,7] < Mf_l/2 and thus |r — Ry| S Mf_l/2 on [0, 1].

This also gives —0,r ~ My. Using
1
w(1) - w(0) = / 22 (—0,1) |9y 6 P do
0

and (5.5.25), we write the mass condition @(1) = My and @(0) = M’ as a sphere of a’s (|a|? ~ M;Q)
for which we will apply the Borsuk-Ulam argument. We use here that My—M'" = Myt/(2+2¢). With
vy |? ~ M;Q we have the improved estimate |0,r| < M;l for v € [0, 1] and thus, |r(0) — R¢| < M;l.
Taking now My(k, q, ¢, v) sufficiently large makes Ry = r(0) > R;.

Gluing 2. By the previous constructions, we have Ry < Rg, w(0) = w(l) = M’, Q(0) = Q(1) =
Qy, 0,7(0) > 0, and 0,r(0) < 0. Now DAR/}\,I,Qf’Rk can be trivially glued to DJFC}\,ZQf’R%k by choosing

¢ = 0, and we must merely ensure that d,r < 0 along the way. Since d,r > 0 by Raychauduri’s
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equation, this amounts to proving 27’” < 1. Indeed,

! Q? a2 pr 1/2 3/4
m(v)Sm(O)—i—/O Mavrdvzm(O)—&—/Rl ﬁdrgm(O)—&—(Rg—Rl)ng + M,

where we used (5.5.24). In particular, by choosing My(k,q,e,t) larger, we can make m(v)/M;y

arbitrarily small and thus 9,7 < 0 throughout gluing 2. O

5.6 Constructing the spacetimes and Cauchy data

In this final section we will prove our main result Theorem 1.1.11 as well as Theorem 1.1.4, Corol-

lary 4.6.1, and Corollary 4.6.3.

5.6.1 Construction of gravitational collapse to Reissner—Nordstrom

We now state a more precise version of Theorem 1.1.4 as follows.

Corollary 5.6.1. For any k € N, q € [-1,1] \ {0}, and ¢ € R\ {0}, let Mo(k,q,¢) be as in
Theorem 5.4.2. Then for any M > My there exist asymptotically flat, spherically symmetric Cauchy
data (2, go, ko, Eo, Bo, 0, ¢1) for the EMCSF system, with ¥ = R3 and a reqular center, such that

the maximal future globally hyperbolic development (M*, g, F, A, ¢) has the following properties:
o All dynamical quantities are at least C*-regular.
o Null infinity T is complete.
o The black hole region is nonempty, BH = M\ J~(Z7) # 0.

o The Cauchy surface ¥ lies in the domain of outer communication J~(Z7). In particular, it

does not intersect the event horizon Ht = O(BH).
o The initial data hypersurface does not contain trapped surfaces.
e The spacetime does not contain antitrapped surfaces.

e For sufficiently late advanced times v > vg, the domain of outer communication, including the
event horizon, is isometric to that of a Reissner—Nordstrom solution with mass M charge to
mass ratio (. For v > vy, the event horizon of the spacetime can be identified with the event

horizon of Reissner—Nordstrém.
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local existence

Cauchy stability

Figure 5.3: Penrose diagram for the proof of Corollary 5.6.1.

Remark 5.6.2. A similar statement can be made with q = 0 for the Einstein-scalar field model, using

instead Theorem 5.4.1. In that case, there will also be no assumption made on the mass.

Proof. We refer the reader to Fig. 5.3 for a visual guide to the proof. Using Theorem 5.4.2 with

regularity index k + 1 (see footnote below) and Proposition 5.2.4, a portion of Minkowski space

t—ﬁ—rg%M,
t—r>—3M,

can be glued to a Reissner—-Nordstrom solution with parameters M and qM. Note that as depicted,
one can solve for a complete future neighborhood of the event horizon, which might not be a complete
double null neighborhood.

Since we are in spherical symmetry, standard techniques (see [Chr93, Section 5] or [LOY18,
Section 3]) allow the “local existence” region emanating from the Reissner—Nordstrém portion of
the spacetime to be extended all the way up to the center.® (In this figure, this region is denoted
“Cauchy stability” for reasons that will become clear below.)

We now identify a spacelike curve ¥ connecting spacelike infinity i° in the exactly Reissner—

Nordstrém region to the center, to the past of the cone uw = —1. The curve ¥ can be chosen so the

3The wave equation in spherical symmetry loses one derivative at the center when compared to characteristic data.
Therefore, to obtain a globally C* solution, we take C**1 characteristic data.
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0

induced data on it is asymptotically flat near :°. For example, it may be taken to be a constant

t curve near Y

in standard coordinates. Furthermore, by having ¥ hug the gluing region closely
enough, we are guaranteed to have no spherically symmetric antitrapped surfaces on .

Completeness of null infinity Z* is inherited from the exact Reissner-Nordstrom solution. By
inspecting Fig. 5.3, we see that the null hypersurface C_; is the event horizon H* = dJ(ZT) of
the spacetime and that ¥ can be arranged to lie in the domain of outer communication J~(ZF).
The statement about trapped surfaces follows from Proposition 2.5.3 below.

We now consider the (unique) maximal future globally hyperbolic development (M*, g, F, A, ¢)
of the induced data (%, go, ko, Eo, Bo, 0, $1) on X. By uniqueness of the MFGHD, it contains the
domain of dependence of ¥ in the gluing spacetime (and thus all shaded regions to the future of ¥ in
Fig. 5.3). Therefore, by construction, (M*, g, F, A, ¢) has all the properties listed in the statement
of Corollary 5.6.1. Note that the property of having no antitrapped symmetry spheres is propagated
to the whole development by Raychaudhuri’s equation (2.2.6). By Proposition 2.5.3, the spacetime

does not contain any nonspherically symmetric antitrapped surfaces either. This concludes the

proof. O

The above proof made use of spherical symmetry in the local existence region and the region up
to the center. In view of potentially extending our work to the Einstein vacuum equations in the
future, we give a second construction of these regions which does not invoke spherical symmetry.
First, the “local existence region” can be constructed outside of spherical symmetry by the well-
known theorem of Luk [Luk12]. Once such a region has been constructed, we can use the fact that
it lies “outside” of a Minkowski region to construct the rest of the spacetime, up to the center, by

Cauchy stability:

Lemma 5.6.3. Let B,, and B,, denote the (open) balls of radii 7o > 0 and r1 > ro in R3, re-
spectively. Consider on By, data for the Einstein-Mazwell-charged scalar field system corresponding
to Minkowski space, (6,0,0,0,0,0). Let D = (go, ko, Eo, Bo, ¢0,¢1) be a C* (for k € N sufficiently
large and not assumed to be spherically symmetric) initial data set for the Finstein—-Mazwell-charged
scalar field system defined on By, which agrees with the Minkowski data set on B,,. Then the max-
imal globally hyperbolic development of D contains the Minkowski cone over By, “in its interior” in
the following sense:

There exists an ¢ > 0 and a development (g, F, A, ) of the data D on Kp,1c = {t +71 <
ro+e}N{t >0} C R3*! so that the development of the Minkowski portion of the data is defined on

Ky, ={t+r <ro}N{t >0} and is the Minkowski metric in those coordinates.
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Proof. Since this is a standard Cauchy stability argument we merely sketch the proof. For 0 < € <

r1—ro

5, let 0 be a cutoff function which is equal to one on B, 1. and vanishes outside B;,;2.. On

B, , we consider the “initial data set”
DE = (9690 + (1 - 96-:)67 651{/’0, 9€E07 9€B07 0€¢0; 9€¢1)-

This does not solve the constraints everywhere, but it does solve them on B, 4., where it equals
D. We assume that k > 5 and show that D, is O(¢)-close to the Minkowski data set in H*. Then
Cauchy stability for the reduced Einstein equations (in harmonic coordinates) will show that a
solution to the reduced equations with data D, exists on K, 2. for € sufficiently small. By domain
of dependence arguments, a genuine solution will then exist on a smaller domain which still contains
the entirety of K, in its interior.

To show that D. is close to Minkowski data we must check it componentwise. For brevity, we
only check 6.ky. Note first that

0=koll e < ||Ockollca-

Now since ko vanishes on B,,, and is at least C®, Taylor’s theorem implies
7Y kol < max{0,r —ro}*

if 0 < i+ j < 5. In the region where either 6. or 0,0, are nonvanishing, max{0,r — ro} < e. It

follows that

l0ckolls < Y. sup|9LY (B-ko)| S e,

0<i+j<4 B

which proves the claim and hence the lemma. O

5.6.2 Construction of counterexample to the third law

In this section we prove Theorem 1.1.11 with an analogous approach as in the proof of Corollary 5.6.1.

We first restate the result in more detail.

Theorem 5.6.4. For any k € N and e € R\{0}, there exist asymptotically flat, spherically symmetric
Cauchy data (3, go, ko, Eo, Bo, 0, ¢1), with X = R3 and a regular center, for the EMCSF system such

that the mazimal future globally hyperbolic development (M*, g, F, A, ¢) has the following properties:

o All dynamical quantities are at least C*-regular.
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Schwarzschild to ERN
gluing

Schwarzschild to Minkowski
gluing

Schwarzschild apparent
horizon

r>2

r=2+c¢

outgoing Schwarzschild cone

exact Schwarzschild region R

strip down to the center 1

strip down to the center 2

Ht ends here

Figure 5.4: Penrose diagram for the proof of Theorem 5.6.4.

The spacetime and Cauchy data satisfy all the conclusions of Corollary 5.6.1 with q = 1 and

final mass My > Mo(1,¢, k) + 8.

The spacetime contains a double null rectangle of the form R ={-2 <u < -1} N{l <v <2}

which is isometric to a double null rectangle in a Schwarzschild spacetime of mass 1.

The cone {u = —1} NR lies in the outermost apparent horizon A’ of the spacetime and is
isometric to an appropriate portion of the r = 2 hypersurface in the Schwarzschild spacetime

of mass 1.
The outermost apparent horizon A’ is disconnected.

The spacetime contains trapped surfaces in the black hole region, for all arbitrarily late advanced
time. More precisely, for every symmetry sphere Sy, C HT, J"(Syu.) contains a trapped

sphere.

There exists a neighborhood U of Ht in M such that there are no trapped surfaces S C U.
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Proof. We refer to Fig. 5.4 for a Penrose diagram illustrating the proof. The proof begins as the
proof of Corollary 5.6.1 (recall also Proposition 5.2.4), by gluing a Minkowski cone to a Schwarzschild
event horizon of unit mass along {u = —1}. Then, attach a double null rectangle %R of Schwarzschild
along the hypersurface r = 2, as in Corollary 5.6.1, but stop after a finite advanced time v = 2. Now
place u = —2 so that

sup r=24¢e¢<3.
{u=—2}NR

For ¢ sufficiently small, the first strip down to the center can be constructed as in the proof of
Corollary 5.6.1. Now let My > My + 8 and extend the cone u = —2 to the future with trivial scalar
field until r = 1(My + 8) > 3. Then using Theorem 5.4.2, extremal Reissner-Nordstrom of mass
My can be attached. We again solve backward up to the center as in Corollary 5.6.1 and have now
constructed the spacetime depicted in Fig. 5.4.

As in the proof of Corollary 5.6.1, we again find an asymptotically flat spacelike curve ¥ con-
necting i® with the center and lying entirely in J—(Z*). The maximal future globally hyperbolic
development (M, g, F, A, ¢) of the induced data on ¥ contains the domain of dependence of ¥ in
the spacetime constructed above (and thus all shaded regions to the future of ¥ in Fig. 5.4) and
satisfies all the conclusions of Corollary 5.6.1 with q = 1 and final mass My > My(1,¢,k) + 8. By
construction, M contains the double null rectangle R which satisfies the stated properties. Further,
the cone {u = —1} N A lies in the apparent horizon A of (M, g) and {u = —1} N R is isometric to
an appropriate portion of the r = 2 hypersurface in the Schwarzschild spacetime of mass 1.

We readily see that (M, g) contains trapped surfaces in any (future) neighborhood of {u =
—1} NN as d,r =0 along {u = —1} NR and (2.2.11) evaluated on {u = —1} N R gives

Q2

Ou(10yr) = — T

To prove that trapped surfaces exist for arbitrarily late advanced time, we invoke the general bound-
ary characterization of [Kom13]. If the r = 0 singularity S is empty, then the outgoing cone starting
from one of these trapped spheres terminates on the Cauchy horizon CH ™ and the claim is clearly
true by Raychaudhuri’s equation (2.2.7). If S is nonempty, then every ougoing null cone which
terminates on § is eventually trapped since r extends continuously by zero on S. Furthermore, S
terminates at the Cauchy horizon CH™ or future timelike infinity i*, so the claim is also true in this
case.

We now show that there exists a neighborhood U of H* in M which does not contain spherically
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symmetric trapped surfaces. It suffices to show that there is a neighborhood V of HT in Q such that
By > 0on V\ HT, where we use the same symbol for the event horizon in M and Q. Let p € HT
be any sphere after the final gluing sphere, see Fig. 5.4. Then r(p) = Q(p) = My, 0,7(p) = 0, and
¢(p) = 0. Reparametrize the double null gauge so that 2 = 1 on the ingoing cone C passing through
p. By the wave equation for the radius (2.2.4),

2
1 My

040y (p) = ———
") =-on 407

=0.

Differentiating (2.2.4) in u, we find

Our
42

3@2(9“7' QauQ

2 _
0, 0ur = 4r4 23

— 0u(0y log )0y — (04 log 1) 0,0y —

Evaluating at p, we find 9,Q(p) = 0 by Maxwell’s equation (2.2.8), so we have

920, (p) = dur(p)  3M}Our(p) _ 20,r(p)
W= 4MT M?

> 0.

Therefore, d,r becomes immediately positive for all points along C sufficiently close to the event
horizon but not on it (see also Fig. 1.3).4

By the monotonicity of Raychaudhuri’s equation (2.2.7) and since p € H™ after the final gluing
sphere was arbitrary, this shows that there exists a neighborhood V of H* contained in Q that does
not contain trapped symmetry spheres except for H™ itself. That there are also no nonspherically
symmetric trapped surfaces in U =V x S? now follows immediately from Proposition 2.5.1 below.

The claim about the disconnectedness of the outermost apparent horizon A’ now follows from
the fact that A’NH* is one connected component of A" which does not contain {u = —1}NR C A’.

This concludes the proof. O

5.6.3 Construction of collapse to Reissner—Nordstrom with piece of Cauchy

horizon

In this section, we show that a mild modification of the proof of Corollary 5.6.1 allows us to construct
examples of gravitational collapse such that the black hole region admits a piece of future boundary
which is a Cauchy horizon which is isometric to a subextremal or extremal Reissner—Nordstrom

Cauchy horizon.

4This calculation is related to the discussion in Section 1.1.3.4 above and Section 5.A below. In fact, we have
effectively just proved the claim in Remark 5.A.2.
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Minkowski to ng/
RN interior gluing 8

Minkowski
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stabilit, %
Y N

Figure 5.5: Penrose diagram depicting the proof of Corollary 5.6.5.

Corollary 5.6.5. For any k € N, q € [-1,1] \ {0}, and ¢ € R\ {0}, let My(k,q,¢,1/2) be as in
Theorem 5.4.4. Then for any M > My there exist asymptotically flat, spherically symmetric Cauchy
data (3, go, ko, Eo, Bo, 0, ¢1), with ¥ =2 R and a regular center, for the EMCSF system such that

the maximal future globally hyperbolic development (M*, g, F, A, ¢) has the following properties:
o All dynamical quantities are at least C*-reqular.
e The spacetime and Cauchy data satisfy all the conclusions of Corollary 5.6.1.

e The black hole region contains an isometrically embedded portion of a Reissner—Nordstrom

Cauchy horizon neighborhood with parameters M and M, in particular CHT # 0.

Proof. The proof is completely analogous to the proof of Corollary 5.6.1. We apply the gluing
construction of Theorem 5.4.4 to glue a sphere in Minkowski space to a Reissner—Nordstrém interior
sphere with radius Ry < ry and r; — Ry small. Indeed, this can be achieved by setting v = % in
Theorem 5.4.4 as then %Mf(l +1)g% < %Mf < My < r, . We then apply the local existence and
Cauchy stability argument as in the proof of Corollary 5.6.1. We note that the u-width of the local
existence and Cauchy stability argument remains uniform as Ry — r so by choosing R sufficiently
close to ry, we guarantee that we find a Cauchy hypersurface ¥ which does not intersect the event

horizon. We refer to Fig. 5.5 for the Penrose diagram explaining the proof. O

Remark 5.6.6. As in Remark 5.6.2, we note that a similar statement with a piece of Schwarzschild

interior including the {r = 0} singularity can be made with g = 0.

151



Cauchy
stability interior RN to
Minkowski gluing

along an ingoing cone

bifurcation sphere
when |g| < 1

Minkowski

RNO<|q <1 N

Figure 5.6: Penrose diagram depicting the proof of Corollary 5.6.7.

5.6.4 Construction of black hole interior for which the Cauchy horizon

closes off spacetime

We now give our construction of a spacetime for which the Cauchy horizon closes off the black hole

region.

Corollary 5.6.7. For any k € N, q € [-1,1]\ {0}, ¢ € R\ {0}, let My(k,q,e,q%/4) be as in
Theorem 5.4.7. Then for any M > My there exist asymptotically flat, spherically symmetric Cauchy
data (3, go, ko, Eo, Bo, ¢o, ¢1), with ¥ =2 R and a regular center, for the EMCSF system such that

the mazimal future globally hyperbolic development (M*, g, F, A, ¢) has the following properties:
o All dynamical quantities are at least C*-reqular.
e The spacetime does not contain antitrapped surfaces.
e The black hole region is nonempty, BH = M\ J~(ZT) # 0.

o The future boundary of the black hole region is a C*-regular Cauchy horizon CH™ which closes

off spacetime, i.e., NUS =0 in Fig. 2.1.
o The exterior region is isometric to a Reissner—Nordstrom exterior with mass M and charge

qM. In particular, future null infinity T is complete.

Proof. Analogous to the proof of Corollary 5.6.5 we glue a Reissner—Nordstrom interior sphere
with Ry < r_ and r— — Ry small to a sphere in Minkowski space along an ingoing cone using

Theorem 5.4.7. We can choose Ry arbitrarily close to 7_ in Theorem 5.4.7 by setting v = ¢%/4.
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Indeed, in this case

My cl2 2 _ 2 My cl2 2
7“—2(”4)‘1 =My (1= V=) = S (1 g

2 4 6

q 9 q

=M 1—+/1—-q2—-—L 1 )> M,—
f( 9 2 8) f16’

where in the last step we used the Taylor expansion of y/1 — g2 around q = 0. The rest of the proof
is now analogous to Corollary 5.6.5 and can be read off from Fig. 5.6. We note that an isometric

copy of the Reissner-Nordstréom exterior can be attached to the past of H in Fig. 5.6. O

5.A An isolated extremal horizon with nearby trapped sur-
faces

In this appendix we show that, in the context of the dominant energy condition, there is no local
mechanism forcing a stationary extremal Killing horizon to have no trapped surfaces “just inside”

of the horizon. We also refer back to Section 1.1.3.4.

Proposition 5.A.1. There exists a C> spherically symmetric spacetime (M?*,g) with a complete
null hypersurface H C M and a Killing vector field T with the following properties. The Killing
field T is spherically symmetric, timelike in I~ (H), spacelike in I (H), null and tangent along H,
where it also satisfies VT = 0, i.e., its integral curves are affinely parametrized null generators of
H. Furthermore, (M, g) contains no antitrapped symmetry spheres, i.e., Oyr < 0, and satisfies the
dominant enerqy condition. Therefore, H is an extremal Killing horizon and I (H) is foliated by

trapped symmetry spheres.

We recall that a spacetime (M, g) satisfies the dominant energy condition if for all future directed
causal vectors X € TM, —G(-, X)* is future directed causal or zero. Here G denotes the Einstein

tensor of g,

G(g) = Ric(g) — 3R(9)g-

Proof. The spacetime is given by the spherically symmetric ansatz

M=0x5?

9=go+7r’gsz,
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where

Q={(t,u) eR?*:teR,—e<u<e}

for € to be chosen later, and r = r(u). Let f = f(u) and set
go = fdt? — 2dtdu.

The vector field L = 0, is geodesic and null and we declare it to be future directed. The Killing
vector field T = &, satisfies g(T,T) = f. Letting f(u) = u?F(u) for a smooth function F(u)
makes H = {u = 0} an extremal Killing horizon and 9, is future directed where it is causal. The
conjugate null vector to L is L = 0 + %f@u such that g(L,L) = —1. The symmetry spheres

Stoue = {t =to} N{u =up} are trapped if

Lr<0

Lr <0,

which can be more simply written as

From this we see that r'(u) < 0 implies no antitrapped spheres of symmetry and f(u) < 0 for u < 0
and f(u) > 0 for w > 0 implies the symmetry spheres to the past (respectively, future) of H are
untrapped (respectively, trapped). This also makes T timelike to the past of H. Since we require
f(u) = u?F(u) but also that f changes sign, we in fact have f(u) = u?F(u).

We will now see which restrictions on f, r, and € enforce the dominant energy condition. The

Einstein tensor of g is given by

1

2
G = —HgQ — %du2 —+ §T2952, (5A1)

where
1+ (u)2f +rfr' +2fr”

6= -

) r P
N T e
r r

For f(u) = u*F(u) and r(u) fixed and & > 0 sufficiently small, we have 6(u) > 0 and |¢(u)| < 6(u)

for |u| < e.
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Let X be a future causal vector, that is

go(X, X) + 12952 (X,X) <0, go(L+L,X)<O0. (5.A.2)

To show that —G(-, X)* is causal or zero, it suffices to show that

G G" ,G¥ s XPX7 < 0. (5.A.3)

To simplify the calculation, we assume " vanishes identically and then the left-hand side of (5.A.3),

using (5.A.1) and (5.A.2), can be estimated as

GG )G s XP X = 02g0(X, X) + (31?52 (X, X) < (¢2 — 0*)r?gs2 (X, X).

Since ¢? — 62 < 0, this proves that —G(-, X)* is causal. To show that —G(-, X)# is future directed

we compute using (5.A.2)

g(L+L,-G(,X)")=-G(L+L,X)=0go(L+L,X)<O0.

Finally, an explicit example of a metric satisfying all of our conditions is

g = uddt* — 2dtdu + (1 — u)?gge. O

Remark 5.A.2. Extremal Reissner—Nordstrém has f(u) ~ —u?. One might say that an extremal

horizon constructed in the above manner with f(u) vanishing faster than u? is a degenerate extremal

horizon.
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Chapter 6

Characteristic gluing in vacuum
and formation of very slowly

rotating Kerr black holes

In this chapter, we prove that Minkowski space can be characteristically glued to any slowly rotating

Kerr event horizon, see Section 1.1.5.1 and Section 4.5.

6.1 Spacetimes in double null gauge

We first briefly recall the basic notion of double null gauge for the Einstein vacuum euqations outside

of spherical symmetry [Chr91a; Chr09].

6.1.1 Double null gauge

Let W C R2 , be a domain and define M3+t =W x §2. Denote Sy, = {(u,v)} x §* C M. The
distinguished foliation of M by these spheres carries a tangent bundle T'S and cotangent bundle
T*S = (T'S)*. An S-tensor (field) is a section of a vector bundle consisting of tensor products of
TS and T*S. Let ¢ be a positive-definite (0,2) S-tensor field, let Q? be a positive function on M,

and b be an S-vector field. Under these assumptions, the formula

g =—49% dudv + gap(dd* — b* dv)(d¥® — b” dv)
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defines a Lorentzian metric on M, where (9',9?) are arbitrary local coordinates on S* and gap
(resp., b) are the components of g (vesp., b) relative to this coordinate basis. The coordinate

functions v and v satisfy the eikonal equation, i.e.,
g"oud,u=0 and ¢g"0,v0,v=0.

Consequently, the hypersurfaces C,, = {u = const.} and C, = {v = const.} are null hypersurfaces.
We time orient (M, g) by declaring 9, + 9, + b9y4 to be future-directed.

The vector fields
L' = —2(du)® and L' = —2(dv)*
are future-directed null geodesic vector fields. We set
L=0Q°L" and L=0Q°L,

which then satisfy

Finally, we set

exs=QL, e3=0L.

Given arbitrary coordinates 9 on S? and defining e4 = dya, the quadruple {e;, e, €3, e4} is called

a (normalized) null frame, which satisfies
glea,ez) =glea,eq) =0, gles,eq) = =2, gles,e3) = g(es,eq) =0.

6.1.2 Algebra and calculus of S-tensors

Let (M, g) be a spacetime equipped with a double null gauge as above. For vector fields on M, we

define the orthogonal projection to S vector fields by

II:TM =TS, IX =X+ 19(X,e3)es + 39(X, es)es
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which we extend componentwise to contravariant tensors of higher rank. We note that Ilo¢ = id on
TS, where i: TS C TM is the natural inclusion. By duality, this defines a “promotion” operator
II*: T*S — T* M which extends componentwise to covariant S-tensors and satisfies ¢* o IT* = id on
T*S.

We now define projected Lie derivatives £; and £ 1 on S-tensors. If X is an S-vector field, then
L X =LpX, L X=LpX
are already S-vector fields. If £ is an S-1-form, then
L= L(IT7€) = Li(EoM)|rs, Lp&=i"LL(IT°€) = L(§ o T)]rs,

where we have explicitly written the “promotion” operation which will be consistently omitted in
the sequel. The operation is extended to general S-tensor fields via the Leibniz rule. As a shorthand,

we write

D=f,, D=f.

The symbol ¥ acts on functions and S-vector fields as the induced covariant derivative on the
spheres and is extended to general S-tensors by the Leibniz rule.
We will frequently make use of the following notation: Let &, be S-1-forms and 6, ¢ symmetric

covariant S-2-tensor fields. We then define

(&) ap = Eanp + Epna — (€ 1)gas
(Y& &) ap = Yalp + Ypéa — (divE)gar
dive = g*PY 45
gt & = ¢V alp
("€)a = ¢ang"“éc
Oap =045 — Ltr0gasp

ONG= ¢AB,¢CD9AC¢BD7

where ¢ is the induced volume form on S, ,. The notation gAB denotes the inverse of the induced

metric gap. Indices of S-tensors are raised and lowered with g and g_l.
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6.1.3 Ricci and curvature components

The Ricci components are given by the null second fundamental forms

XaB =g(Vaes,ep),  x,p5=9(Vaes, ep),

the torsions

nA = _%g(viieAa 64)3

and

w=DlogQ, w= Dlogf.

The 1-form
¢=n—YlogQ

is also referred to as the torsion. Note that

n+n=2Y log<Q. (6.1.1)

The null curvature components are given by

OéABiR(eA7647eB7e4)7 QABiR(CA,G:ﬁ,eB,@E}),
Ba = 3R(eaeq,e3,e4), B, = gBlea ez e ea),
p = 1R(es,e3,e4,¢3), 0 = 1" R(es, 3,4, ¢3),

where R(W, Z, X,Y) = g(R(X,Y)Z,W) is the Riemann tensor.

6.1.4 Normalized sphere data determined by a geometric sphere
For the notion of sphere data used here, see Section 6.3.1.1.

Lemma 6.1.1. Let (M*, g) be a spacetime satisfying the Einstein vacuum equations (1.1.6) and
i: 8% — M an embedding with spacelike image S = i(S?). Let L be a null vector field along S
which is normal to S. Then for any m > 0 there exists a unique associated C2C>+™ sphere data set
x([g,i, L] such that ¢ = i*g, P=1,andw=Dw=---=D""w=w=Dw=0.

The sphere data x[g,i, L] depends smoothly on (g,i,L) in the natural way.

We say that x[g, 4, L] is generated by (g,i, L). If ¢ : S? — S? is a diffeomorphism, then x[g,i0t, L]
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is related to z[g, 4, L] by a sphere diffeomorphism as in Definition 6.3.4.

Proof. The geometric sphere S is identified with the round sphere by i, which endows S with a
choice of round metric 7v. The dual null vector field L is uniquely determined by the requirement
that L 1L T'S and g(L, L) = —2. Let CUC be the (locally defined) bifurcate null hypersurface passing
through S such that L is tangent to C' and C is tangent to L. Let 92 = 1 identically on C U C.
Given this data, there is a unique double null foliation with respect to g covering a neighborhood of
S in M. Now z[g, 4, L] is constructed by computing the corresponding quantities in this double null

foliation and taking the values at S. O

6.2 The Einstein equations in double null gauge

We now assume that the spacetime metric g satisfies the Einstein vacuum equations (1.1.6). In
double null gauge, the Einstein equations are equivalent to the null structure equations (with the
Ricci coefficients on the left-hand side) and the Bianchi equations (with the curvature components

on the left-hand side). The Einstein equations (1.1.6) imply

tra =0, tra =0. (6.2.1)

6.2.1 The null structure equations

First variation formulas:

Dg = 2Qx = 2Qx + Qtrx ¢ (6.2.2)
Dg = 205 = 20 + 20 tr x ¢ (6.2.3)
Raychaudhuri’s equations:
Dtry+ %Q(tr)()2 —wtry = —Q[x|? (6.2.4)
Dtry+ 2Q(trx)* —wtry = —Q|x/? (6.2.5)
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Transport equations for Ricci components:

DX = Qx’g + wx — Qo
Dy = Qx°g + wi — Qo
Dn=Q(x-n-0)
Dn=9Qx-n+pP)

Dw = Q*(2n-n— 0> - p)

Duw = Q*2n-n—n|* —p)

)

n=—-Q(x n-pB)+2Vw
Dn=—Qx-n—pB)+2Vw

D(Qtry) = 2Q%divy +20%n|* — Q*(x, X) — 3Q% tr x trx +20Q%p

1

2

D(Qtrx) =202 divny + 2% 9> — Q* (%, ¥) — Q% try try +2Q%p
DY) = X (00 + 3 trx X+ V@n+n®n—5trxx)

D) = (%, X) +itrx X+ VY &n+n&n—Strxx)

Gauss equation:
K+itrxtrx—i(.%)=-»p
Codazzi equations:

divy—sYtrx+x-¢(—itrx(=-5

divi—3Vtrx—X-C+5trx¢(=4

Curl equations:

rptn =—rhtn=r1t{ =—3XAXx—0

We also require

DDw = —129%(n — V1og Q, Yw) + 2Q°w ((n, =31+ 4Y log Q) — p)

(6.2.6)
(6.2.7)
(6.2.8)
(6.2.9)
(6.2.10)
(6.2.11)
(6.2.12)
(6.2.13)
(6.2.14)
(6.2.15)
(6.2.16)

(6.2.17)

(6.2.18)

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

+ 493x(n, Y log Q) + Q?’(g, ™ — 3V log Q) + %Q?’ptr5+ 03 d/i/v§+ %Q‘g(f(, a).
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6.2.2 The Bianchi identities

In this chapter, we only need the following two Bianchi identities:

Da + (2w—3Qtrx)a=Q(-V®B—(4n—)®¢—3xp+3"%0) , (6.2.23)
DB+ (3Qtrx —Qx +w) B=Q(-Vp+ Yo —3np+3*no+2%-8) . (6.2.24)

6.3 Characteristic initial data and characteristic gluing

In this section, we give a brief review of the characteristic gluing problem for the Einstein vacuum
equations (1.1.6) in double null gauge [ACR21; ACR23b; ACR23a; CR22]. We follow the conventions

of [CR22] unless otherwise stated.

6.3.1 Sphere data, null data, and seed data

The terminology used in this chapter is in agreement with [CR22], which we will be using as a
black box, and therefore differs slightly from Chapter 5. We hope this facilitates the reader in

understanding exactly how the main notions and results from [CR22] are being used here.

6.3.1.1 Sphere data

Given a solution (M?*,g) of the Einstein vacuum equations (1.1.6) and a sphere S in a double
null foliation, the 2-jet of g can be determined from knowledge of the metric coefficients, Ricci
coeflicients, and curvature components. However, the equations themselves, such as the Codazzi
equation (6.2.19) allow some of these degrees of freedom to be computed from the others, just in

terms of derivatives tangent to S. This leads to the following definition:
Definition 6.3.1 (C? sphere data, [ACR23b, Definition 2.4]). Let S be a 2-sphere. Sphere data x
on S consists of a choice of round metric v on S and the following tuple of S-tensors

T = (Q7 g? Q trX’ X’ Qtrz’ X? "77 w7 Dw’ Q’ @7 a) Q)? (6'3'1)
where ) is a positive function, ¢ a Riemannian metric, Qtryx, X, Qtrx,w, Dw,w, Dw are scalar
functions, 7 is a vector field, X, X, @ and a are symmetric g-traceless 2-tensors.

Definition 6.3.2 (C2C2"™ sphere data, [ACR23b, Definition 2.28]). Let S be a 2-sphere and m > 0

an integer. Higher order sphere data x on S consists of a choice of round metric v on S, the tuple
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(6.3.1), together with

(Da,...,D™a, D*w, ..., D™ W), (6.3.2)

where Diq are symmetric g-traceless 2-tensors and Diw scalar functions. We will write z =

(z1ow, xhieh) where 21°% is a C? sphere data set and z"#" denotes the tuple (6.3.2).

When sphere data is obtained from a geometric sphere in a vacuum spacetime, one has to make a
choice of normal null vector fields L and L. See Lemma 6.1.1 below, for instance. As is well known,
the null pair {L, L} can be “boosted” by the transformation

1

L==L L=ML, (6.3.3)

>

where A € R;. This boost freedom was also quite useful in Chapter 5.

Definition 6.3.3 (Boosted sphere data). Let x be a sphere data set as in Definition 6.3.2 and

A € R,. Then the \-boosted sphere data set is the C2C%+™ sphere data set given by

b (2'%Y) = (2,4, A7 Qtr X, AT AQ ), AR 1 AT w, AP D, Aw, A Dw, A 2a, Ma),

ba(z8Y) = (A 3Da, ..., A2 D™, A3 Dw, ..., AT2Tm D™ HL),

This is the effect that the boost (6.3.3) has on the metric coefficients, Ricci coefficients, and curvature

components in double null gauge.

There is a norm ||z|| xm defined on C2C2+™ sphere data sets employed in [ACR23b; CR22], which
is just a sum of high order (in the angular variable 8) Sobolev norms of the sphere data components
[ACR23D, Definition 2.5]. We will show very strong pointwise smallness for arbitrary numbers of
angular derivatives later and thus will not need the exact form of these norms in order to apply the

result of [CR22].

Definition 6.3.4 (Sphere diffeomorphisms). Given a diffeomorphism 1 : S? — S2, we let 1 act on
C2C%+™ data sets by pullback on each component.

6.3.1.2 Null data

Definition 6.3.5 (Ingoing and outgoing null data [ACR23b, Definition 2.6]). Let v1 < va. An
outgoing null data set is given by an assignment v + x(v), where z(v) is a C? sphere data set. We

may say that the null data lives on the null hypersurface C' = CV1:%2] = [v),v5] x S2. An ingoing null
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data set is defined in the same way, but with the formal variable v replaced with u and 7 replaced
by 7 in (6.3.1).
Higher order null data is defined in the obvious way, with z(v) being C2C2™™ sphere data. Null

data on its own is not assumed to satisfy the null structure equations and Bianchi identities.

There are several norms on null data that are employed in [ACR21; ACR23b; ACR23a; CR22].
These include the standard norm X defined on ingoing and outgoing null data the high regularity
norm X+ defined on ingoing null data, and the high frequency norm X™f defined on outgoing null
data using in obstruction-free characteristic gluing. As we will not need the precise forms of these

norms in the present work, we refer the reader to [ACR23b, Definition 2.7] for details.

6.3.1.3 Christodoulou seed data

We will employ the following method, originating in the work of Christodoulou [Chr09], for producing
solutions of the null structure and Bianchi equations along a null hypersurface C'.

For definiteness, we seek a solution of the null constraints on the null cone segment C' = C101 =
[0,1] x S2. The coordinate along [0,1] is called v and we set L = §,. On S2%, we have the round
metric

v = d¥? + sin® ¥ dp?,

where (1, ¢) are standard spherical polar coordinates. We interpret v as a symmetric S-tensor on

C (see Section 2.3.1 for this terminology) by imposing v(9,,-) = 0. We set S, = {v} x S2.

Lemma 6.3.6. Let;} be a smooth S-(0,2)-tensor field on C' which induces a Riemannian metric on
the sections of C' satisfying

try D = 0, (6.3.4)

where Dj = fo? as in Section 2.3.1.1 Let g1 be a Riemannian metric on Sy which is conformal
to 5}(1), trx1 and trx, be functions on Sy, 1 be a 1-form on Si, and X1 and ay be g1-traceless
symmetric 2-tensors on S1.

Then there exist uniquely determined gl-tmceless symmetric 2-tensors X1 and oy, ﬁal e D’”al

LConcretely, this means j = ﬁ(v) is a smooth 1-parameter family of Riemannian metrics on S?. We identify 52
with S, C C. Since b = 0, ij = ELﬁ and relative to any angular coordinates ¥4 defined on S extended to C
according to L94 = 0, (Dg:f)AB =0y (QAB).

164



on Sy, vy € (—1,1), and null data

xIOW(v) = (Q’gv QtTX; )A(v Qtrx:Xﬂ%"W Dw»£7 @,a,g),

M8 (y) = (Da, ..., D™, D%w,..., D™ W),

defined for v € (vg, 1] N[0,1], satisfying the null structure equations and Bianchi identities along C,

such that

$10W(1) == (17g1atr X1, )A(latrxl7zl7n170707 Oa 0) ala@l) (635)

2 (1) = (Day,..., D™ ay,0,...,0), (6.3.6)

For every v € (vo, 1] N [0,1], g(v) is conformal to éj(v) and Q2(v) = 1 identically, so Diw(v) = 0
identically for j = 0,...,m+ 1. The number vy is either strictly negative (in which case x exists on

all of C'), or is nonnegative and satisfies

lim inf - =0. 3.
Jim inf{g(v)l; =0 (6.3.7)

A conformal class of Riemannian metrics on C' is the equivalence class £ of symmetric S-(0, 2)-
tensors on C which are positive definite on each S, with the equivalence relation g’ ,¢" € Rif there
exists a smooth positive function ¢ on C' such that ¢’ = Vg

Lemma 6.3.6 shows that the free data® for the characteristic data (in the gauge Q? = 1) are
given by

R, (1), trx(1), tr x(1),m(1), (1), and a(1),

subject to the condition that ¢(1) is compatible with & and that x(1) and a(1) are traceless, which
is a notion that depends only on &. The desired induced metric ¢ will be a representative of & One
often writes & = [¢], so the prescription of £ is the prescription of the conformal class of the induced
metric ¢ which is to be found.

The condition (6.3.4) on the representative j of 8 can be imposed without loss of general-
ity, i.e., R always contains a representative satisfying (6.3.4). Indeed, let 5} € [g] and let ¢ =
exp(fv1 itrg Dgdv'). Then ¢ = 1?¢ satisfies (6.3.4).

Remark 6.3.7. In Lemma 6.6.2 below, we will directly construct a specific 54 satsifying the volume

form condition D(dﬂg) = 0, which easily implies (6.3.4) by the first variation formula for area.

2That is, the quantities that may be freely prescribed.
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Outline of the proof of Lemma 6.5.6. Let ¢1 be the positive function on Sy satisfying g1 = gi)ig}l.

We make the ansatz

g =%, (6.3.8)

on C, where ¢ is now a positive function on C agreeing with ¢; on S;.
We define
e=1g"P4§P0,gacOugnp (6.3.9)

relative to any Lie-transported angular coordinate system on the spheres. We set
Ou1 = 2¢1tr x4 (6.3.10)
and let ¢ be the unique solution of the second order ODE
2¢ +egp =0, (6.3.11)

with initial conditions (¢1,0,¢1). If ¢ remains strictly positive on all of C, then we let vy be any
strictly negative number. If however ¢ has a zero on C, then we take vy to be the supremum of
v € [0, 1] for which infg, ¢ < 0. This definition gives (6.3.7).

We now set

X =3¢°Dg and (6.3.12)

trx = 30, log ¢ (6.3.13)

along C and observe that this choice of tr x is consistent with (6.3.5). By (6.3.4), the shear defined

by (6.3.12) is g-traceless. From (6.3.8), we have
Dg = ¢°Dg + 290,09 = ¢* Dy + 20, 1og ¢ 4,
and by comparing with the first variation formula (6.2.2) written in the form
D¢ =2x +trxd,

we conclude that (6.3.12) and (6.3.13) are consistent with the first variation formula.
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From (6.3.12), we have

e =

Ix1%, (6.3.14)

N

so the ODE (6.3.11) is seen to be equivalent to Raychaudhuri’s equation (6.2.4).
From here, the full null data along C' can be determined by stepping through the null structure
and Bianchi equations in the right order, as in [Chr09]. We will outline this procedure in the proof

of Lemma 6.6.10 below. O

6.4 Reference sphere data for the Kerr family

Definition 6.4.1 (The Kerr family of metrics). Let M, = (—00,00), X (0,00), x S?, where S?
carries standard spherical polar coordinates ¢ and ¢. The Kerr family of metrics is the smooth

two-parameter family of Lorentzian metrics

2M 4Mar sin® 9
IM,a = — <1 — Er) dv? + 2dvdr — ﬂdvdg@ — 2asin® 9 dr dp + ¥ dv? + p? sin® 9 dyp?
(6.4.1)
on M,, where M > 0 is the mass, a € R is the specific angular momentum,
Y =r24a?cos?d, and
2Ma?rsin? 9
pPP=rtratf ———.
by
When a =0, gar,q reduces to the Schwarzschild metric
2M
M = — (1 - ) dv? + 2 dvdr + ry, (6.4.2)
r

where vy = d9? + sin? 9 dp?. When M = 0, gn,q Teduces to the Minkowski metric

m = —dv? + 2dvdr + .

The metrics gar,q solve the Einstein vacuum equations (1.1.6). The spacetime (M., gar,q) is
time-oriented by @, for » > 1. The vector field 0, is Killing—the Kerr family is stationary. If
la] < M and M > 0, these metrics describe black hole spacetimes. For 0 < |a| < M, the black hole

is said to be subeztremal, and for 0 < |a| = M, extremal.

Remark 6.4.2. In the context of the Schwarzschild solution, the coordinates (v,r,¥, ) are called
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ingoing Eddington—Finkelstein coordinates. Indeed, defining
t=v—r—2Mlog|r—2M|

brings gp; into the familiar form
2M oM\
gm = — (1 r) dt* + (1 r) dr? + r?y

and (t,r,9, ) are called Schwarzschild coordinates. In the context of the Kerr solution, the coor-
dinates (v,7,9, ) are called Kerr-star coordinates. For the relation to the perhaps more familiar
Boyer-Lindquist coordinates, see [ONe95]. The advantage of defining the Kerr family gas , directly
in these coordinates is that we may view it as a smooth two-parameter family of Lorentzian metrics
on the fired smooth manifold M., even across the horizons located at ry = M 4+ v/ M2 — a2 when
M > 0.

Remark 6.4.3. The spacetimes (M., gnr,o) defined here do not cover the entire maximal analytic
extensions of the Minkowski, Schwarzschild, and Kerr solutions. Most importantly, (M., gar.q)
includes the portion of the future event horizon Ht* = {r = r;} strictly to the future of the

bifurcation sphere.

We will now define the reference sphere data for the Kerr family. We will use the notion of
sphere data z[g, i, L] generated by a Lorentzian metric g on a smooth manifold M, an embedding
i: 8% — M, and a choice of null vector field L defined along and orthogonal to i(S?), which is

defined in Lemma 6.1.1 below. Note that
Y =-0,
is a future-directed null vector field for (M., gar,o). We also define the family of embeddings

’L'RZSQ—>M*

(W, ¢) = (0, R, 9, ¢)

for R > 0.

Definition 6.4.4 (Reference sphere data). Let M > 0, a € R, R > 0, and m > 0 be an integer.
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The reference Kerr sphere data set of mass M, specific angular momentum a, and radius® R is the

C2C%+™ gphere data set given by

ErrarR = Z[9M 0y iR, Y] (6.4.3)

The reference Schwarzschild data sets are defined by

sm.R = EMmo.R (6.4.4)

and the reference Minkowski data sets are defined by

mpg = 50,R- (645)

We will colloquially refer to €y, r as a “Kerr coordinate sphere” and sy r (resp., mp) as a
“(round) Schwarzschild symmetry sphere” (resp., “(round) Minkowski symmetry sphere”).

In the notation of Section 6.3.1.1, one can show that

2 2M 2
51]\04‘):,}2: <17R2’77R <1R> 703R707"'7O) ) (646)
shEh =0 (6.4.7)

A similarly simple expression is neither available nor needed for Kerr. Indeed, we have the

Lemma 6.4.5. For any integerm > 0, €r7.4 g is a smooth three-parameter family of C2C2+™ sphere
data sets. In particular,

(11_% HEMJLR — EJV[’RHXWL =0. (648)

Proof. The metrics gar,, are defined on the fixed smooth manifold M,. By inspection of (6.4.1),
gM,q varies smoothly in M and a. Therefore, the smooth dependence of €57, r on the parameters
and (6.4.8) follow from the smooth dependence of the sphere data generated by (g, 4, L) on g, 4, and

L; see Lemma 6.1.1. O

We conclude this section with several remarks.

Remark 6.4.6. As was already mentioned, the Kerr family is stationary. Defining ig(¥,p) =

(v, R, 9, ) for any v € R leads to the same sphere data.

3We use the term radius because it is associated to the Kerr coordinate r, but the spheres are not round!
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Remark 6.4.7. We always take the Kerr axis to point along the poles of the fixed identification of

the Kerr coordinate spheres with the usual unit sphere.

Remark 6.4.8. The induced metric ¢as,a,r in €r7,4,r is not conformal to the round metric y (defined
relative to the Kerr angular coordinates). For this reason we have slightly modified the setup in
Section 6.3.1.3 by imposing (6.3.4) instead of simply d#g = dp as in [Chr09, Chapter 2]. See already

Lemma 6.6.2 below.

Remark 6.4.9. The induced metric ¢arq g is given in Kerr angular coordinates by
Jrtar = S dO? + p®sin® 9 dp®, (6.4.9)

To show that this extends smoothly over the poles relative to the smooth structure defined by the

Kerr angular coordinates, we note the identity
2 2.2 2 2, 2 2 2 2Mr\ 4 2
¥ dY* + p”sin® 9 dp® = B(dY*° + sin” I dp®) + a 1+T sin® 1 dp”. (6.4.10)

Now sin? 9 dy is a globally defined smooth 1-form on S? since it is the y-dual of the globally defined

vector field 0, so the right-hand side of (6.4.10) can be extended smoothly over the poles.

6.5 Perturbative characteristic gluing

Since the characteristic gluing results of [ACR21; ACR23b; ACR23a; CR22] pass through linear
theory, the conserved charges in Minkowski space play an important role. In Section 6.5.1, we give
the definition of conserved charges. In Section 6.5.2, we state the main result of [CR22] in the form

which we will directly apply it.

6.5.1 Conserved charges

Definition 6.5.1 (Spherical harmonics). For £ € Ny and m = —£, ..., ¢, let ;! denote the standard
real-valued spherical harmonics on the unit sphere (S2,7). We also define the electric and magnetic
1-form spherical harmonics by

1 1
By, = - YY, and Hy, =

[ e 4
" (0+1) 0(0+1) VY
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for £ > 1 and |m| < ¢. By a standard abuse of notation, we will use the same symbol for the

vector-valued spherical harmonics, with the understanding that ~ is used to raise the index.

Definition 6.5.2 (Linearly conserved charges). Let x be C? sphere data and define the 1-form B
and scalar function m by

. 9P

B=—

202

m = ¢3 (K+ %trxtrx) — ¢ divB.

(V(Qtrx) + Qtrx(n — 2V log)) and

The conformal factor ¢ is defined as the unique positive function on S* such that duy; = ¢*dp,
where v is the distinguished choice of round metric on S. Then the charges E, P, L, and G (where

the latter three are vectors in R? indexed by m € {—1,0,1}) are defined by

E=m°
P=m!
L= BK=1,H
G =B="".
Here the modes are defined by
F=0 = /52 FYOdus, (f=Hm = /Sz Yo dpay,
erEy = [ (L) di, ety = [ () du

6.5.2 Czimek—Rodnianski obstruction-free perturbative characteristic glu-
ing

The following theorem is a combination of [ACR23b, Theorem 3.2], [CR22, Theorem 2.9], and

Remark (5) after Theorem 2.9 in [CR22].

Theorem 6.5.3 (Czimek—Rodnianski obstruction-free characteristic gluing). For any Cg > 0 and
integer m > 0, there exist constants C, > 0 and €9 > 0 such that the following holds. Let x be
ingoing null data on an ingoing cone C' = [—ﬁ, ﬁ]u x S? solving the null structure equations and

Bianchi identities, and xo be C2C2t™ sphere data. Let x1 be the sphere data in x corresponding to

171



u=20. Let
(AE,AP,AL,AG) = (E,P,L,G)(z2) — (E,P,L, G)(z1)

be the difference of the conserved charges of xo and x1. If the data sets satisfy the smallness condition

lz — m||x+(g) + lze — mallxm <e (6.5.1)

for some 0 < g, < €9, where m is reference Minkowski null data* and my is reference Minkowski

sphere data, and the following “coercivity” conditions on the charge differences

AE > Cgey, (652)
|AL| < €2, and (6.5.3)
|AP| + |AG| < C.AE, (6.5.4)

then there is a solution x € X(C) of the null structure equations along a null hypersurface C =
[1,2], x S? such that
z(l) =2, =x(2) =22, (6.5.5)

and

[z —m|lxne oy + 2] —millx S llz —mflxe o) + |22 — mallam.

The sphere data x} is obtained by applying a sphere diffeomorphism and a transversal sphere per-

turbation to x1 inside of C. See [ACR23b; CR22] for the precise definitions of these terms.

Remark 6.5.4. The matching condition (6.5.5) is to order C?*™ in directions tangent to the cone.

Since all hypotheses in Theorem 6.5.3 are open conditions, we immediately have:

Corollary 6.5.5. If the sphere data set xo satisfies the hypotheses of Theorem 6.5.3, there exists

an €, > 0 such that if To is another sphere data set such that

||.i’2 — .’Ezllxm <e€

for some 0 < e < gy, then the conclusion of the theorem holds for Zo in place of xs.

4That is, reference Minkowski sphere data defined along the ingoing cone C. See [ACR23b] for details.
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6.6 Proofs of the main gluing theorems

6.6.1 Gluing an almost-Schwarzschild sphere to a round Schwarzschild

sphere with a larger mass

In this subsection, we prove the main technical lemma of the chapter. In essence, we show how to
decrease the mass of a Schwarzschild sphere (going backwards in time) by an arbitrary amount, with

an arbitrary small error.

Proposition 6.6.1. Given any 0 < M, < M, R > 0, integer m > 0, and any ey > 0, there ewists
ad > 0 and null data x on C{O’H = [0,1] x 5% solving the null structure equations and Bianchi

identities such that

bs(z(1)) = sm,r (6.6.1)

and

165(2(0)) — sar.,rllxm < ey, (6.6.2)

where b is the boost operation defined in Definition 6.3.3 and X™ is the sphere data norm appearing

in Theorem 6.5.3.

The proof of the proposition is given at the end of this subsection. We first give a general

construction of seed data ;j compatible with the hypotheses of Lemma 6.3.6.

Lemma 6.6.2. Let C be as in Section 6.3.1.5. Let 5 be a Riemannian metric on S2. There erists
an explicitly defined smooth assignment 4 — 4, where b is a traceless (1,1)-S-tensor field along C,

such that for any A € R,

ﬁAB = 510 exp(Ah)° 5 (6.6.3)

defines a Riemannian metric for each v, satisfies condition (6.3.4), and 5}(1) = 4. Here 7 is defined

along C' according to Dy = 0. We have
Ougan = Macdsh s (6.6.4)
and the inverse metric is given by
gAB _ (5[1)“3 = (774 exp(—\p) P = (57 1)BC exp(—Ah)Ac. (6.6.5)

Proof. We first fix some cutoff functions. Let x € C2°(0, %) be nonnegative and not identically zero.

173



Let x1 = x(v) and x2(v) = x(v — 3). Let p; be the north pole of S2, ps the south pole, and set

U; =82\ {pi} for i = 1,2. Let f; € C°(U;) and fo € C°(Us) be such that fZ + f2 =1 on S2.
Let (91,9%) be a coordinate chart covering Uy, (93,9%) be a coordinate chart covering Us, and
set

loziidﬂ%@%—dﬁf@%onm.

As matrices, these tensor fields are given by diag(1l, —1) in the respective coordinate systems.

We now claim that the symmetric (0, 2)-tensor fields
hiap = % <’~YAC]O%'CB +’~YBC;11‘CA)

are nowhere vanishing on their respective domains of definition. This follows from the fact that

N 0 0
hian =7 617"617“ )

where no summation is implied. Since 7 is positive definite, we must at each point have both h;1;
and h;oo nonvanishing, so h; is always nonvanishing. Let h? be the (1,1)-tensor field obtained by

dualizing h; with 7. We then finally define
b= X falhal5 RS+ xafalhal5 hS. (6.6.6)

It is clear that trh = 0 and that b’ is symmetric, where b is taken relative to 7.
We now show that (6.6.3) defines a Riemannian metric. Viewing h as an endomorphism 7.5% —

TS?, the power series

exp(Ah) = > (AD)" (6.6.7)

n=0

converges and defines a smooth family of endomorphisms.
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To verify that ¢ is symmetric, we examine (6.6.7) term by term:

Fac (A B = A3 ap, b1 p, o 2, - hP1p pPn g

= N'9p, 0,07 a0 p, - 9Pt p HP g

~ D D Dy 1 yDn
=N'"Yp, 10,07 D0 Dy T AT

N D D Dy 1 oD
=N"3p, D0 D0 2Dy T g T 4

= JBc (M) 4,

where we used the symmetry of h” repeatedly. That 5} is positive definite follows easily from the fact
that at the origin of a normal coordinate system for 7, 5} ApB is the matrix exponential of a symmetric
matrix, and hence positive definite.

To show that (6.3.4) is satisfied, we use Jacobi’s formula to calculate
det ¢ = det ¥ exp(Atrh) = det

relative to any coordinate system, where we used trh = 0. We conclude that the volume form of j
satisfies

Observe that since D(dpy) = 0 by definition of 4 along C, (6.6.8) implies
0 = D(duy) = 5 try(Dg) duy,

SO Dj is j—traceless.
To prove (6.6.4), we use the fact that h(v) and h(v') commute for any v and v’ sufficiently close

to simply differentiate (6.6.3):
Dgap = dufan = vac exp(Ah)“ pAdsh” 5 = Afacduh s.

The formula (6.6.5) is immediately seen to hold. O

Remark 6.6.3. By the Poincaré—Hopf theorem, the shear x must vanish at some point on each

S, C C. Equivalently, any b for which (6.6.3) satisfies condition (6.3.4), must vanish at some point
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on each S,. In order to satisfy (6.6.9) below, this zero cannot stay along the same generator of C.

The simplest solution to this problem is the two-pulse configuration above.

With this general construction out of the way, we begin the proof of Proposition 6.6.1 in earnest.
We specialize now to the case of 4 = «, the round metric on the unit sphere.

Convention. We now introduce a parameter § > 0 satisfying 0 < § < Jp, where g > 0 is a
sufficiently small fixed parameter only depending on M,, M, R and the fixed choices of x, Uy, Us, f1,

and fo. We will further use in this section the notation that implicit constants in <, 2, and ~ may

~) ~?

depend M,, M, R and x, U1, Us, f1, and fo. We also use the notation <

~.

i, 24, and =2; if the implicit

constants in <, 2, and & depend on an additional parameter j.

~) A~

Lemma 6.6.4. The geometric quantity e, defined in (6.3.14), satisfies

W/O edv=0 (6.6.9)

and

Vel <5 A2 (6.6.10)
for j > 0.

Proof. We have

e = g0 50uhT 4 = 537 ()7 + (x2)*13)
by (6.3.9), (6.6.5), and (6.6.6). Therefore, we have
Ve =102 (Y12 + (Y 2)
which immediately proves (6.6.10). To prove (6.6.9), we note that
1 1 1
| Qars+ 02y ao= (24 4) [ 0rav= [k

which is independent of the angle on S2. O

Along [0,1] x S% we impose the gauge condition Q% =1 and at v = 1 we impose

try(l) = 52 (1 - 2M) . (6.6.11)

The conformal factor ¢ solves Raychaudhuri’s equation (6.3.11) with final values (see (6.3.13) and
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(6.6.11))

¢(1) = Ry
2M
(1) =0 (1— —-
0.0 =5 (1- 2 )
Lemma 6.6.5. If 0 < 0 < dp and 0 < X < 6'/%, then
V(6 = R)| + Y7 0.0] S5 8+ ° (6.6.12)
uniformly on [0,1] x S? for every integer j > 0.
Proof. Integrating (6.3.11), we obtain
2M ! ,
Opp(v) =0 (1— T + | ¢edv. (6.6.13)

Assuming |¢| < 10R; in the context of a simple bootstrap argument, we see that (6.6.13) and
(6.6.10) imply
1000 <0+ A2, (6.6.14)

which implies

|6 — R| S 6+ 2% (6.6.15)

Since A? < §'/2, taking &y > 0 sufficiently small closes the boostrap and (6.6.14) and (6.6.15) hold
on [0, 1]. Commuting (6.3.11) repeatedly with ¥ and arguing inductively using (6.6.14) and (6.6.15)

as the base cases, we easily obtain (6.6.12). O

Lemma 6.6.6. Fiz an angle 6y € S?. For 0 < § < &g, the function

A — trx(0,00; \)

is monotonically increasing.

Proof. Since Q = 1 identically, Raychaudhuri’s equation (6.2.4) becomes

dptrx = —2X%e; — S(trx)?, (6.6.16)
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where e; = £9,b" 39,h” 4. Taking the 9, derivative of (6.6.16) gives
Oy (Ontr X) = —4Xe; — trx (O tr )

This is at once solved for

1
O tr y(v) = Arels rx / e~ o trxd” o gy

v
which is strictly positive at v =0 for A > 0. O

Lemma 6.6.7. Let 0 < 6 < &g and 0 < XA < 6%, Then tr x is monotonically decreasing along each
generator and

inf try >+ A2 (6.6.17)
[0,5]%52

Proof. Monotonicity of tr x follows at once from Raychaudhuri’s equation (6.6.16). We can imme-

diately integrate (6.6.16) to obtain

/

2 2M l / 1 l "
trx(v) =04 <1 - R> 4 2AZed Ju trxdy / e for X’y gy (6.6.18)

By (6.6.12), trx <8+ A2 <62 < 1, s0 (6.6.18) implies (6.6.17). O

Lemma 6.6.8. Fiz an angle 0y € S%. For 0 < & < &y, there exists a unique Ao = \o(8) € (0,5'/*)

(depending also on 6y) such that

2 2M,
trx (0, 60: Ao) = 0 (1 - ) (6.6.19)

which also satisfies

Ao (0) ~ 61/2. (6.6.20)

Proof. Let
4 1
c= R(M —M,) and C = 2/ e1(v, ) dv.
0

Then the condition (6.6.19) becomes (see (6.6.11) and (6.6.16))
1
c6 =CN\ + %/ (tr x)? dv. (6.6.21)
0
Combining (6.6.12) with (6.6.17) shows immediately that (6.6.21) can be achieved by a Ag(d) satis-
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O

fying (6.6.20).
From now on, we always take A = A\g(d) as constructed in Lemma 6.6.8. With this A, our main

(6.6.22)

estimates (6.6.12) are improved to:
Vel + V(¢ = R)| + |V trx| + 6'2[V/X| <, 6

for any j > 0 and uniformly on [0, 1] x S2. Importantly, we also have

Lemma 6.6.9. Let 0 < 6 < dg. Then,
¥ trx(0)] 5, 07 (6.6.23)
atv =0 for j > 1. Hence,
‘Wj (trx(()) - 5% <1 - 2%))’ <; 62 (6.6.24)

forallj >0 atv=0.
Proof. Applying ¥ to (6.6.16), integrating in v, and applying (6.6.9) yields

. 1
V7 trx(0) = —%/ vV (tr x)? dv.
0
We arrive at (6.6.23) after applying (6.6.22). This also proves (6.6.24) for j > 1. For j = 0, we
integrate (6.6.23) along geodesics emanating from 6y and use (6.6.19). O

The remaining sphere data at v = 1 is now specified as follows:

trx(1) = —%%
x(1)=0
n(1) =0

Combining everything and using the null structure and Bianchi equations to solve the rest of the

system, we have
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Lemma 6.6.10. For 0 < § < §y we have at v =20

7 (0 -0 (1- 55 )) | +o

; ; 12
—1/2 w7 J L4
+4 |Y7n+‘y7 (trx+6R>

Y (g~ BPy)| + 67

(3

+ 51/2|WJX| +§_3/2|Wjﬁ|

+671/2

v’ <p+ = )’ + 67 2V o + VB + 62 Y al + [V wl + 6|Y Dw| S5 1 (6.6.25)
for every 7 > 0 and

x(0) =0, a(0) = 0. (6.6.26)
The terms in (6.6.25) are displayed in the order in which they are estimated.

Proof. The proof follows the procedure of [Chr09, Chapter 2|, which we now outline. The first term
is estimated using (6.6.22). The second term was estimated in (6.6.24). The third term is estimated

using the formula

Ky =672 (K; — &;log ).

Note that the first and third terms are estimated by 6'/2 on the whole cone, but are improved at
v = 0. To estimate the fourth term, the transport equation (6.2.8) combined with the Codazzi
equation (6.2.19) and (6.1.1) yields

Ouna +trxna = (divx)a — Yatrx.

Now || can be estimated using Gronwall’s inequality and (6.6.22). To estimate the fifth term, the

transport equation (6.2.14) is combined with the Gauss equation (6.2.18) to give
Optrx +try try =—2K —2divy + In|%.
Gronwall gives [tr x| < d~!, which then easily implies the desired estimate by Gronwall applied to

12 , 12
(Op +try) <trx+ 6R) = 2K —2divn + |n| Jrgﬁtrx.

To estimate the sixth term, apply Gronwall directly to (6.2.16). The first variation formula (6.3.12),
the second variation formula (6.2.6), and (6.6.4) imply (6.6.26). The seventh term in (6.6.25) is
estimated directly from the Codazzi equation (6.2.19). The eighth term is estimated directly from

the Gauss equation (6.2.18). The ninth term is estimated directly from the curl equation (6.2.21).
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The tenth term is estimated using Gronwall and the Bianchi equation (6.2.24). The eleventh term is

estimated by using the Einstein equations (6.2.1) and the first variation formula (6.2.2) to compute
0=Dtra=trDa—2Q(x, ).
Combined with the Bianchi identity (6.2.23), this yields
vaap — (X.a)gas — strxaap = —(V@B)ap +5(n® B)as — BXapP + 37 X450

from which the desired estimate follows by Gronwall. The twelfth term is estimated by integrating
(6.2.10) and the thirteeth term is estimated by integrating (6.2.22). O

We are now ready to prove the main result of this subsection.

Proof of Proposition 6.6.1. Let z'°¥(v), v € [0,1], be the null data constructed above. We have

2 2M 12
low _ 2 “ s L
T (1)—<1,R%5R (1 R),(x 5R,0,...,0>

and we set z18%(1) = 0. Immediately from the definition of the boost bs in Definition 6.3.3, we have

defined

(6.6.1).
Since Q2 = 1 along C and ¥ is compactly supported away from v = 0, we have x"2"(0) = 0. The
boost bs changes every positive power of § on the left-hand side of (6.6.25) into a negative power,

so that

165(2(0)) = $ar. rlles <5 6

for any j > 0. Therefore, taking j sufficiently large, we have

165 ((0)) = sar. . rllam S [65(2(0) = sar. rllos S 8%

where X'™ is the sphere data norm appearing in Theorem 6.5.3. Now (6.6.2) follows follows by

taking d sufficiently small. O

6.6.2 Gluing Minkowski space to any round Schwarzschild sphere

Theorem 6.6.11. Let M > 0, R > 0, and k € N. For any € > 0 there exists a solution x of
the null constraints on a null cone C1%Y such that x(1) equals sy g after a boost and 2(0) can be

realized as a sphere in Minkowski space in the following sense: There exists a C* spacelike 2-sphere
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S in Minkowski space and a choice of L and L on S such that the induced C2C¥ sphere data on this

sphere equals x(0) after a boost and a sphere diffeomorphism.

Remark 6.6.12. The sphere S can be made arbitrarily close to round and the sphere diffeomorphism

can be made arbitrarily close to the identity.

Proof. By scaling, it suffices to prove the theorem when R = 2. We first use Proposition 6.6.1

to connect bs(syr,r) to the sphere data set bs(x(0)) with M, = 5;/4 < 1. We now aim to use

Theorem 6.5.3 to connect x5 = bs(x(0)) to a sphere in Minkowski space. Let z be the usual ingoing
Minkowski null data passing through the unit sphere at u = 0.°

By a direct computation, ||z, 2 — ma|lxm ~ M,. It follows that
H.’EQ — m2||Xm < ClM* (6627)

if ey is sufficiently small, where C; does not depend on €.

We must estimate the conserved charge deviation vector
(AE,AP,AL,AG) = (E, P, L, G)(bs((0))).

By (6.6.2),
IB| + |pdivB| < &

We then compute

o (i + i) =2 (41 (3 (1-22)) (5)) o

where O(ey) denotes a function all of whose angular derivatives are < e4. It follows that for ey

sufficiently small,

AE > 3M, > M, (6.6.28)

and

|AP|+ |AL[ + [AG| S . (6.6.29)

Let and C, and ¢y as in Theorem 6.5.3 for the choice Cg = Cfl. For 0 < g < (e0/C1)*, set

5Note that Theorem 6.5.3 was formulated for C' = [1,2], X S2, but we are applying it on C' = [0, 1], X S? here,
which is merely a change of notation. We refer the reader back to Fig. 4.4 for the setup of this proof.
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g, = C1M,. Then (6.5.1) and (6.5.2) are satisfied,
|AL| < Cey = CM} < (C1 M,,)?
if ey is sufficiently small, so (6.5.3) is satisfied, and finally
|AP| + |AG| < Cgy = CM? - M, < C.AE (6.6.30)

if ey is sufficiently small, so (6.5.4) is also satisfied.
By applying Theorem 6.5.3, we obtain a null data set for which the bottom sphere ) is a sphere

diffeomorphism of a genuine Minkowski sphere data set and satisfies
! < < 1/4
21 —millx < [lw2 —maflx S gy’ (6.6.31)
which can be made arbitrarily small and hence completes the proof of the theorem. O

6.6.3 Gluing Minkowski space to any Kerr coordinate sphere in very

slowly rotating Kerr

In this section, we perform Kerr gluing for small angular momentum essentially as a corollary of the

Schwarzschild work.

Theorem 6.6.13. For any k € N, there exists a function ag : (0,00)% — (0,00) with the following
property. Let M > 0 and R > 0. If 0 < |a| < ao(M,R)M, there exists a solution x of the null
constraints on a null cone C([)O’l] such that x(1) equals nrr,q.r after a boost and x(0) can be realized
as a sphere in Minkowski space in the following sense: There exists a C* spacelike 2-sphere S in
Minkowski space and a choice of L and L on S such that the induced C2C¥ sphere data on this

sphere equals x(0) after a boost and a sphere diffeomorphism.

Proof. Again, it suffices to prove the theorem for R = 2 and M > 0 fixed but otherwise arbitrary.
Let 2:(v) and § be the associated null data set and boost parameter constructed in Proposition 6.6.1,
where M and R are as in the statement of the present theorem and ey is sufficiently small that the
argument of Theorem 6.6.11 applies.

Let 5 = 272¢as,q,2 and define ¢ by (6.6.3) with A = Ao(6) from Lemma 6.6.8. By (6.4.8), Cauchy
stability for the proof of Proposition 6.6.1, and Corollary 6.5.5, we conclude that €57 4,2 can be glued

to Minkowski space as in Fig. 4.1 for a sufficiently small. O
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6.7 Gravitational collapse to a Kerr black hole of prescribed
mass and angular momentum

In this section we give the proof of Theorem 1.1.15 and the sketch of the proof of Corollary 4.6.5.
Recall the fractional Sobolev spaces H?, s € R, and their local versions H; .. Recall also the notation

f € Hy~ which means f € Hfo/C for every s’ < s.

loc

We refer the reader back to Fig. 1.2 for the Penrose diagram associated to the following result.

Corollary 6.7.1. There exists a constant ag > 0 such that the following holds. For any mass M > 0
and specific angular momentum a satisfying a/M € [—ag, ag|, there exist one-ended asymptotically
flat Cauchy data (go, ko) € H'/>~ x H®/?~ for the Einstein vacuum equations (1.1.6) on ¥ = R3,

satisfying the constraint equations

Ry, + (trg, ko)* — |kol5, = 0 and (6.7.1)

divg, ko — %V trg, ko = 0, (6.7.2)

such that the mazimal future globally hyperbolic development (M?*,g) has the following properties:
o Null infinity T is complete.

The black hole region is non-empty, BH = M\ J~(ZT) # 0.

The Cauchy surface X lies in the causal past of future null infinity, ¥ C J=(ZT). In particular,

Y does not intersect the event horizon Ht = O(BH) or contain trapped surfaces.
e (M,g) contains trapped surfaces.

For sufficiently late advanced times v > vy, the domain of outer communication, including the

event horizon, is isometric to that of a Kerr solution with parameters M and a. For v > vy,

the event horizon of the spacetime can be identified with the event horizon of Kerr.

Remark 6.7.2. The spacetime metric g is in fact C? everywhere away from the region labeled “Cauchy
stablity” in Fig. 6.1 below. Near the set HT (see [HE73, p. 187] for notation), the spacetime metric
might fail to be C?, but is consistent with the regularity of solutions constructed in [HKM76] with
s = %f. See also [Chrl3] for the notion of the maximal globally hyperbolic development in low

regularity.
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local existence

Cauchy stability

Figure 6.1: Penrose diagram for the proof of Theorem 1.1.15. The diagram does not faithfully
represent the geometry of the spacetime near the “bottom” of the event horizon Ht (i.e., the locus
where the null geodesic generators “end”). The event horizon does not necessarily end in a point
since the distinguished Minkowski sphere is not necessarily round.

Proof. We refer the reader to Fig. 6.1 for the anatomy of the proof, which is essentially the same as
Corollary 5.6.1. The region to the left of H™T is constructed using our gluing theorem, Theorem 6.6.13,
and local existence (in this case we appeal to [Luk12]). The region to the right of the horizon, save
for the part labeled “Cauchy stability” in Fig. 6.1, is constructed in the same manner. These two
regions can now be pasted along v = 0 and the resulting spacetime will be C2.

We can now use a Cauchy stability argument to construct the remainder of the spacetime. A
very similar argument in carried out in Lemma 5.6.3, but the lower regularity of our gluing result
in the present proof forces us to use slightly more technology here. As in Lemma 5.6.3, we take the
induced data (g, k«) on a suitably chosen spacelike hypersurface X, passing through the bottom
gluing sphere. See Fig. 6.1. This data lies in the regularity class le/C% X HISO/C% by part (i)
of Lemma 6.7.3 below and satisfies the constraint equations. The cutoff argument presented in
Lemma 5.6.3 goes through using (ii) of Lemma 6.7.3 and the low regularity well-posedness theory in
[HKM76]. Note that for simplicity we have applied well-posedness in the class Hﬁ’; X H12o; because of

a loss of half a derivative in our Hardy inequality argument below, but since (g«, k«) actually lies in

« H5/27

. . . . . 7/2—
, the spacetime metric has regularity consistent with H loc

loc

the better space H170/C27 X HIE;/sz

initial data by propagation of regularity.

To show that (M, g) contains trapped surfaces, it suffices to observe that D(Qtry) < 0 on
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€0ssap,rs for ag sufficiently small by (6.4.8) and (6.2.15).°
Having constructed the spacetime, we can finally extract a Cauchy hypersurface 3, which com-

pletes the proof. O

Lemma 6.7.3. Let f and g be functions defined on By C R3, the ball of radius two, such that
f € C*(Ba), flp, € C*(B1), flppm € C*(B2\ B1), g € CY(Ba), glp, € C*(B1), and glp, 5, €
C?(By\ By). Then:

(i) (f.9) € H'*~ x H**>"(By).

(#i) Suppose that f = g = 0 identically on By. For 0 <e < %, let 0. be a cutoff function which is

equal to one on Byy. and zero outside of Bay.. Then fo = 0.f and g. = 0.g satisfy

;l_r% ||(f57ge)||HS><HS—1(Bz) =0 (6.7.3)

for any s < 3.

Proof. The proof of (i) follows in a straightforward manner from the physical space characterization
of fractional Sobolev spaces (such as in [DPV12]) and is effectively an elaboration of the fact that
the characteristic function of By lies in H/2~.

Proof of (ii): Using Taylor’s theorem as in Lemma 5.6.3, we see that ||(fz, gc)||m2x a1 (By) — 0 as

€ — 0. By iterating Hardy’s inequality, we see that

2
P s | L [ plos? v + 0%
B, Bit2:\Bite € B
so (f-,ge) is bounded in H® x H2. We now obtain (6.7.3) by interpolation. O

Remark 6.7.4. In fact (6.7.3) holds for s < %, but this requires a fractional Hardy inequality.

We now sketch the proof of Corollary 4.6.5 and refer the reader back to Fig. 4.7 for the associated

Penrose diagram.

Sketch of the proof of Corollary 4.6.5. Using Theorem 6.6.11, we glue Minkowski space to a round
Schwarzschild sphere of mass 1 and radius R=2 —¢ for 0 < e <« 1. As ¢ — 0 (perhaps only along
a subsequence €; — 0), the gluing data converge to the horizon gluing data used in the proof of

Corollary 6.7.1, in an appropriate norm. It then follows by Cauchy stability that the spacetimes

6For convenience, we have deduced the presence of trapped surfaces in very slowly rotating Kerr perturbatively
from Schwarzschild. However, it is well known that any subextremal Kerr black hole contains trapped surfaces right
behind the event horizon, and one may invoke that fact instead since the spacetime metric constructed here is C?
across the event horizon H 7.
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constructed by solving backwards as in the proof of Corollary 6.7.1 contain the full event horizon,

for € sufficiently small. O
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Chapter 7

Revisiting the charged Vaidya

metric

In this chapter, we introduce Ori’s bouncing charged null dust model [Ori91]. We then show that
Ori’s model exhibits extremal critical collapse and can be used to construct counterexamples to the
third law of black hole thermodynamics. Later, in Chapter 8, we will then show that these dust
solutions can be (in an appropriate sense) globally desingularized by passing to smooth solutions of
the Einstein-Maxwell-Vlasov system. The constructions in this section are crucial to motivate the

choice of initial data in the proof of Theorem 1.2.1 in Chapter 8.

7.1 Ori’s bouncing charged null dust model

We begin by recalling the general notion of charged null dust from [Ori91]:

Definition 7.1.1. The FEinstein—-Mazwell-charged null dust model for particles of fundamental
charge ¢ € R\ {0} consists of a charged spacetime (M, g, F), a future-directed null vector field

k representing the momentum of the dust particles, and a nonnegative function p which describes
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the energy density of the dust. The equations of motion are

Ry — 3Rgu =2 (T + Ty), (7.1.1)
V¥F o = ¢epky, (7.1.2)

kYN k* = e P! kY, (7.1.3)
V,u(pk") =0, (7.1.4)

where M was defined in (2.1.17) and T, = pk,.k, is the energy-momentum tensor of a pressureless

perfect fluid. By the forced Euler equation (7.1.3), the integral curves of k are electromagnetic null

geodesics.

Any two functions wi,, Qin € C°°(R) determine a spherically symmetric solution to the system

(7.1.1)—(7.1.4) by the formulas

Gin[@in, Qin] = —D(V,7) dV? 4+ 2dVdr + 127, (7.1.5)
. Qin
F=— = dv Adr, (7.1.6)
. . . —1
. . . )2 . .
k ﬁ .L (wln _ anQlD) (_8T)’ p ﬁ (Q21n2) <wln _ anan) , (71.7)
Qin T e“r r

where - denotes differentiation with respect to V' and

2win(v) + Qin(V)2 ]

D =1-
(V,r) . 3

The metric (7.1.5) is known as the ingoing charged Vaidya metric [PS68; BV70] and describes a
“time dependent” Reissner—Nordstrom spacetime in ingoing Eddington—Finkelstein-type coordinates
(V,r,9,¢). The spacetime is time oriented by —d,.. The metric (7.1.5) and Maxwell field (7.1.6) are
spherically symmetric and may therefore be considered as a spherically symmetric charged spacetime
in the framework of Section 2.1. One easily sees that D =1 — 277", Q = Qin, and w = wi,.

We will always make the assumption o, > 0 so that TH” = pk*kY satisfies the weak energy
condition for r sufficiently large. We also assume that ¢ > 0 and impose the condition Q;, > 0 on
the seed function Qj,, which just means that positively charged particles increase the charge of the
spacetime. (If ¢ < 0, we would instead assume Qin < 0 and the discussion would otherwise remain

unchanged.)

189



We define a function r, = r,(V), called the bounce radius, by

QinQin

Win

Tbi

whenever @;,(V) > 0. The reason for this terminology will become clear shortly. By inspection
of (7.1.7), we observe the following: For r > ry(V), (gin, F} k, p) defines a solution of the Einstein—
Maxwell-charged null dust system, k is future-directed null, and p > 0. If r,(V)) > 0 and r N\, mp(V),
then k and T9%* vanish. If also Qi,(V) > 0, then p blows up at r = r,(V), but pk is nonzero and
bounded. Finally, for r < 7,(V), k is past-directed null and p < 0, so T9" violates the weak energy
condition.

Physically, the ingoing Vaidya metric and (7.1.7) describe an ingoing congruence of radial charged
massless dust particles which interact with the electromagnetic field that they generate. One can
interpret the vanishing of k as the dust being “stopped” by the resulting repulsive Lorentz force.
Integral curves of k are ingoing radial electromagnetic null geodesics v(s) with limit points on the
bounce hypersurface ¥y, = {r = r,} as s — 0o. The charged null dust system is actually ill-posed
across Y, since the transport equation (7.1.3) breaks down there. Because of this, Ori argued in
[Ori91] that the ingoing charged Vaidya metric (7.1.5) (and the associated formulas in (7.1.7)) should
only be viewed as physical to the past of ¥}, and must be modified if we wish to continue the solution
beyond y,.

Remark 7.1.2. The divergence of p along ¥, does not seem to have been explicitly mentioned by
Ori, but it is one of the fundamentally singular features of charged null dust. One can also see
that p can blow up if Qin /Qin blows up as a function of V', which occurs if the dust is injected into

Minkowski space.

Remark 7.1.3. Before Ori’s paper [Ori91], the “standard interpretation” [SI80; LZ91] of the ingoing
Vaidya metric (7.1.5) did not actually involve Maxwell’s equation and the fluid equation was simply
taken to be the standard geodesic equation. The set {r < r,} was included in the ingoing solution
and the dust was thought to violate the weak energy condition in this region. We refer to [Ori91]

for discussion.

In order to continue the dust solution across ¥p, we must make some further (nontrivial!) as-
sumptions on the seed functions wi, and Qi,. In order to not trivially violate causality, we must
demand that X, is spacelike, so that the “other side” {r < r,} of X}, does not intersect the past of
Y}. This is equivalent to

D -2/, <0 on . (7.1.8)
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We further assume that ¥}, does not contain trapped symmetry spheres, which is equivalent to

D>0 onXy. (7.1.9)

By examining the behavior of almost-radial electromagnetic null geodesics in Reissner—Nordstrom,
Ori proposed the following bouncing continuation of the solution through X: it should be as an

outgoing charged Vaidya metric. This metric takes the form

Jout [Touts Qout] = —D(U,r)dU? — 2dUdr + r*~, (7.1.10)

where

2Wout (U) + Qout (U)2

DWU,r)=1-—
7( aT) r 7/-2

)

for free functions we, and Qoyut. The coordinates (U, r, 9, ) are now outgoing Eddington—Finkelstein-
like. Ori defined a procedure for gluing an outgoing Vaidya metric to the ingoing Vaidya metric

along Yy, by demanding continuity of the second fundamental form of 3}, from both sides. One sets

(wouta Qout)(U) = (wina Qin) © gil(U)a

where the gluing map G = G(V) is determined by

dg _ D(V,rp(V)) = 2/,(V)
av - DVin(V))

(7.1.11)

up to specification of the (unimportant) initial condition. Notice that G is strictly monotone de-
creasing on account of (7.1.8) and (7.1.9). It turns out that this continuation preserves the weak
energy condition through ;. We formalize this choice of extension of the Vaidya metric with the

following

Definition 7.1.4. Let w;, and @, be nondecreasing charged Vaidya seed functions such that
spt(@in) = spt(Qin) = [Vi, Vo] and 7y, is well-defined and positive on [V, Va]. Assume also the
conditions (7.1.8) and (7.1.9). Ori’s bouncing charged null dust model consists of the ingoing charged
Vaidya metric giy[@in, Qin] on M, = {V € spt(com),r > r,(V)} x S? with spacelike, untrapped
bounce hypersurface L = {V € spt(coin), 7 = m,(V)} x S? glued to the outgoing charged Vaidya
metric gout[@in © G, Qin 0 G on Moy = {U € spt(cous), 7 > 1, 0 G H(U)} x S? with spacelike,

untrapped bounce hypersurface X" = {U € spt(ciout),” = (G H(U))} x S? along the map
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Yout [woutz Qout]

b

/) RN (w2, Q2)

RN (thl)

Jin [wina Qin]

Figure 7.1: Penrose diagram of Ori’s bouncing charged null dust model. The geometry of the beams
is described by the ingoing and outgoing Vaidya metrics, gi, and gout, which are related by the gluing
map G. The spacetime to the left and right of the bouncing beam is described by the Reissner—
Nordstréom solution, with parameters (wy, Q1) and (w2, Q2) with w; < wy and @1 < Q2. The
endpoints of ¥y, correspond to symmetry spheres in these Reissner—-Nordstrom spacetimes with radii
r1 < ro. In this diagram, the V coordinate is normalized according to the ingoing solution. We
have depicted here the case of a totally geodesic bounce hypersurface ¥y, and the outgoing beam is
exactly the time-reflection of the ingoing beam.

g xid, : " — ¥9" defined by (7.1.11). Outside the support of the dust, Ori’s bouncing charged
null dust model extends by attaching two Reissner—Nordstrom solutions with parameters (wwy, Q1) =

(Win, Qin) (V1) and (w2, Q2) = (win, Qin)(V2) as depicted in Fig. 7.1.

The model can be generalized to allow for multiple beams of dust by iterating the above definition

in the obvious manner.

7.2 The radial parametrization of bouncing charged null dust
spacetimes

It is not immediately clear that interesting seed functions wi, and Q;, satisfying the requirements
of Definition 7.1.4 exist. Therefore, it is helpful to directly prescribe the geometry of ¥, and the
dust along it in the following sense. Given a spacetime as in Fig. 7.1, we can parametrize X, by the
area-radius function r. Then the renormalized Hawking mass w and charge (), which are gauge-
invariant quantities, can be viewed as functions of r on Xy, and we wish to prescribe these functions.
We will also prescribe Xy, to be totally geodesic. While not essential, this condition greatly simplifies

Proposition 7.2.3 below and will later play a key role in our Vlasov construction in Chapter 8.

Definition 7.2.1. Let P denote the set of points (11,72, @1, ™2, Q1,Q2) € RY, subject to the
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conditions

0<ri<ry, Q1<Q2 wi<ws (7.2.1)
21wy > Q2 (7.2.2)

271 (wy — 1) < Q3 — Q% < 2ry(wy — @), (7.2.3)
Terﬁrrlglrz](rlrz — 27 + Qir — Q3r + Q3ry) > 0. (7.2.4)

Elements of P will typically be denoted by the letter o and are called admissible parameters. Let U
denote the set of triples (o, &7, Q) € P x C*°([0,00)) x C*([0, 00)) such that the functions @ = o (r)

and Q = Q(r) are monotone increasing and satisfy

spt(cv’) = spt(Q') = [r1,72], (7.2.5)
4 P(r) = QTi@(r) (7.2.6)
dr dr ’
w(r1) = w1, Q(Tl) =Q1, w(r2) = w2, Q(T2) = @2, (7.2.7)

where ’ denotes differentiation with respect to r.

Remark 7.2.2. In the proof of Theorem 1.2.1 we will employ the regular center parameter space Pr,

consisting of those o« € P with w; = @1 = 0.

Proposition 7.2.3 (Radial parametrization of bouncing charged null dust). Let («, @, Q) €0, and

define strictly monotone functions V,U : [r1,r2] = R by
V(r) = —U(r) :/ D) dr,
T

where D(r) =1 — 2%(” + % Then:

1. The seed functions (win, Qin) = (20, QV)oV*1 and (wWout, Qout) = (0, Q) o™ define a bouncing
charged null dust spacetime as in Definition 7.1.4 with gluing map G(V) = =V and bounce
radius ry, (V) = V=1(V).

2. The bounce hypersurface ¥y, is spacelike and untrapped. With the setup as in Fig. 7.1, the
left edge of 3y, has area-radius r1 and Reissner—Nordstrom parameters (w1, Q1) and the right
edge has area-radius ro and Reissner—Nordstrom parameters (ws, Q2). The Hawking mass m

s nonnegative on Xy.
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8. The bounce hypersurface Xy, is totally geodesic with respect to gin and Gout-

Proof. We must check that wi, = @ o V™! and Qi = @Q o V! satisfy the assumptions of Defini-

tion 7.1.4. Using the chain rule and (7.2.6), we compute

_ QW (V)R VTHV)) -
(V) = S -1V)) =V V).
Differentiating, we obtain
(V) =DWV™H(V)) = D(V,r,(V)), (7.2.8)

which implies that dG/dV = —1. To prove (7.1.9), we show that D(r) > 0 for r € [rq,r2]. Integrating

(7.2.6) in r and integrating by parts yields

w(r) =w + % /TT li/Qq(r’) dr' = wy + Q*(r) _ 9 + % /T: Q2(;/) dr'. (7.2.9)

L rdr 2r 27 7/

Using condition (7.2.4) and Q < Q2, we then find

2 oS 92 2 2 1 r N2/
Diry=1- 220 &) gL () 4
T r r rr r Sy T
> — (rr® = 2wy + Qfr — Q3 + Q3r1) >0 (7.2.10)
1
for » € [r1,7r2]. This proves (7.1.9) and since D — 27, = —D, also proves (7.1.8). Condition

(7.2.2) implies that the Hawking mass is nonnegative at 1. Finally, that %, is a totally geodesic

hypersurface is shown by directly computing its second fundamental form and using (7.2.8). O

The definition of 9 involves many more conditions than just (7.1.8) and (7.1.9) alone, but it

turns out that these are relatively easy to satisfy. In particular, we have:

Proposition 7.2.4. The natural projection map LB — P admits a smooth section ¢ : P — 0.
In other words, given any smooth family of parameters in P we may associate a smooth family
of bouncing charged null dust spacetimes attaining those parameters, with totally geodesic bounce

hypersurfaces.

Remark 7.2.5. In the remainder of the dissertation (in particular, Chapter 8), we fix the choice of

section to be the one constructed in the proof below.
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Proof. Define a smooth, surjective function 1 : R — (0, 1) by

1
1+exp [—(x — f)e(f—f)z] '

w(%ﬁ) =

Note that for each fixed £ € R the function z — ¥(x, £) is strictly monotone increasing and surjective.
Moreover, for € R we have 9(z,£) — 0 as £ — oo and ¥(z,£) — 1 as £ — —oo.

We now define the function @ : (r1,73) x R x P — R by

Q&) = Qi+ (@ - Qw10 (1) ¢) (r2.11)

ro —

By construction of 1, the function @ extends smoothly to [0, 00) x R x P by setting Q(r, &, a) = Q,
for 0 <r <7 and Q(r, &, @) = Qy for r > 1.
With our family of candidate Q’s at hand, we aim to satisfy the constraint ¢o(rs) = ws, where

w(r) is defined by (7.2.9). Consider the smooth map IT: (§,a) € R x P — R defined by

2 2 T2 ()2( !
H(&a)iwl'i_*z_*l-i- Mdﬂ.

2
- 2r

Since 1) satisfies g—? < 0 on R?, we have that %—? < 0 on R xP. Moreover, using the pointwise limits
of v, a direct computation gives
Q  QF : 5 QF

lim II = == - = | II = PP
gl>nolo (Oé,g) w1t 2T2 27‘27 5—112100 (0175) w1t 2’)"1 2’/”1

By condition (7.2.3), this implies that
lim (e, &) < we < lim II(a,§).
E—o0 £——o0

Thus, the intermediate value theorem and the fact that %—? < 0 show that there exists a unique
&(a) such that I(a, £(a)) = we. Moreover, a direct consequence of the implicit function theorem is
that the assignment P 3 o — &(a) € R is smooth. The above construction shows that the functions

Q(r,&(a), ) and o satisfy all required properties. O

The set P is defined by simple polynomial relations and includes many interesting examples as

we will see in the next two sections.
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A < A, dispersion A = \,.: extremal BH A > \,: subextremal BH
+
i

Q N no trapped N trapped
N 0’3’x region N 0’3’x region

O/ ’ Minkowski O// Minkowski

1 2 2

Figure 7.2: Penrose diagrams of extremal critical collapse in Ori’s bouncing charged null dust model.
Compare with Fig. 1.6. In Theorem 7.3.2, A, = 1.

7.3 Extremal critical collapse in Ori’s model

The first application of Propositions 7.2.3 and 7.2.4 is the construction of one-parameter families
of bouncing charged null dust spacetimes exhibiting extremal critical collapse. We first show that
the regular center parameter space Pr contains elements with arbitrary final Reissner—Nordstrom

parameters:

Lemma 7.3.1. Let ws, Qo > 0. Then there exist 0 < r1 < 1o such that (r1,72,0,w2,0,Q2) € Pr.

If wo > Q2, then ro can moreover be chosen so that ro < wo — \/wg — Q%.

T1iQ2(2Qw22—€), TziQ2<2Qw22+€),

where € > 0 is a small parameter to be determined. With this choice, (7.2.3) is clearly satisfied. Let

Proof. Let

p(r) =rir? — Q3r + Q3r; and observe that

limp(Q%> —Q—g>0.

e—0 2w09 8@5’

It follows that (7.2.4) is satisfied for e sufficiently small. If z > 1, then (22)~! < z — V22 — 1, so

taking £ perhaps smaller ensures that ro < wy — /w3 — Q3. O

Using this, we can show that Ori’s model exhibits extremal critical collapse. Compare the

following theorem with Theorem 1.2.1 and refer to Fig. 7.2 for Penrose diagrams.
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Theorem 7.3.2. For any M > 0 and fundamental charge ¢ € R\ {0}, there exist a small parameter
d > 0 and a smooth two-parameter family of reqular center parameters {cx am} C Pr for X € (0,2]
and M'" € [M —§, M 4] such that the two-parameter family of bouncing charged null dust spacetimes

{Dx,m}, obtained by applying Proposition 7.2.3 to ¢(ax mv), has the following properties:

1. For 0 < A < 1, Dy pp is isometric to Minkowski space for all sufficiently late retarded times

u and hence future causally geodesically complete. In particular, it does not contain a black

hole or naked singularity, and for A < 1 sufficiently close to 1, sufficiently large advanced

times v > vy and sufficiently small retarded times u < ug, the spacetime is isometric to an
appropriate causal diamond in a superextremal Reissner—Nordstrom solution. Moreover, Dy ap

converges smoothly to Minkowski space as A — 0.

2. X =1 is critical: D1,y contains a nonempty black hole region BH and for sufficiently large
advanced times v > vg, the domain of outer communication, including the event horizon H™T,
is isometric to that of an extremal Reissner—Nordstrom solution of mass M'. The spacetime

contains no trapped surfaces.

3. For 1 < A < 2, Dy contains a nonempty black hole region BH and for sufficiently large
advanced times v > vy, the domain of outer communication, including the event horizon H™T,
is isometric to that of a subextremal Reissner—Nordstrom solution. The spacetime contains an

open set of trapped surfaces.

In addition, for every A € [0,2], D, mv is isometric to Minkowski space for sufficiently early advanced

time and near the center {r = 0} for all time, and possesses complete null infinities T+ and T~.

Proof. Using Lemma 7.3.1, choose 0 < 11 < ro < r_(4M,2M) such that (ry,72,0,4M,0,2M) € Pr.
We consider

ax = (r1,7m2,0,\2M’,0, \M") (7.3.1)

and note that ay ap lies in Pr for |A — 2| sufficiently small and |[M — M’| < ¢ sufficiently small by
the openness of the conditions defining Pr. Moreover, from the scaling properties of (7.2.3) and the
monotonicity of (7.2.4), we observe that ay p € Pp for all 0 < A <2 and [M — M'| <é.

After applying Proposition 7.2.3 to ¢(ax a) for A > 0, it remains only to show that Dy s extends
smoothly to Minkowski space as A — 0. Indeed, a direct inspection of the proof of Proposition 7.2.4
shows that &(ay ) is independent of A, so that the function r — Q(r, &(cx ar), ax ) defined in
(7.2.11) converges smoothly to the function Q =0 as A — 0. Therefore, © also converges smoothly

to the zero function and hence D) »s;s converges smoothly to Minkowski space as A — 0. O
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The construction in the proof of Theorem 1.2.1 can be thought of as a global-in-time desingu-
larization of this family of dust solutions. In fact, we will make essential use of the one-parameter

family {¢(ax av)} when constructing initial data for the Einstein-Maxwell-Vlasov system.

7.4 A counterexample to the third law of black hole thermo-
dynamics in Ori’s model

Using the radial parametrization, we can now give a very simple disproof of the third law:

Theorem 7.4.1. There exist bouncing charged null dust spacetimes that violate the third law of
black hole thermodynamics: a subextremal Reissner—Nordstrom apparent horizon can evolve into an
extremal Reissner—Nordstrom event horizon in finite advanced time due to the incidence of charged

null dust.

Proof. Apply Propositions 7.2.3 and 7.2.4 to (r1,72, w1, w2, @1, Q2) € P satisfying ro < wa, Q1 <
w1, and Q2 = ws. For example, one may take (0.85,0.88,0.56,1,0.5,1) € P. See Fig. 7.3. O

Remark 7.4.2. Since the energy-momentum tensor remains bounded in Ori’s model and the weak
energy condition is satisfied, this is indeed a counterexample to Israel’s formulation of the third law

[Isr86].

The counterexample in Theorem 7.4.1 explicitly displays the disconnectedness of the outermost
apparent horizon which is also present in our charged scalar field counterexamples to the third law
[KU22]. Note that the bouncing dust beam does not cross the subextremal apparent horizon, as is

required by (7.1.9).

Remark 7.4.3. In the example depicted in Fig. 7.3, the parameters & and Q satisfy < (r) < Q(r)
for r € (rg — €, r9) and some & > 0. Indeed, the ODE (7.2.6) implies
~ T L

Q) = 5@ 0 <)

near ro, where we have used ro < Q2. The possibility (in fact, apparent inevitability) of the Vaidya
parameters being superextremal right before extremality is reached seems to have been overlooked

in the literature [SI80; FGS17].1

IThe paper [FGS17] reexamines the third law in light of Ori’s paper [Ori91], but always makes the assumption
that the parameters satisfy Q(V) < w(V) right before extremality. Therefore, they seemingly reaffirm the third law!
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trapped RN
N
region <

extremal RN

Figure 7.3: Penrose diagram of a counterexample to the third law of black hole thermodynamics in
Ori’s charged null dust model, Theorem 7.4.1. Note that the bounce ¥, lies behind the extremal
event horizon H™T since ro < w9 and wo is the area-radius of the extremal horizon. The broken curve
A’ is the outermost apparent horizon of the spacetime. The disconnectedness of A’ is necessary in
third law violating spacetimes—refer back to the discussion in Section 1.1.3.3. A crucial feature of
this counterexample is that 3}, lies strictly between the (initially) subextremal apparent horizon and
the (eventually) extremal event horizon. Compare with Fig. 1.8.

Remark 7.4.4. If one applies the old “standard interpretation” of the ingoing Vaidya metric from
[SI80; LZ91] to the seed functions wi, (V) and Qin(V) constructed in the proof of Theorem 7.4.1,
one sees that the beam will hit the subextremal apparent horizon with a negative energy density,

which is consistent with [SI80].

Using methods from the proof of Theorem 1.2.1, the dust spacetimes in Theorem 7.4.1 can
be “desingularized” to smooth Einstein-Maxwell-Vlasov solutions. The desingularized solutions
can also be chosen to have the property that the matter remains strictly between the subextremal

apparent horizon and the event horizon and we refer back to Section 1.2.7.

7.5 Issues with the bouncing charged null dust model

While Proposition 7.2.3 allows us to construct these interesting examples, the bouncing charged null

dust model is unsatisfactory and we should seek to replace it for several reasons:

1. The model does not arise as a well-posed initial value problem for a system of PDEs. Pasting
the ingoing and outgoing Vaidya solutions together is a deliberate surgery procedure that only

works for seed functions wj, and Q;, satisfying several nontrivial and nongeneric conditions.

2. The solutions are generally not smooth along ¥, nor along any cone where @ = 0 (recall
Remark 7.1.2). The fluid density p is unbounded along ¥}, and the number current N = pk is

discontinuous across >,.
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3. Null dust is ill-posed once the dust reaches the center of symmetry [Mos17].

Nevertheless, we will show in Chapter 8 that the bouncing charged null dust model can be well-
approximated (near %), in a precise manner, by smooth solutions of the Einstein-Maxwell-Vlasov

system. See already Section 8.10.

7.6 The formal radial charged null dust system in double null
gauge

In order to precisely phrase the manner in which Einstein—-Maxwell-Vlasov approximates bouncing
charged null dust, as well as to motivate the choice of Vlasov initial data, we now reformulate Ori’s
model in double null gauge. Following Moschidis [Mos17; Mos20], we reformulate the system by
treating NV and T as the fundamental variables. By eliminating the fluid variables k and p, we can
view the ingoing and outgoing phases as two separate well-posed initial value problems, with data

posed along the bounce hypersurface. This helpfully suppresses the issue of blowup of p on Xy,

Definition 7.6.1. The spherically symmetric formal outgoing charged null dust model for particles
of fundamental charge ¢ € R\ {0} consists of a smooth spherically symmetric charged spacetime
(Q,7,92%,Q) and two nonnegative smooth functions N and T%" on Q.

The system satisfies the wave equations

QZ Q2
V2m Q2Q?
Du0,log O? = S (7.6.2)
the Raychaudhuri equations
Oy
Du <Q;> = — L2, (7.6.3)
Oyt
O (QQ ) =0, (7.6.4)
and the Maxwell equations
0uQ = —3er*Q*N", (7.6.5)
0,Q = 0. (7.6.6)
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The number current satisfies the conservation law

Dy (r’Q?NV) =0 (7.6.7)

and the energy-momentum tensor satisfies the Bianchi equation

Dy (P2 Q') = +eQ'QN". (7.6.8)

In the outgoing model, we may think of N*, T%* and T"" to just be defined as identically zero.
From (7.6.1) and (7.6.3)—(7.6.6) one easily derives

Oym = —2r2Q2T" 0, r + Q—Za r, Oym= Q—28 r (7.6.9)
u 2 v 27'2 uty v 27'2 vy
Buw = —1r2Q°T"9,r — LerQ?QNY, 9w = 0. (7.6.10)

Furthermore, if we set k¥ = TV /N, then

Q

kY0, kY + 0,log Q2 (kV)? = +er—2k”, (7.6.11)

which is the spherically symmetric version of (7.1.3) for the vector field k& = kY0,. The energy

density of the fluid is defined by p = (N?)?/T?? whenever the denominator is nonvanishing.

Definition 7.6.2. The spherically symmetric formal ingoing charged null dust model for particles
of fundamental charge ¢ € R\ {0} consists of a smooth spherically symmetric charged spacetime
(Q,7,9% Q) and two nonnegative smooth functions N* and T“* on Q. The system satisfies the

same equations as the ingoing system with u <+ v and the opposite sign in front of N*.
In the ingoing case, k% = T%*/N* and p = (N%)2/T*".

Remark 7.6.3. By (7.6.11), these formal systems define solutions of the Einstein-Maxwell-charged

null dust system (see Definition 7.1.1) whenever k and p are well-defined.

Remark 7.6.4. Inspection of (7.6.8) reveals that T"" can reach zero in finite backwards time. If
one were to continue the solution further, 7% could become negative, which shows that the formal
system actually reproduces the old “standard interpretation” of the charged Vaidya metric discussed
in [Ori91]. As we will see, because the dominant energy condition holds in the Einstein-Maxwell—
Vlasov model, only dust solutions with T"% T%" > 0 will arise as limiting spacetimes, confirming

Ori’s heuristic picture discussed in [Ori91].

201



7.6.1 The Cauchy problem for outgoing formal charged null dust

Mirroring the treatment of time-symmetric? seed data for the Einstein-Maxwell-Vlasov system in

Section 3.2.3, we make the following definition:

Definition 7.6.5. A time-symmetric seed data set Sq = (K/“’,'i’*’“’,rg, ¢) for the spherically sym-
metric formal outgoing charged null dust system consists of real numbers ro € Ry and ¢ € R\ {0},
together with nonnegative compactly supported smooth functions N and T with support con-

tained in (0, r3].

In the dust case, we define 77 and Q on [0, 5] with 172(0) = Q(0) = 0 by solving

d r? 20\ 2 . @2

=1 (1-2 oy * 6.12
a4 ( r ) T Jr27"2’ (7.6.12)
d . 1 , 20\ 7 ..

% = 527" (1 - T) N s (7613)

provided 2 < r on [0,73]. The remaining definitions from the Vlasov case, in particular Defini-
tion 3.2.10, can be carried over to dust with the obvious modification that NV = T%? = 0 along

r:

Proposition 7.6.6. Let Sq be an untrapped time-symmetric seed data set for outgoing dust. Then
there exists a unique global smooth solution (r, Q2 Q, NV, T") of the formal outgoing charged null

dust system on C,, attaining the seed data.

Remark 7.6.7. Let r1 = inf(spt V¥ Uspt 7%%). Then (r,Q2,Q) is isometric to Minkowski space for

u > —ri.

Proof. This can be proved by applying a suitable coordinate transformation to a suitable outgoing
charged Vaidya metric. However, it is instructive to give a direct proof using the evolution equations.
We pose initial data

s 2 20\ ! 2 "1, 2\ " ¢ v g
’I"(’I"):T, 9] (’I‘): 1—— s Q(’r):/ 527’ 1— — N dr’
0

r r

and for derivatives according to Definition 3.2.10, for the equations (7.6.1), (7.6.2), and (7.6.6). By

a standard iteration argument, this determines the functions (r, 2%, Q) uniquely. The existence of a

2In the Vlasov case, time symmetry referred to both the geometry of the spacelike part of the initial data hyper-
surface and the matter configuration. Since purely outgoing dust is clearly not time symmetric, it refers here only to
the geometry of the spacelike part of the initial data hypersurface.

3Since the dust here is purely outgoing, we do not have to be concerned about dust going into I'.
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global development is strictly easier than the corresponding proof in Proposition 8.2.3 once the rest

of the system has been derived and is omitted. We now define

2 4 Our
NV =~ v = _ % g %l
er2Q)? 9.Q. rQ? Ou ( 02 )

and aim to show that the rest of the equations in Definition 7.6.1 are satisfied.

To prove (7.6.7), simply rearrange the definition of N¥ and use (7.6.6). Note that the definition
of NV is consistent with N = Q~2N" by (7.6.13).

Using (7.6.1), (7.6.2), and (7.6.6), a tedious calculation yields

Du(rd2r — r,rd,log Q?) = 0. (7.6.14)

Arguing as in Proposition 3.2.12, we see that (7.6.4) holds on initial data and is therefore propagated
by (7.6.14). This proves the evolution equation 9,m = 9,7Q?/(2r?) and by using (7.6.1) once more,
we see that

Our

2
Oym = —210,10, (u) + @

ﬁ@uf

02
Comparing this with (7.6.12) and the definition of T%" yields T = Q27" as desired. Finally,
(7.6.8) is proved by directly differentiating the definition of 7"” and using (7.6.1), (7.6.2), and
(7.6.5). O

7.6.2 Outgoing charged Vaidya as formal outgoing dust

We now want to represent the outgoing portion of a regular center bouncing charged null dust beam
given by Proposition 7.2.3 in terms of the outgoing formal system. Let o € Pr, ¢(a) = (e, o, Q)
be given by Proposition 7.2.4, and consider the time-symmetric dust seed data Sq,o = (./\/g{ ,0,79,¢),
where

2

‘ry . 2 2% Q2 /
d@7+ﬁ)Q (7.6.15)

er?

For this choice of seed, the constraints (7.6.12)—(7.6.13) read

d ., @
d 2\ 2im\? .
Lo (1) (-2 e o
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spt(IVg) )

¥y, totally geodesic

Figure 7.4: An outgoing charged null dust beam obtained by applying Proposition 7.6.6 to the seed
Sa,q for parameters a = (r1,72,0, w2, 0, Q2). The electrovacuum boundary C, can be attached to a
Reissner—Nordstrom spacetime with parameters ws and Qs.

Therefore, by (7.2.6), m = 7h and Q = (@, where 1 = @ — Q2/(2r). Tt follows that the outgoing for-
mal dust solution (rq, 3, Qa, NY, T") provided by Proposition 7.6.6 on C,, is indeed the same as the
outgoing charged Vaidya metric provided by the radial parametrization method, Proposition 7.2.3.

See Fig. 7.4.
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Chapter 8

Extremal black hole formation as a

critical phenomenon

In this section, we prove Theorem 1.2.1 by constructing bouncing charged Viasov beams as in Fig. 1.5
and Fig. 1.6 with prescribed final parameters. This is achieved by a very specific choice of time-
symmetric Vlasov seed data and global estimates for the resulting developments. We give a detailed
outline of the proof in Section 8.1 and the proof itself occupies Sections 8.2 to 8.9. In Section 8.10,
we show as a consequence of the estimates in the previous sections that these bouncing charged
Vlasov beams weak™ converge to the bouncing charged null dust spacetimes of Proposition 7.2.3 in
a hydrodynamic limit of the beam parameters. Finally, in Section 8.11 we disprove the third law in

Einstein—-Maxwell-Vlasov and construct examples of “event horizon jumping.”

8.1 A guide to the proof of Theorem 1.2.1

8.1.1 The heuristic picture

The essential idea in the proof of Theorem 1.2.1 is to “approximate” the bouncing radial charged
null dust solutions from Theorem 7.3.2 and Fig. 7.2 by smooth families of smooth Einstein—-Maxwell—-
Vlasov solutions. Indeed, at least formally, dust can be viewed as Vlasov matter f(x,p) concentrated
on a single momentum p = k(x) at each spacetime point 2. One is faced with having to perform
a global-in-time desingularization of families of dust solutions which are singular in both the space
and momentum variables.

Assuming that this can be done, the heuristic picture is that of a focusing beam of Vlasov
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matter coming in from infinity with particles of mass m = 0 or m < 1 (so that the particles look
almost massless for very large time scales) and very small angular momentum 0 < ¢ < 1, which are
decelerated by the electromagnetic field that they generate. Then, along some “approximate bounce
hypersurface,” the congruence smoothly “turns around” and becomes outgoing, escaping to infinity
if a black hole has not yet formed. Along the way, the particles do not hit the center of symmetry.
By appropriately varying the beam parameters, we can construct families of spacetimes as depicted
in Fig. 1.5 or Fig. 1.6.

As should be apparent from the treatment of the Cauchy problem for the Einstein—-Maxwell—
Vlasov system in Section 3.2.3 and for charged null dust in Section 7.6, we want to pose Cauchy
data on (what will be) the approximate bounce hypersurface for the desingularized Vlasov solutions.
We will choose the initial data for f to be supported on small angular momenta ¢ ~ ¢ and so that
the charge Q and Hawking mass m profiles closely approximate the initial data for dust as described
in Section 7.6.2. The Vlasov beam which is intended to approximate charged null dust is called the
main beam.

As we will see, desingularizing bouncing charged null dust requires an ansatz for f which nec-
essarily degenerates in €. Closing estimates in the region of spacetime where @Q < ¢ is then a
fundamental issue because the repulsive effect of the electromagnetic field is relatively weak there.
We overcome this issue by adding an auxiliary beam to the construction, which stabilizes the main
beam by adding a small amount of charge on the order of > e. This beam is not dust-like, consists
of particles with angular momentum ~ 1, and is repelled away from the center by the centrifugal
force.

The goal will be to construct a smooth family of Vlasov seeds A — Sy for A € [—1,2] such
that S_; is trivial (i.e., evolves into Minkowski), Sz forms a subextremal Reissner—Nordstrom black
hole with charge to mass ratio = %, and A\, =~ 1 is the critical parameter for which an extremal
Reissner—Nordstrom black hole with mass M forms. For A € [0,2], the Vlasov development D
closely approximates the dust developments from Theorem 7.3.2 (in a sense to be made precise in
Section 8.10 below) and A € [—1,0] smoothly “turns on” the auxiliary beam. At the very end of the
proof, A is simply rescaled to have range [0, 1].

In fact, our methods allow us to desingularize any bouncing charged null dust beam given by
Proposition 7.2.4. Adding dependence on A is then essentially only a notational hurdle. We now

highlight specific aspects of the construction in more detail.
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8.1.2 Time symmetry and reduction to the outgoing case

N N N
= N = N~ = (N
) 9] 20 ) ~
et S = 1 = 0
: X : LT Z Qi
o N o 7 O ’?\//
i 0 i ? v
< \\Z < ’ KXJ - % i
? E Z+ = E iy =
2 >~ b 2 i
= ,’ = \\~?‘>< = Z\?‘
o ,/ o \\ o \\ X
I s I T 0
& 4 ~ :O © /bz

Figure 8.1: Penrose diagrams of the “maximal time-symmetric doubled spacetimes” used in the
proof of Theorem 1.2.1 when m > 0. When A > A, these spacetimes are evidently not globally
hyperbolic, but one can easily observe that the globally hyperbolic spacetimes depicted in Fig. 1.5
when A > A, are simply the above spacetimes restricted to the past of CHY U {it} UZT. The
exterior region is isometric to a subset of the maximally extended Reissner—Nordstrém solution with
parameters depending on A.

The starting point of the construction of bouncing charged Vlasov beams is the prescription
of Cauchy data on an approximate bounce hypersurface Y}, using the radial parametrization of
bouncing charged null dust as a guide. We can now see the utility of the time-symmetric ansatz
in Section 3.2.3: it reduces the problem to constructing an outgoing beam, which is then reflected
and glued to maximally extended Reissner—Nordstrém to construct a time symmetric spacetime
as depicted in Fig. 8.1 below. These “maximal time-symmetric spacetimes” are constructed in
Section 8.9.1. The globally hyperbolic developments in Theorem 1.2.1 are obtained by taking ap-
propriate subsets and identifying suitable Cauchy hypersurfaces.

The problem now reduces to constructing the region bounded to the past by Cy, ¥y, and the
center in Fig. 8.1. In this region, the solution is always dispersive. Therefore, we can actually treat
the subextremal, extremal, and superextremal cases at once. Detection of whether a black hole

forms in the doubled spacetime takes place on the level of initial data and we heavily exploit the
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global structure of the Reissner—-Nordstrom family itself in this process. Note that while we prescribe
data in the black hole interior when A < 0, there clearly exist Cauchy surfaces lying entirely in the
domain of outer communication. In fact, the solutions are always past complete and disperse to the

past. See already Proposition 8.9.9.

8.1.3 The choice of seed data

We now describe our desingularization procedure for bouncing charged null dust on the level of
initial data. Consider the outgoing portion of a charged null dust beam (rq,Q3%, Qq, Ny, T3V) as
in Section 7.6.2, with Cauchy data posed along the bounce hypersurface 3. The geometry of the
outgoing dust beam is entirely driven by the choice of renormalized number current N Vin (7.6.15).
Importantly, the energy-momentum tensor of dust vanishes identically along >,.

Since radial charged null dust has ¢ = 0, we wish to approximate dust with Vlasov matter
consisting of particles with angular momentum ¢ ~ ¢, where 0 < € < 1 is a small parameter to be

chosen. We want to choose the initial distribution function f so that

. 2 .
. - o 1 20 Q*\ dQ

w NP Ko 1 Q) 4@ 8.1.1

N4 A = AT w( : +T2) o (8.1.1)
Q~Q, wrwm, T™ T, T"=0 (8.1.2)

on Xy, as € — 0. These conditions are satisfied if we choose

. = 2 o
fam (0", p") = ﬁ (1 2,8 ) gés(p“)éa(p”) (8.1.3)

for r € [r1,7s], where 0. are approximations of the identity with support [e,2¢] and ¢ is a normal-
ization constant that depends on the precise choice of the family .. In order for the mass shell

inequality Q2p“p¥ > m? to hold on the support of f°

main’

(8.1.3) forces us to choose m € [0, mg] with

0<myKe.

Remark 8.1.1. In the full bouncing null dust model, N is discontinuous across Y. Indeed, to the
past of X}, N points in the u-direction and has a nonzero limit along Xy, but to the future points
in the v-direction and also has a nonzero limit. In the Vlasov case, time symmetry demands N be
smooth across, and orthogonal to, ¥j,. By comparing (3.2.30) with (7.6.13), we see that NU 4 NY

in Vlasov takes the role of NV in dust.

Observe directly from (8.1.3) that rffafn behaves pointwise like e73 and therefore pointwise
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main beam

auxiliary beam
~

auxiliary beam
~~

Y4, totally geodesic >y, totally geodesic

Figure 8.2: Penrose diagram of outgoing charged Vlasov beams (evolution of the seed data Sq ).
Note that the beams do not intersect when m = 0. When m > 0, one can show that they do, but it
is not necessary to do so for our purposes here.

estimates for NV and T in evolution must utilize precise estimates of the electromagnetic flow to
cancel factors of €. Closing estimates independently of € is the main challenge of this scheme and
we directly exploit the null structure of the spherically symmetric Einstein—-Maxwell-Vlasov system

in the proof. The main mechanisms ensuring boundedness of NV and T in the main beam are:

1. The angular momentum ¢ is conserved, so that ¢ ~ & throughout the main beam.

a,Ee

2. If v is an electromagnetic geodesic arising from the support of fmain, then p¥ should rapidly
increase due to electromagnetic repulsion. Dually, p* should rapidly decrease, which ought
to suppress the ingoing moments N¥, T%" and T“Y. This should be compared with the
vanishing of N*, T"* and T"" in outgoing null dust. We say that the main beam bounces due
to electromagnetic repulsion.

As is apparent from (2.1.22), the magnitude of the repulsive effect is proportional to Q. If we were

to evolve the seed f°

main

on its own, the inner edge of the beam would experience less electromagnetic
repulsion since @ is potentially quite small in the inner region.

In order to reinforce the repulsive effect of the electric field in the main beam and get a consistent
hierarchy of powers of €, we introduce an auziliary beam on the inside of the main beam which bounces
due to the centrifugal force associated to electromagnetic geodesics with large angular momentum.

The initial data for the auxiliary beam is chosen to be

o (r,p" ") = nep(r,p*, p°), (8.1.4)
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where 17 > ¢ is a constant determining the amplitude, ¢ is a cutoff function supported on the set
[2r1, 2] x [A = 1,A+1] x [A = 1,A + 1], and A is a fixed large constant that determines the
strength of the centrifugal force felt by the auxiliary beam. The auxiliary beam ensures that the

main beam always interacts with an electric field of amplitude 2 1, which acts as a crucial stabilizing

mechanism.

8.1.4 The near and far regions and the hierarchy of scales

The total seed for an outgoing Vlasov beam is taken to be Sy = ( 0T py m,e), where

tot = Jaun” + frmain> (8.1.5)

the fundamental charge e > 0 is fixed, the mass m lies in the interval [0, mg], and 7, e, and mg need
to be chosen appropriately small.

To study the evolution of S, ., depicted in Fig. 8.2, we distinguish between the near region
{v < 0} and the far region T\’,?aroo = {v > ¥}, where ¥ is a large advanced time to be determined.
Roughly, the ingoing cone {v = ¥} is chosen so that the geometry is very close to Minkowskian and

the Vlasov field is “strongly outgoing” and supported far away from the center, i.e.,

U

- Srikl (8.1.6)

’G"B

for every p* and pv such that f(-,9,p%,p”) # 0. The near region is further divided into the main
and auziliary regions, corresponding to the physical space support of the main and auxiliary beams

and denoted by R? . and R?

main aux’

respectively.!

The beam parameters 7, £, my and the auxiliary parameter ¢ satisfy the hierarchy
D<my<e<n<i <1, (8.1.7)
To prove the sharp rate of dispersion when m > 0, we augment this hierarchy with
0<v,' <m,

where vy is a very large time after which the additional dispersion associated to massive particles

1For reasons of convenience, Rmain is defined slightly differently in the actual proof than the region depicted in
Fig. 8.2, but this is inconsequential at this level of discussion.
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kicks in.
The proof of Theorem 1.2.1 proceeds by showing that if (8.1.7) holds, then the solution exists,
with certain properties, in the regions Rf’nain, R ., and ’Rfafo , in that order. The sharp decay rates

of N and T are then shown a posteriori by re-analyzing the electromagnetic geodesic flow in the far

region.

Remark 8.1.2. The final Reissner-Nordstrém parameters of the total Vlasov seed (8.1.5) depend
on the approximation parameters n and €, but are O(n)-close to (ws,@2). Therefore, in order to
reach any fixed set of parameters, the background dust seed has to be appropriately modulated. See

already Section 8.9.5.

8.1.5 Outline of the main estimates

The main beam in the near region: In this region, the main goal is proving smallness (in €) of N*,

T"* and T"", which are identically zero in the background dust solution. We define the phase space

volume function ¥ : Q — R>q by

¥ (u,v) = Q% (u,v)|{(p",p") : f(u,v,p",p") # 0}, (8.1.8)

2

supo- Lhe function ¥ is invariant under gauge transfor-

where | - | is the Lebesgue measure on R

mations of u and v. Using the mass shell relation (2.3.12) and the change of variables formula, we

find

g [ dp?
“I/(u,v):ﬁ/o /{ P o, (8.1.9)

poif(wv,pt,pv)#£0} PV

where we view p" as a function of p¥ and ¢. Because of the addition of f;ﬁlﬂ to the seed data

and the good monotonicity properties of (2.3.24) and (2.3.25), it holds that @ > 7 in R?

main*
Under relatively mild bootstrap assumptions, any electromagnetic geodesic v in the main beam is
accelerated outwards at a rate 2 7, i.e.,

2

€
V> min{7, 1}, p" < - ,
prREt {m1h P53 r2(e + nmin{t, 1})

where 7 = %(u + ) is a “coordinate time.” We also show that if 71 and ~, are two electromagnetic

211



geodesics in the main beam which reach the same point (u,v) € R ; , then

g
Iqu—p'z’lﬁﬁ

at (u,v). Using these estimates, conservation of angular momentum, and the hierarchy (8.1.7), we

show that

53

Y (u,0) <) —————,
(1) Sn € + nmin{r, 1}
where the notation A <, B means A < CB, where C is a constant depending on 7. Then, simply

using the transport nature of the Vlasov equation, we obtain the estimates

T (u,0) S et/? T (u,v) < /2, ' NU(u,v") dv' < e'/?,
—u
which capture the fundamental characteristic of outgoing null dust. These estimates allow us to
control the geometry at C! order, which is more than enough to use the generalized extension
principle, Proposition 3.2.4, to extend the solution. For details, see Section 8.4. When \ € [—1,0]
and the main beam has not yet been turned on, constructing the solution in this region is trivial
since the solution is electrovacuum.

o

The auxiliary beam in the near region: Since the auxiliary beam is genuinely weak (f] 1" < n

)
aux

pointwise), the bootstrap argument in R?Y, . is a standard Cauchy stability argument, perturbing off
of Minkowski space. We use explicit knowledge of the impact parameter and asymptotics of null
geodesics with angular momentum ~ A on Minkowski space and treat the charge as an error term

in this region. For details, see Section 8.5.

Existence in the far region: The argument in this region is a refinement of Dafermos’ proof of the

stability of Minkowski space for the spherically symmetric Einstein—massless Vlasov system [Daf06]
(see also [Tayl5, Chapter 4]). Because of the singular nature of fiain in powers of ¢, it seems difficult
to obtain uniform in € pointwise decay estimates for T"¥ by the usual method of estimating decay
of the phase space volume of the support of f at late times. Fortunately, we are able to exploit the

a priori energy estimates
/TQQQT“U&J du' <1, /TQQQT“”(?J dv' <1 (8.1.10)

coming from the monotonicity of the Hawking mass when 9,7 > 0 and 9,7 < 0 (see [Daf05b]). It is

important to note that these energy estimates are independent of initial data and are a fundamental
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feature of the spherically symmetric Einstein equations. Under the bootstrap assumption that the
electromagnetic geodesics making up the support of f are “outgoing” for v > ¥, the energy estimates
(8.1.10) imply decay for the unweighted fluxes of T“". This shows that the geometry remains close
to Minkowski in C' and recovering the bootstrap assumption on the support of f follows from
good monotonicity properties of the electromagnetic geodesic flow when close to Minkowski. We
also note that this approach using energy estimates allows us to treat the cases m = 0 and m > 0
simultaneously. For details, see Section 8.6.

Dispersion in the far region: Once the solution has been shown to exist globally, we prove sharp

(in coordinate time 7) pointwise decay statements for N and T (see [RR92; Nou05; Tay15]). As the
decay rates differ when m = 0 or m > 0, these two cases are treated separately.

The massless case. It follows immediately from the mass shell relation (2.3.12) that p* <r~2 in
the far region. Since this is integrable, the beams are confined to null slabs and can even be shown
to be disjoint as depicted in Fig. 8.2. Since each p“ contributes a factor of =2 and our solutions

have bounded angular momentum, we obtain the sharp dispersive hierarchy
NY4+T" <C(+7)7% N'4+T®<C+7)"% T™<C1+7)7°

where the constant C' depends on «, 7, and €. For details, see Section 8.7.

The massive case. When m > 0, p* does not decay asymptotically. After a very late time
ve >mTL pt ~n m?, which drives additional decay of the phase space volume. We prove this by a
change of variables argument, turning volume in p* at later times v > v4 into physical space volume

of the support of f at time v = vx. This leads to the sharp isotropic decay rate
M<CO(1+71)78

for any moment M of f, where C' depends on «a,n,e, and a lower bound for m. For details, see

Section 8.8.

8.2 Outgoing charged Vlasov beams

8.2.1 The beam parameters, fixed constants, and conventions

First, we fix once and for all the fundamental charge ¢ € R\ {0}. Without loss of generality, we

may take ¢ > 0, as all of the arguments and definitions in the remainder of the present chapter
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require only minor cosmetic modifications to handle the case ¢ < 0. Next, we fix an even function

p € CX(R) satisfying spt ¢ = [—1,1], ¢ > 0, and

1
/ pdr =1.
-1

Let 6 € C*°(R) be a nondecreasing function such that #(A) =0 for A < —1 and §(\) =1 for A > 0.
Let ¢ € C*(R) be a nondecreasing function such that ((A) =0 for A <0, {(A\) = A for A > 1, and

¢’(A) > 0 for A € (0, 3]. Finally, we fix a large? number A > 1, such that

P1p2 > 81

' (p1 + pg)2 = 400 8.2.1
P1>P2€I[II{1EII,A+1] (p1 +p2)? — 400 ( )

We emphasize that:
The quintuple (e,p,0,(, A) is fized for the remainder of the chapter.

Recall the set Pr of regular center admissible parameters of the form a = (r1, 72,0, w2, 0, Q2)
which was defined in Section 7.2. Let n,¢, and my be positive real numbers. In the course of the

proofs below, the particle mass m will be restricted to satisfy 0 < m < mq.

Definition 8.2.1. Let a = (r1,72,0,702,0,Q2) € Pr, n > 0, and ¢ > 0. The time-symmetric

outgoing charged Vlasov beam seed S, , . is given by (fa’;},;” + frf;s

ain?

ro,m, ¢), where

o u v\ - 6 U 0]
a (s p*,p") = 77<P<T17“ - 3) o(p" — A)p(p” — A), (8.2.2)

and

Fs (rp" pY) = s (1 2wl Q2gr))2Q’(r)¢<2§L - 3) @(21:) - 3) , (823)

3mee3r? r r

where ¢ and Q are taken from ¢(a), where the map ¢ was defined in Proposition 7.2.4 (cf. Re-

mark 7.2.5).

Definition 8.2.2. Let M > 0, let 0 < r; < rg, and let {ax s} (with |[M —M’| <) be asin (7.3.1)

in the proof of Theorem 7.3.2. For A € [-1,2], n > 0, € > 0, mg, we define

SAM e = Sag iy a0\, (8.2.4)

2Large relative to the other beam parameters. For instance, A = 20 suffices.
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for particles of mass 0 < m < mg. For A < 0, the @ and Q components of s(ae(n),m) are interpreted

as identically zero, in correspondence with the proof of Theorem 7.3.2.

Throughout the present chapter, the notation A < B means that there exists a constant C' > 0,
which only depends on ¢, ¢, 6, {, A, M, r1, and ry such that A < CB. The notation A 2 B is
defined similarly and A ~ B means A < B and A 2 B. Moreover, we use the convention that all
small (large) constants in “sufficiently small (large)” may depend on ¢, ¢, 6, {, A, M, r1, and ro. In
Section 8.7, we will also use the notation A <, B (resp., A <y, B), in which we allow the constants
to also depend on 7 (resp., n and ¢). The relations A ~, B and A ~, . B are defined in the obvious
way.

For the evolution problem, we will introduce a large parameter ¢ to separate C,, into the “near”

and “far” regions. We will always assume that the parameter hierarchy
I<my<eLn<Ki <1 (8.2.5)

holds, by which we mean that any given statement holds for ¥ sufficiently large, n sufficiently small
depending on ¥, ¢ sufficiently small depending on ¥ and 7, and mg sufficiently small depending on
¥, , and €. To prove dispersion in the massive case, we introduce an even larger parameter vy
satisfying

0<v;1<<m§mo,

so that vy is chosen sufficiently large depending on 9, 7,¢, and m.

8.2.2 The global structure of outgoing charged Vlasov beams

Proposition 8.2.3. Fiz a fundamental charge ¢ > 0, cutoff functions ¢, 0, and ¢ as in Section 8.2.1,
a number A > 1 satisfying (8.2.1), M >0, and 0 < r; < ro < r_(4M,2M). Let § > 0 be as in the
statement of Theorem 7.3.2 and define Sx yr/ . as in Definition 8.2.2 for X € [-1,2], |[M'—M| < 6,
n >0, e >0, and for particles of mass 0 < m < mg, where mg > 0.

If n is sufficiently small, € is sufficiently small depending on n, and mg is sufficiently small
depending on n and €, then for any A € [—1,2] and |M' — M| <4, the seed Sx am e is untrapped
and consistent with particles of mass m. There exists a unique mazimal normalized development

U, r,Q%Q, f) of Sx.mn,e for particles of charge ¢ and mass m with the following properties.® If

3Here, uniqueness is in the class of normalized developments as in Definition 3.2.10. We have not shown an
unconditional existence and uniqueness statement for maximal developments for the Einstein—-Maxwell-Vlasov model
in this dissertation (although this can be done) and will therefore infer uniqueness directly in the course of the
construction.
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m > 0:

1.

2.

The development is global in the normalized double null gauge, i.e., U = C,,.

The (3 + 1)-dimensional spacetime obtained by lifting (U, r, Q?) is future causally geodesically

complete and satisfies globally the estimates

Oyr ~ 1, |0ur] <1, 9%~ 1, (14u?)|0,9% + (1 4+0%)]0,92| < 1. (8.2.6)

Define the final Reissner-Nordstrém parameters M and é of Sx, M7 e to be the constant val-
ues of w and @, respectively, on the cone C_,,. Then M and & are smooth functions of

(N, M’ n,e,m), satisfy the estimate
M = (N> M|+ [ — C(A M| S, (8.2.7)

and extend smoothly to n = & = 0, where they equal ((A\)?M’ and ((\)M’, respectively. The
spacetime (U, r,Q?) contains antitrapped surfaces (symmetry spheres where Oyr > 0) if and
only if € < M and ry < r_, where r4 = M+ \/m. In this case, we nevertheless have
Oyr ~ —1 for v sufficiently large and the antitrapped surfaces are restricted to lie in the slab

{2r_ —ry <v < 2rp —ro}.

The Vlasov distribution function f is quantitatively supported away from the center,

ﬂ(iSIpltff)T > &7, (8.2.8)

and the beam asymptotes to future timelike infinity i+ in the sense that
m(spt f) C {C1v < u < Cyu}, (8.2.9)

where C1 and Coy are positive constants that may additionally depend on n,e,m, and \. The
connected component of U \ m(spt f) containing the center is isometric to Minkowski space.
The connected component of U \ w(spt f) containing future null infinity TT is isometric to
an appropriate neighborhood of future null infinity in the Reissner—Nordstrom solution with

parameters M and e.
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5. The Vlasov matter disperses in the sense that the macroscopic observables decay pointwise:
M<C+71)73, (8.2.10)

where M € {N" NV T T T S} and the constant C may additionally depend on n,e, m,

and .

The same conclusions hold if m = 0, but points 4. and 5. are improved to:

4. The estimate (8.2.8) still holds but (8.2.9) is improved to

m(spt f) C {—r2 <u < dri}, (8.2.11)

i.e., the beam is confined to a null slab. The spacetime is isometric to Minkowski space for

u>r.

5! The Viasov matter disperses in the sense that the macroscopic observables decay pointwise:

NY+T" <C(l+71)72 (8.2.12)
N4 T < C(1+71)74, (8.2.13)
T < C(1+7)7° (8.2.14)

where the constant C' may additionally depend on n,€, and A.

Remark 8.2.4. An analogous version of Proposition 8.2.3 may be proved for any set of regular center
parameters « = (r1,72,0,w2,0,Q2) € Pr or even o = (r1,72,0,0,0,0) by evolving the seed data

Sa,n.e given by Definition 8.2.1. In that case, (8.2.7) becomes

IV — o + (6 — @] S . (8:2.15)

Remark 8.2.5. The decay rate 72 in (8.2.10) is sharp for massive particles [RR92; Nou05]. The

hierarchy of decay rates in (8.2.12)—(8.2.14) is sharp for massless particles [Tay15].

8.3 Estimates on the initial data

For the remainder of this chapter, we assume the notation and hypotheses of Proposition 8.2.3.
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Lemma 8.3.1. Forn, €, and mq sufficiently small and any A € [—1,2] and |[M' — M| < 6, Sx,m7 e
is untrapped and consistent with particles of mass 0 <m < mg. Let (U,7,Q2,Q, f) be a development

of Sx,Mm7 e, such as the one obtained from Proposition 3.2.12. Then the following holds:

1. The set U can be assumed to contain the corner Cr, N{v < %7"1}. The solution is equal to

Minkowski space in this region in the sense that

on Cp, N{v < 31}

2. Estimates on the initial data for the auxiliary beam:

faifOm < ON)NL Ly, 205 A1, A+ x[A—1,A41]5 (8.3.1)

sup (1, 0,d0g 22, B,log 02, Q. m)(—v,v)| < (N, (83.2)
ve[Eri,r]

Q(=371,5m1) Z 0(\)n, (8.3.3)

L(—v,v,p",p") = 1 for every (v,p",p") € spt( oarlj)ge(A)”). (8.3.4)

3. Estimates on the initial data for the main beam:

1 ifA>0
2oy, m0(M)n.e _
fmagi(r/l\)'M ! 5 € 31[T1,r2]><[s,2s]><[5,25] ' 5 (835)

0 ifA<0

sup  |(Q%, dulog ©?,9,log %, Q,m)(~v,v) — (2, @, @, Q,m)(v)] < I(N)n, (8.3.6)

UE[%M,M]
VE|ZT1
U(—v,v,p",p") ~e for every (v,p*,p") € spt(fI:;fg)’M/’9(/\)7]’8), (8.3.8)

where

@) Q%vyi<1—2ﬁ“w)_ , wﬁ-gpiéégbgﬁ%m. (8.3.9)



4. Estimates on the initial outgoing cone C_,.,:

forv >ry.

(8.3.10)
(8.3.11)
(8.3.12)

(8.3.13)

Proof. Consistency with particles of mass m < mg follows immediately from Definition 8.2.1 and

the estimates (8.3.2) and (8.3.6) by taking mg sufficiently small. We therefore focus on proving the

estimates and as a byproduct infer the untrapped property of Sx as e

Part 1. This is a restatement of Remark 3.2.13.

Part 2. The estimate (8.3.1) follows immediately from the definition (8.2.2). Inserting the ansatz

(8.3.1) into (3.2.26)—(3.2.28), we find

Ny = N (r) = 779(/\)17A<p(6r _ 3> ,

T (r) =T (r) = 70\ <A2 +/ z?p

-1

Fuv () WQ(A)nA%(ff B 3)

for r € [4r1,2r1]. For n sufficiently small, it then follows readily from the system (3.2.29) and

(3.2.30) that Q and m are nonnegative, nondecreasing functions, and

0 < Q(r) +1ia(r) S O(A)n

for r € [r1, 2r1] and

Q(3r1) Z 6(\n.

Using the definition of 2, we infer |02 — 1| < ()7, and to estimate |9,log Q2(—v, v)|, we observe
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that

|0,log Q% (—v,v)| = di; log 2 (v)

g2 <2ﬁ1§v) B 2dm(v)>‘

v v dv

215 2 [ OQ%? . . . )2
_ m . ( v (T“u—f—ZTuv—‘rTvv)—‘rQ)

0202 020 4 202

S 0(M)n.

The estimate for 9,log Q?(—v,v) follows from (3.2.36). This establishes (8.3.2) and (8.3.3). Finally,
(8.3.4) follows from the mass shell relation and (8.3.2), provided my is chosen sufficiently small.

Part 3. The estimate (8.3.5) follows immediately from the definition (8.2.3). Inserting the ansatz
(8.2.3) into (3.2.26)—(3.2.28), we find

() = K7 = (1 20, Qrg’")) o', (8:3.14)
70—”“(7") = 70—“”(7") = 6:7 (9 + /_1 z2p(x) dm) (1 - 2%(7‘) + Qrgr)) Q'(r), (8.3.15)
70—1“)(7") _ 4??2 (1 _ 27?]”(7“) + Qrg'f")) Q/(T), (8316)

where & and @Q are obtained from ¢(ay ). Inserting (8.3.14)(8.3.16) into (3.2.29) and (3.2.30)

yields
d . Q
%m =52 + Err,
d - 25\ 2 o\ 2 .
o-(-2)" (-2
dr r r

where

2\ ~*
|Err] < {1 - — €
T

and 7’71(7“1),602(7“1) < 6(A)n. Therefore, by (7.2.6), (7.2.10), and a simple Gronwall and bootstrap

argument, n and Q) exist on [r1, 2] and satisfy
sup |(1 — 1, Q — Q)(r)| £ O(\)n.

relry,ra]

This implies the same estimate for |Q2 — QQ| by definition. To estimate the other quantities, we may
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now argue as in the proof of Part 2.
Part 4. Equations (8.3.10), (8.3.11), and (8.3.13) follow immediately from the definitions. In-

equality (8.3.12) follows from (8.3.6) provided 7 is chosen sufficiently small. O

8.4 The main beam in the near region

For 79 > 0, let

RT 0

main

={0<7<T}N{-2r <u<—r} CCp. (8.4.1)

Lemma 8.4.1. For any v, 1, €, and mqy satisfying (8.2.5), the following holds. Any normalized
development (U,r,Q%,Q, f) of Sx M’ e, such as the one obtained from Proposition 3.2.12, can be

1p-1
uniquely extended to R2.. *"*. Moreover, the solution satisfies the estimates

0<m<10M, 0<Q<G6M, (8.4.2)
re~v, Q?~1, (8.4.3)
Opr ~ 1, |0ur| <1, (8.4.4)
0,221 1, 8,92 So7? (8.4.5)
on Rii;l%“ and
$<0r <2, Gur~-—1 (8.4.6)

151
on RV 3" NCy. Finally, the support of the distribution function satisfies

main

m(spt f) N R%ﬁf%ﬁ - {—%7‘1 <u < —ry} (8.4.7)

main

o

sPt(fain )

70
main

Figure 8.3: Penrose diagram of the bootstrap region R used in the proof of Lemma 8.4.1.
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and if u € [—ra, —%rl], pY, and p¥ are such that f(u,v,p*, p¥) # 0, then

<v?, =<1 (8.4.8)

When A <0, (8.4.2) reads instead

The proof of Lemma 8.4.1 will be given on Page 227. We will make use of a bootstrap argument
in the regions R[?,;., where 7o ranges over [0, 1o — £r1]. For the basic geometric setup of the lemma
and its proof, refer to Fig. 8.3. As the proof is much simpler when A < 0 (the main beam is absent),
we focus only on the case A > 0, in which case §(A\)n = 7.

We first make some definitions that will be used to define the bootstrap assumptions. Let C; > 0

be a constant such that

v

- —1
ot < (1—27”(”)> <o

for v € [3r1,72], where 77 is given by (8.3.9). (Recall that ri(v) = 0 for v < r1.) We then define

18 M2
Cy = 8C, (2”—1) <5M+ 8 )

T1 1

27M? > d
C3=2 max |0(v)|+ 10002 <5M—|— > / 5 s ! 53
vE[2r1,rs] el 2, (5(1 = 5e7%2)r 4 ge=C20)

The constants Cy,Cs, and C3 do not depend on 7, €, or mg.

The quantitative bootstrap assumptions for the proof of Lemma 8.4.1 are

%6_02 < Opr < %ec27 (8.4.9)
107 < Q20,r <Oy, (8.4.10)
|0,log Q% < Cs, (8.4.11)

w < 5M, (8.4.12)

NV < AePT, (8.4.13)

on R™ . where A > 1 and B > 1 are constants to be determined which may depend on ¢ and 7,

main

but not on e. We now derive some consequences of the bootstrap assumptions for the geometry of

the solution.
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main

Lemma 8.4.2. If (8.2.5) holds, 7o € [0, %f) — %Tl}, R®. C U, and the bootstrap assumptions

(8.4.9)-(8.4.12) hold on R[2,.., then
n<Q<6M, (8.4.14)
21—t @)+ tePo<r <y + 3%, (8.4.15)
0’ ~1, (8.4.16)
10,7 < 1 (8.4.17)

70
on Rmain :

We will frequently use that (8.4.15) implies

on R

main

without further comment.

Proof. For 1 and ¢ sufficiently small, n < Q < 6M on {7 =0} N{-r; < u < —2r} and {r >
0} N {v = r2} by Lemma 8.3.1. Since N” > 0 by definition, Maxwell’s equation (2.3.24) implies
the upper bound in (8.4.14). The lower bound also follows from Maxwell’s equation (2.3.25) and
N* > 0. The inequality (8.4.15) follows from integrating the bootstrap assumption (8.4.9). The
inequality (8.4.16) follows directly by multiplying the bootstrap assumptions (8.4.9) and (8.4.10). To
estimate 0,7, we rewrite the definition of the Hawking mass (2.1.2) and the renormalized Hawking

mass (2.1.19) as

1 2w Q%\ Q2
== (122 %) 4.1
Our 1 ( . + r2> o (8.4.18)
Now (8.4.17) follows immediately from (8.4.10), (8.4.12), and (8.4.15). O

We now use the basic geometric control obtained in Lemma 8.4.2 to obtain crucial control of
the electromagnetic geodesic flow. It is convenient to first introduce some notation. Let I'y denote
the set of maximally extended electromagnetic geodesics v : I — U, where [ is an interval, such
that (v,p)(I) C spt f, where p = dy/ds. If v passes through the point (u,v), we denote by s, , the
parameter value such that v(sy ) = (u,v). Let I'y(u, v) denote the subset of I'f consisting of curves

passing through (u, v). Note that every curve in I'y intersects C,, N {7 = 0}.

Lemma 8.4.3. If (8.2.5) holds, A is sufficiently large depending only on «, 79 € [0, 50 — %7’1 ,
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70
Rmain

C U, the bootstrap assumptions (8.4.9)—(8.4.13) hold on R™®

main’

and (u,v) € R, , then

main’

€3 A
< - Bt
Y (u,v) S C n{r. 1) <1 + Be > , (8.4.19)

where ¥V is the phase space volume function defined by (8.1.9). Furthermore, if v € T's(u,v), then
0<u—uy<nle, (8.4.20)

e +nmin{7, 1} < p“(syw) S €+ min{r, 1}. (8.4.21)
where ug is the retarded time coordinate of the intersection of v with {T = 0}.

Proof. Let v € T'y(u,v). We will use the Lorentz force written in the form of equation (2.1.25) to

o

estimate p”. Since (u,v) € R’ ., 7 intersects {r = 0} in spt(fo.;,) and therefore has angular

main

momentum ¢ ~ ¢. By the bootstrap assumptions and Lemma 8.4.2, it holds that

2 2
‘(&Jog 02— 28”) Clee (8.4.22)
r

r2| ™~ 92

along the entire length of 7. Let (ug,vg) be the coordinate of the intersection of v with {r = 0}.

Using (8.4.14)—(8.4.16) and the fact that p¥(sy,.v,) € [€, 2¢], we have

Q

72(9229”) 2 ne.

s=0

¢

If ¢ is sufficiently small (independent of +, but depending on 7)), these estimates show that

d
£(92pv) Zne >0

along 7. Using (8.4.16), we see that

p’Ze (8.4.23)

along 7.

It is now convenient to parametrize v by the advanced time coordinate v of the spacetime. The
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Lorentz force equation then becomes

g o tmt (8.4.24)

a

1 20,1\ £?
dv (QQPU) = ZT <8u10g Q2 — TT’) 7 + ETQQQ, (8425)

where however pv is still given by dv¥/ds and we have used the mass shell relation in (8.4.24). By

(3 log 0% — W) e
,

2

(8.4.22) and (8.4.23),

9
S/i
02

‘1
p’U

along . This implies, using vg > 71 and hence fvooo v'"2dv’ <1, that

v
Q°p° . — eQQQ dv'| e (8.4.26)
(v(v)v) ,
(v (v")v')
Using Lemma 8.4.2, we readily deduce that
29292 dv' <1 (8.4.27)
I CRICORD

and

1 1
dv' 2n (vo — v) 2 nmin{l,v — vo}.
(ye(v"),v")

Combining this with (8.4.23) and (8.4.26), we deduce
e+nmin{l,v —vo} Sp(v) <1 (8.4.28)

along .

We are now able to prove (8.4.20). Since r < v < 0, r?m? < &2 < 2 for my sufficiently small

~

while respecting the hierarchy (8.2.5). Therefore, using also Lemma 8.4.2 and (8.4.28), we find

d7“< g2
dv ™~ v2(e + pmin{l,v —vg})?’

(8.4.29)

If v € [vg,vo + 1], we compute

v 2 _
| e S e S
vo V(e + (v =) e+ n(v— o)
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and if v € [vg + 1, 00), we compute

v 52
— 5 dUl S 7]_252 S 7]_15
Lo—‘rl vlz(g + 77)2 ’

for € <. Therefore, integrating (8.4.29), we find
_ "
u—ug =y"(v) —v*(vo) / ——dv <nle, (8.4.30)

which proves (8.4.20).

Now ug = —vp, so (8.4.30) implies u + vg < 7~ e. Therefore, we have
2r=v+u=(v—uv9)+ (ut+uv) SN te+v—1p

and

e+nT Se+nv—wy) Sp’(v)

for 7 < 1. This, together with (8.4.26) and (8.4.27), proves (8.4.21).
To prove (8.4.19), we use the approximate representation formula (8.4.26) for p” and the change of
variables formula (8.1.9). Using the bootstrap assumptions, Lemma 8.4.2, the mean value theorem,

Maxwell’s equation (2.3.24), and the estimate (8.4.20), we have

QQQ

r2

— QQQ

2
CRICAR N

< (1 T aw) (7 (v') = w) S Ap~leePtr/2
[ }

() ulx{v’

('LL,'U/)

for every v’ € [vg,v] and A sufficiently large depending only on «. Using this and (8.4.26), we find

! 29 2 Y Q0
QQp”| — d'| < |97, - e—=§) dv’
U(v),v 2 ~ u(v),v 2
(y¥(v),v) ” r () (yu(v),v) w T (s (07) )
+/ %QQ - %QQ dv'’
vo [0 dueney T )
<€+/ A~ leeButv)/2 gy
A
<e (1 + BneB<“+“)/2> . (8.4.31)
Next, we estimate
Vo Q
0< / e— dv' Svo+u=u—uy < 17_15. (8.4.32)
—u (u,v")
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Combining (8.4.31) and (8.4.32) yields

v QQQ

|(u,v) o —u 27/.2 '

(uv)

QZPU

€ A
<214 ZeBlutv)/2]) 8.4.33
s (150 (8.4.33)

Therefore, if 71,72 € T'f(u,v) and we parametrize both by advanced time, and denote the v-

momentum of ~; by p} for ¢ = 1,2, we find

1 v Q 1 v Q
v ) v _ 792 d / v _ 792 d /
|p1(U) p?(v)| = pl(v) Q2(U,U) /—u e?"2 () v+ p2(v) QQ(’LL,’U) _u 27‘2 () v
€ A
<>(1 2 B(utwv)/2 )
o ( "B
Inserting this estimate, (8.4.21), and ¢ ~ ¢ in (8.1.9) yields (8.4.19), as desired. O

Proof of Lemma 8.4.1. The proof is a bootstrap argument based on the bootstrap assumptions
(8.4.9)—(8.4.13) and continuation criterion given by the extension principle Proposition 3.2.4. Let

A = {79 € [0, $5—1r1] : the solution extends uniquely to R, and (8.4.9)-(8.4.13) hold on R

main main } .

The set A is nonempty by Proposition 3.2.12 if A is chosen sufficiently large and 7, £, and mg
are sufficiently small. It is also manifestly connected and closed by continuity of the bootstrap
assumptions. We now show that if A and B are sufficiently large depending on n and (8.2.5) holds,
then A is also open.

Let 79 € A. First, we use Lemmas 8.4.2 and 8.4.3 to estimate NV and improve (8.4.13). Since
[ is transported along electromagnetic geodesics, we have f(u,v,p*,p") < &3 for (u,v) € R0, .

Using (8.4.19) and (8.4.21), we infer directly from the definition of N¥ that

v < : -3 < €+ min{r7, 1} A\ Br o 2 AN B
NY(u,v) < (e + min{7,1})e V(U7U)Nn(5+nmin{7,l}) 1+B e’ <y 1—|—B e’T.

Letting C, = C, (¢, ¢, A, @) denote the implicit constant in this inequality, and choosing A = 4C,n~2

and B > A, we see that

N¥(u,v) < AeBTa

which improves (8.4.13).

To continue, we now estimate N*, T"" and T"Y in the same fashion, making use now of the
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strong decay of p*. If v € T'y(u, v), then

2r=2 1+ m2 - 2
Q2p¥(syw) ~ e+ nmin{r, 1}

pu (su,v) -

by (8.4.21). Using (8.4.19), we therefore find

g2 1
N gZXs+nmmﬂn}PA&H’ (8.4.34)
puo < & etmin{r 1} g (8.4.35)
n € +nmin{l, 7} ’
T < < ! AePT, (8.4.36)
~ n (¢ +nmin{l,7})?

Using the hierarchy (8.2.5), these estimates imply

P2 4 2T 4 / rPPN%(u,v') dv' < el/? (8.4.37)

—Uu

for any (u,v) € Ri%,;,. With these final estimates in hand, we may begin to improve the remaining
bootstrap assumptions (8.4.9)—(8.4.12). We will then carry out the rest of the continuity argument
and prove all of the stated conclusions of the lemma.

Improving (8.4.9): The wave equation (2.3.20) can be rewritten as

1 QQ Q2 4 uv
3uavr = _ﬁ&]r <W ) 8 + Q T

Using an integrating factor, we find
© 1@ Q° r vl 02 Q?
o - L, / a} — 7Q4Tuv / - —_ X \4q /
“ {exp (/rz 2r Oyr (w r > u) ”ﬁ} 4 exp< Ly 27 Oyt “T “)
where the integral is taken over fixed v. The bootstrap assumptions imply

—in o2
/_T %81,7’

2

Q2

du’ < (Cs.

For ¢ sufficiently small, the right-hand side of (8.4.38) is pointwise < == on R°,

main’

so integrating
this equation yields

20-C2 < Opr(u,v) < %

for any (u,v) € R®

main’

which improves (8.4.9).
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Improving (8.4.10): Raychaudhuri’s equation (2.3.23) can be rewritten as
dylog (27} = _T o r 4
w108 ( g ) = — 7%l (8.4.39)

To improve the upper bound in (8.4.10), note that the right-hand side of (8.4.39) is nonpositive by
(8.4.9) and hence

Opr Oyt ! 2m(v) Ch
a2 (u,v) < a2 (—v,v) = 3 <1 - v) < -5

To improve the lower bound, note that the right-hand side of (8.4.39) is bounded by log 2 in absolute

value for e sufficiently small and hence

which improves (8.4.10).
Improving (8.4.11): The wave equation (2.3.21) can be rewritten as

02 2 1
0,0,log 0% = = (w — 35) - §Q4T“” - Q%S (8.4.40)

Integrating this equation in v and using the bootstrap assumptions, (8.3.6), and (8.4.37) yields
9 3
|aulOgQ | < 103

for n and ¢ sufficiently small, which improves (8.4.11).
Improving (8.4.12): Integrating the evolution equation for the renormalized Hawking mass

(2.3.31) and using (8.4.37), we have
@ (u,v) — w(—v,v)| V2,

which improves (8.4.12).
We have thus improved the constants in all of the bootstrap assumptions (8.4.9)—(8.4.13). Using
the local existence theory Proposition 3.2.3 and generalized extension principle Proposition 3.2.4,

’
To
main’

there exists a 7 > 79 such that Y C R Choosing 7 > 79 perhaps smaller, the bootstrap

assumptions (8.4.9)—(8.4.13) extend to R

main

by continuity. Therefore, A is open and the bootstrap
argument is complete.

We now prove the remaining conclusions of the lemma. First, m(u,v) > 0 for every (u,v) €
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Rr%nz;l%ﬁ because either 9,r(u,v) < 0 (and by Raychaudhuri (2.3.22) also for any v’ > u) or
Our(u,v) > 0 and then m(u,v) > 0 directly from the definition (2.1.2). In the first case, the evolution
equation (2.3.29) implies m is nondecreasing along the outgoing cone terminating at (u,v). Since
this cone either intersects {7 = 0}, where m > 0, or a sphere where 9,7 < 0 (and hence m > 0),
we conclude m(u,v) > 0. Now integrating the wave equation (2.3.21) in u and using (8.4.37), we
see that |0,log Q%] < v~3. Together with the bootstrap assumptions and Lemma 8.4.2, this proves
(8.4.2)—(8.4.5). Next, (8.4.6) follows from integrating the wave equation (2.3.20) in u along Cy and
taking © ~ r sufficiently large and similarly in (8.4.18). The inclusion (8.4.7) follows immediately
from the u-deflection estimate (8.4.20) for electromagnetic geodesics in I'y and the hierarchy (8.2.5).

Finally, to prove (8.4.8) we use the mass shell relation, (8.4.21), and the parameter hierarchy to

estimate
u 2 2.2 2
r2£_£+rm<i<17
pv Q2(pv)2 ~ 772 ~
2 2
Css s,
Y Ui
which completes the proof. O

8.5 The auxiliary beam in the near region

For vy > 0, let

RO ={v>u}n{r>0}n{-2r <u<ir}n{irn <v <}, (8.5.1)
RO ={v>u}n{r>0}n{u> —2r1}n{v < wol. (8.5.2)

Lemma 8.5.1. For any ¥, n, €, and my satisfying (8.2.5), the following holds. The development of

o)
aux*

Sx, M7 e obtained in Lemma 8.4.1 can be uniquely extended to R The spacetime is vacuum for

u > %rl and v < v. Moreover, the solution satisfies the estimates

0<m SNy, 0<QZ0(Nn,
D2~ 1, Oyr~—0ur~1,

(14 u?)|0, 2% + (1 +0)[0,Q)* < 1

230



7(spt fa)

Figure 8.4: Penrose diagram of the bootstrap region R, used in the proof of Lemma 8.5.1.

on RS and

aux

<Oyr <

=
L[

on ﬁgux NCy. Finally, the support of the distribution function satisfies

7(spt f) ﬂ?égux C {—%rl <u< %7‘1},

inf  r> %rl,
spt(f)NR2Z

aux

and if u € [—%rl, %7‘1], pY, and p¥ are such that f(u,,p*, p¥) # 0, then

<
|
N
(S
¥

<9

203

, <1 8.5.3
p (85.3)

The proof of Lemma 8.5.1 will be given on Page 234. We will make use of a bootstrap argument

371, 0). The triangle {v > u} N {u > zri} N {v < ¥} is

Minkowskian and can simply be attached at the very end of the argument, cf. Lemma 3.2.16

in the regions R, , where vy ranges over [

. For
the basic geometric setup of the lemma and its proof, refer to Fig. 8.4.

For (u,v) € RE,, let

aux’

oy = Y N T s an
o= gy [ seha

0%(u,v) = B(v),
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where

1 if v<3r
Blv) =

QQ(—grhv) ifv> %7"1

It is easily verified that (7, Qz) is a solution of the spherically symmetric Einstein vacuum equations
11
and matches smoothly in v with (r, Q?) from R2. *"" along C_z,, -
3

main

The first bootstrap assumption is
Q| + |@| + 97 — | + |Bur — | + |2 — Q| + [0,9% — 8,Q%| + [9.0%] < AO(\)nePT, (8.5.4)

where A > 1 and B > 1 are constants to be determined that may depend on © but not 7. We also
make the following assumption on the electromagnetic geodesic flow. For (vf), p¥, py) € spt( 0;‘},;9(’\)"),
let v be an electromagnetic geodesic of mass m for (r, Q% Q) starting at (—vj, v}, py,py), and let
4 be a null geodesic for (f,QQ) starting at (—v{, v, py,py). Then, assuming both v and 4 remain
within R, we assume that

Q2 — 02" + Q%" — 02| < AP(AeP D). (8:5.5)

First, we note the following immediate consequences of the first bootstrap assumption:

Lemma 8.5.2. If (8.2.5) holds, vy € [3r1, V], RY, C U, the bootstrap assumption (8.5.4) holds on

aux

R

aux’

and 1 is sufficiently small depending on A and B, then on Raly it holds that

0<w SO\, 0<Q SN,
|log O,7| + [log(—0,7)| + |log Qz| <1,

|0,Q2| + 10,97 < 1.

Next, we use the second bootstrap assumption to obtain

Lemma 8.5.3. If (8.2.5) holds, vg € [ir1,9], R, C U, the bootstrap assumptions (8.5.4) and

3 aux

(8.5.5) hold on R, B is sufficiently large, and 1 is sufficiently small depending on A and B, then
the following holds. Let v : [0,S] — R

Vo be a future-directed electromagnetic geodesic starting in
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°r1,9(>\)n)} then

Spt( aux
r> 4,
U S %Tlv
U €2
e S
D p
along .
Proof. Upon making the coordinate transformation
v
ﬂ =u, ’l~) = %7"1 =+ ﬂ(v/) d’l)/, (856)
371

s(0—a),1). Ift = 3(0+a), Y isa

the metric (7,2) is brought into the standard Minkowski form (
null geodesic in R? _ with respect to (7, 02) intersecting {7 = 0} with momentum (p¥, p3) = (p&, p3)

at an area-radius of 7, then it is easy to check that
2

2 g EZ 82
= | sien(pg —PONTo - 25 |ty (8:5.7)
) B+ \/m if £ < —sign(p} —Pg)\/m
i : (8.5.8)
B \JBE B > sl — g7 2/B?

E
JE B it < —signteg — s~ BB ©59)

E—\/E
E

p_
B JER B/ 0> —sign(sl - pi)\J73 - /B2

<
|

-1

=2

(p® +p®) are conserved quantities. If (p%, py) € [A —1, A+ 1]

along 4, where 2= 72plp? and E

and A satisfies (8.2.1), then
02
81 42 2
WTO S EQ S TO
From (8.5.7) it is apparent that
inr > ; > 2 (8.5.10)
minr > — > =7, 5.
5 T ET 100
o RO LR
sup @ = — sign(py — pp) 7§ — == < 15570, (8.5.11)
gl
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and by inspection of (8.5.8) and (8.5.9) that

U gz
o<1 =< (8.5.12)
p p

along 4.
Let v and 4 be as defined before (8.5.5). Parametrize v and 4 by v as in the proof of Lemma 8.4.3.
Then

u Au) Zﬁ_ﬁu
pv ﬁv

< Aa()\)neB(Uivé))

~

d
‘de =

by (8.5.5) and the observation that p¥ > 1 and p” > 1, so that
9% = 5] < (A )peBeD (5.5.13)

for B chosen sufficiently large. Therefore, the conclusions of the lemma follow from the estimates
(8.5.10)—(8.5.12) and the fact that 7o € [$r1, 371] after undoing the coordinate transformation (8.5.6)

and applying the bootstrap assumptions. O

Proof of Lemma 8.5.1. The proof is a bootstrap argument based on the bootstrap assumptions
(8.5.4) and (8.5.5), the continuation criterion Proposition 3.2.4, and Lemma 3.2.16. Define the

bootstrap set

v

A = {vg € [+r1,7] : the solution extends uniquely to R, and (8.5.4), (8.5.5) hold on R, }.

aux

The set A is nonempty by Propositions 3.2.6 and 3.2.12 if A is chosen sufficiently large and is
manifestly closed and connected. We now show that if the parameters satisfy (8.2.5), then A is also
open.

Let vy € A. Taking mg sufficiently small and using the formula (8.1.9), the initial data estimate

Lemma 8.3.1, and Lemmas 8.5.2 and 8.5.3, we immediately find
N+ NY+ T T T + 8 Sr20(NnL > 1,y (8.5.14)

vo
on RYY..

By (8.3.2) and the observation that f = 0 along C_2, NRY, we have
3

aux’

Q| + || + |8, — Ou?| 4 |27 20,r — Q0 720,7| + Q% — Q%] 410,97 — 9,02 + 0,92 < 0Ny (8.5.15)
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Then, using (8.5.14) and the Einstein-Maxwell-Vlasov system,

aux*

along {7 = 0} and C_3, in Ry
we see that (8.5.15) holds on RY®

aux*

This improves (8.5.4) for an appropriate choice of A (independent

of n).
We now improve (8.5.5). Using the Lorentz force equations (2.1.24) and (2.1.25), we have

d R 20,7\ 12 o 20,7\ 02 02Q pv
d—(szu —Pp) = (avlog 0% — T) s—| — (&,log (@ pp— r) ——| - 2@]?77
v T r°p ~ r T4p 5 r P
d QZ v QZ AV Q2 28ur 62 Qauf EQ QzQ
%( p* = p") = ( dulog @” — r r2pv 7 p2pu te 2

v

Using the parameter hierarchy (8.2.5), the bootstrap assumptions (8.5.4) and (8.5.5), Lemmas 8.5.2

and 8.5.3, and the bound (8.5.13), we can estimate

d A2 At v—v9
'dv(m v O2pY) < O(N)n 4+ AG(N)peBv—vo),

d N
QZ u_Q2Au
+’dv( P p")

Integrating and choosing the constants A and B sufficiently large in terms of the implied constants
and ¥ improves (8.5.5) and shows that the solution extends to RY

aux-*

The solution is at once extended to RY, .

by Lemma 3.2.16. The rest of the conclusions of the
lemma follow immediately from Lemmas 3.2.16, 8.4.1, 8.5.2 and 8.5.3 and (8.5.14). O

8.6 The far region

Lemma 8.6.1. For any ¥, n, €, and my satisfying (8.2.5), there exists a constant C, > 0 such that

the following holds. The development of Sx av.p.e obtained in Lemma 8.5.1 can be uniquely extended

Figure 8.5: Penrose diagram of the bootstrap region ’R:faf  used in the proof of Lemma 8.6.1.
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globally to C,,. Moreover, the solution satisfies the estimates

0<m<10M, 0<Q<6M,
D2~ 1, Oyr~—0yr~1,

(1+u?)|0.2% <1, 020,93 <1

on Cr, N{v >0}, and the distribution function satisfies

m(spt f)N{v >0} C {6C,u < v}.

We will make use of a bootstrap argument in the regions

Ry = {v>uln{r>0}n{u>—r}n{t<v<vl,

far

where vy > 0. Refer to Fig. 8.5. The bootstrap assumptions are

_Cl/ S 8ur S _C;lv
< Or <1,

m(spt f) NREY C W,

far

where

W= {6C,u<v}n{v>v}

(8.6.1)
(8.6.2)

(8.6.3)

(8.6.4)
(8.6.5)

(8.6.6)

and the constant 10 < C, < 1 is chosen so that —%Cl, < 0yr < =201 on Cy. Such a constant

exists by Lemmas 8.4.1 and 8.5.1.

Lemma 8.6.2. If (8.2.5) holds, vy > 7, Rgff C U, and the bootstrap assumptions (8.6.4)—(8.6.6)

hold on Rg’:f, then
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’LVI,’Uf
on R," and

T~ v, (8.6.11)
20y
Bylog 02 < TT (8.6.12)
on W. Furthermore,
m=Q=0 (8.6.13)

QVJ,Uf
on R T\ W.

Proof. Proof of (8.6.7) and (8.6.13): The bootstrap assumptions (8.6.4) and (8.6.5) imply 9,7 < 0
and 0,r > 0. Therefore, (8.6.7) follows from the monotonicity properties of the Einstein-Maxwell-
Vlasov system, Lemmas 8.3.1, 8.4.1 and 8.5.1, and the boundary condition (3.2.42).

Proof of (8.6.11): By the bootstrap assumption (8.6.4),
r(u,v) = r(=r2,0) = =Cp(u+r2) > —gv — Cyry

for (u,v) € W. By (8.3.13), the lower bound in (8.6.11) easily follows if ¢ is taken sufficiently large.
Since 9,1 < 0, r(u,v) < r(—rq,v) < v for v > ¥ and v sufficiently large, which proves the upper
bound in (8.6.11).

Proof of (8.6.10): This is immediate for © chosen sufficiently large in light of (8.6.7) and the fact
that

infr 2 o, (8.6.14)
w

which follows from (8.6.11).

Proof of (8.6.8): This follows from (2.1.3) by combining the bootstrap assumptions (8.6.4) and
(8.6.5) with (8.6.10).

Proof of (8.6.9): Let (u,v) € W. We will show that

/ T (v, v) du’ < v 2, (8.6.15)

—7g

which together with (2.3.21), (8.6.7), (8.6.8), and (8.6.11), readily implies (8.6.9). To prove (8.6.15),

we observe that by the bootstrap assumptions (8.6.4) and (8.6.5) and the evolution equation (2.3.28),
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Oym < 0. Using that m > 0 in RZ{};{', we therefore infer

du’ = m(—rq,v) — m(u,v) < 2ws.
(u,v)

u 2
[ preracon o + o)

Since all three integrands are nonnegative, this energy estimate, taken together with (8.6.4), (8.6.8)

and (8.6.11) imply
v2/ T (v, v) du’ §/ TQQQT"”&,T‘W ») du’ <1
—r2 —r2 '

for (u,v) € W, which proves (8.6.15).
Proof of (8.6.12): This follows from the fact that d,r/r > v=! in W by (8.6.5) and (8.6.11). O

Proof of Lemma 8.6.1. The proof is a bootstrap argument based on the bootstrap assumptions
(8.6.4)—(8.6.6). Let

A= {vs € [0,00) : Ridd C U and (8.6.4)~(8.6.6) hold on R},

aux

The set A is nonempty by Proposition 3.2.12, Lemma 8.4.1, and Lemma 8.5.1. It is also manifestly
closed by continuity of the bootstrap assumptions. We now show that if (8.2.5) holds, then A is
also open. Let vy € A.

Improving (8.6.5): Let (u,v) € Rud . Integrating the wave equation (2.3.20) in u starting at

u’ = —r9 and using the estimates of Lemma 8.6.2 yields

u Q2 Q2
_1l < s i 1 4rpuv
[Opr(u,v) — 5| 7/ <2r2 <m+ 27‘) + 37T )

—7g

du' <ot <ot
(u’,v)

which improves (8.6.5) for © sufficiently large.
Improving (8.6.4): Using (2.3.29), d,m > 0, and (8.6.14), we obtain (similarly to (8.6.15))

v2
/ PT |y AV SO71 (8.6.16)

v1

SUF

for any (u,v1), (u,v) € Rt . Let (u,v) € Ru . We integrate the wave equation (2.3.20) in v

starting at Cy if u < 0 and at (u,u) € I' if w > ¥. In the former case,

v 2 2
|Our(u, v) — Oyr(u, 0)| < / (Q (m + Q) + irQQT“”)

dv' < o7t
212 2r

(u,0)
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which improves (8.6.4) for v sufficiently large by the definition of C,,. In the latter case, the boundary

condition (3.2.42) implies 0, r(u,u) = —0,r(u,u), so

v QQ 2

which by (8.6.5) improves (8.6.4) for ¢ sufficiently large by the definition of C,.

/ v—1
dv' S o7,

(w,v')

|Our(u, v) + Opr(u, u)| < /

u

Improving (8.6.6): Let v : [0,5) — RO be an electromagnetic geodesic in the support of f
starting at C at s = 0. By (2.1.24) and (8.6.12),

%( p*) <0,
so by (8.6.8),
p“(s) < p"(0). (8.6.17)

Using (2.1.22), the signs of 9,7 and @, and parametrizing v by v yields

d
T log p” > —d,log Q2. (8.6.18)

By (8.6.9), it is easy to see that

v
/ |0,log Q2 (v (), v")| dv’ <ot
¥

and therefore

v 1
exp (= [ aog Gy ) = 5
for v sufficiently large. It follows from (8.6.18) that
P(5) 2 5°(0). (5.6.19)

Combining (8.6.17) and (8.6.19) yields

for v sufficiently large by (8.4.8) and (8.5.3). It is then easy to show that y(s) stays in {7C,u < v}
for every s € [0, S), which quantitatively improves (8.6.6). The rest of the existence and uniqueness

proof now follows a standard continuity argument using Proposition 3.2.6 and Lemma 3.2.16.
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To estimate |9,0?], note that |9,9% < (1 +u?)~! along C; UT by Lemma 8.5.1 and (3.2.44).
Observe that

inf  r~ inf v =max{0,6C,u} 2 1+u,
CuNWNRE ™ CuNWNRE

far far

so the energy estimate (8.6.16) can be improved to

g
/ T (u,v") dv’ < (14 u)~?

U1

for any u < v; < vy. Therefore the desired estimate can be propagated to the interior by integrating
the wave equation (2.3.21) in v. Together with the bootstrap assumptions and Lemma 8.6.2, this

completes the proof of the estimates (8.6.1)—(8.6.3). O

8.7 The dispersive estimate in the massive case

Let m > 0 and consider the solution (r, Q2,Q, f) given by Lemma 8.6.1, defined globally on C,.,. We
augment the hierarchy (8.2.5) with a large parameter vy satisfying

0<v,' <m<mg (8.7.1)

and aim to prove the following

Lemma 8.7.1. For any ¥,n,&,mg, m, and vy satisfying (8.2.5) and (8.7.1), we have the decay
M< Cv?

for v > vy and any M € {N¥ NV, T% T T S} where C may depend on n,e, m, and vg.

The proof is based on a bootstrap argument for the dispersion of ingoing momentum p* along
spt f as v = oo, which leads to cubic decay of the phase space volume ¥, which was defined in

(8.1.8). Using the mass shell relation (2.3.12) and the change of variables formula, we have

9 [ dp®
¥ (u,v) = = / / P, (8.7.2)
™ Jo  J{pu:f(uw,pvpv)£0} P

where we view p? as a function of p* and ¢. Compare with (8.1.9).

Lemma 8.7.2. If (8.2.5) and (8.7.1) hold and (u,v,p*,p") € spt f, then p* S 1 if v > ¥ and

P~y m? if v > v
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Remark 8.7.3. The estimate p¥ < 1 also holds in the massless case. The non-decay of p* for massive

particles drives the decay rate v—3, but only at very late times.

Proof. Let v € T'y and v > 0. Parametrizing v by v and using (8.4.8), (8.4.25), (8.5.3), and the
estimates in Lemma 8.6.1, we infer

(p")| Sv 2,

a
dv

which is integrable and hence shows that p” < 1. By (8.4.8) and (8.5.3), we have p¥ 2, 1. We then

obtain

B 62,,.72 +m2 €2 ) 9
Ty ~n 3 +m"~m

U

for r 2 vy sufficiently large. O
Using this lemma and (8.4.24), we immediately infer:

Lemma 8.7.4. If (8.2.5) and (8.7.1) hold, (u,v,p",p’) € spt f, and v > vy, then u ~, m?v. If

1,72 € Tf(u,v), then we have |fy{‘(311,#) - ’yg(s%#ﬂ(sv#) <, m?(v—vy), where sf)# is the parameter

~

time for which ~} (s,) = v.

K2

Let (ug,v0) € Cr, and let v € T'¢(uo, vo) have ingoing momentum p§ and angular momentum ¢

at (up,vp). We parametrize vy by v going backwards in time and denote this by

Vu(v) = ’Yu(UQUOaUOanag),

p*(v) = p*(v; uo, vo, Py, ).

We readily derive the equations

d_.,_ (@)

&) TR mey (8.7.3)
d 20, £2Q%pv Q

Q2pt) = (9,log Q2 — 22 _ Q2pt)2, 74
dv( P") (3 8 r ) r2m?2 + (2 er2m2+€2( P") (8.7.4)

Next, we define the variational quantities

u(v;u07v0,p87€) = W’y (U;u07’U07p07£)7 p(”?“O,UO,Po,g) 7(92]7 )(U;UO7’()0,]90,€),

Dy - opd

where we emphasize that the derivative in p{j is taken with ¢ fixed. From (8.7.3) and (8.7.4) we
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obtain

d 2p¢ (p*)? 5 (12 9 202020, r
—u= - Q= - 7.
ot T 22 e’ (2r—2 1 m2)?2 Ou s tm 3 u, (8.7.5)

20,7 72 B 2eQN?p¢
T r2m2 4+ 02 r2m? 02
20, 0,7 n 23vr8ur 22Q2pe ~ (01092 20,7\ 2m?ro,rf2Q2p*
r r2 r2m? + (2 Y (r2m?2 + ¢2)2

d
= log Q2 —
P K(% og

+ [(&ﬁdog 02—

e(Q2p*)? 2eQm2rd,r(Q%p*)?
_ ) 8.7.6
Py 2T T e e | (8.7.6)
Note that u(vg) = 0 and p(vg) = Q2% (ug, vo) ~ 1.
Lemma 8.7.5. If (8.2.5) and (8.7.1) hold, and v > vy, then
< U#
Y (u,v) Sne Py (8.7.7)
Proof. We claim that there exists a constant C,, depending on 7 and ¢, such that
—1 u(v)
C. < < C, (8.7.8)

vV — 1

for any vx < v < vg. To see how this proves (8.7.7), let @y, .00.0(P4) = ¥ (v;u0,v0, P4, ¢) and
observe that ® . ,(pf§) = u(vg) < 0. Changing variables in the p* integral in (8.7.2) to 7" (v4)

and using Lemma 8.7.4 to estimate the u-dispersion along Qy#, we find

! Cu min{m?vy, m?(vg —vg)} < C*Uig. (8.7.9)

Y (uo, vo) < I T
( 05 O) ~T,€ 7‘2m2 |'U# _ 'UO‘ UO

We prove (8.7.8) by a bootstrap argument as follows. Let vy > vy and assume (8.7.8) holds for
all (v, ug,vo, pf, £) with vy < v <wvg < vy. The assumption is clearly satisfied for some choice of C,
for vy sufficiently close to vy on account of u(vy) = 0.

We now show that for m sufficiently small and vy sufficiently large, we can improve the constant

in (8.7.8). Using (8.7.7), we estimate

mzv#

V3

(%
NV 57778 0*1)77;’&7 Twv Sn,s c,

for v € [vg,vf]. Using this, as well as (2.3.21), (2.3.24), Lemma 8.6.1, and p* ~,, m? in (8.7.6) yields

d 1 1 1 wm? m?y
ol e (o) W (G g 070 Y

m2y3 v3
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We use the bootstrap assumption (8.7.8) and (8.7.1) to infer

d m2v
20— 00| S b plan)| + 5 + 2T~
and then use Gronwall’s inequality to obtain
m?
[p(©) = p(v0)| Spe vz + CZE v — vol.
#
Using p(vg) ~ 1, we therefore have
Vo
/ p(v") dv’ ~y e v — v+ Oy (CEm* v — vg) ~ vg — v (8.7.10)

for m sufficiently small. Finally, we use (8.6.3) and Lemma 8.7.4 to estimate

vo 52 7" (vo) 1 1 1
/ 10,22 (7" (v), ") <r2 + m2> dv' <, / ——du' < < . (8.7.11)

ey LHu? v (vg) ~ mlug

Integrating (8.7.5) and using (8.7.10) and (8.7.11) improves the constant in (8.7.8) for m sufficiently

small and vy sufficiently large, which completes the proof. O

Proof of Lemma 8.7.1. Immediate from (8.7.7). O

8.8 Proof of Proposition 8.2.3

Proof. Part 1. This follows immediately from combining Lemmas 8.4.1, 8.5.1 and 8.6.1.

Part 2. The estimates in (8.2.6) follow directly from the estimates in Lemmas 8.4.1, 8.5.1
and 8.6.1. We will now prove causal geodesic completeness of the spacetime. Let v be a future-
directed causal geodesic in the (3 + 1)-dimensional spacetime. Then the projection of v to the

reduced spacetime, still denoted ~, satisfies

uy 20,1 2

92 (&Jog 02 — ) 5 (8.8.1)
20,1 £

92 v) = (Bulog? — =) = (8.8.2)
T

O2pup? = 72 +m?, (8.8.3)

where s is an affine parameter and v is continued through the center according to Part 4 of Defini-
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tion 3.2.10. We will show for any future-directed causal geodesic v : [0,S) — C,,, p” is uniformly
bounded in any compact interval of coordinate time 0 < 7 < 7y along . This implies that v can be
extended to [0, c0) by the normal neighborhood property of the geodesic flow in Lorentzian manifolds
[ONe83].

By (8.8.1)—(8.8.3) and (8.2.6),

d, o5 . Oy + Oy
’ds(QP) -

) (Q%p7)% (8.8.4)

§<1+

When r > %rl, the term in the absolute value on the right-hand side of this estimate is clearly

bounded by (8.2.6). When r < %7"1, the spacetime is Minkowski and the formulas in Lemma 3.2.16

can be used to show that

Opr + Oyr Sv—u ST (8.8.5)
Therefore, passing to a T parametrization of v, (8.8.4) implies

a4

<92 T
dr ~ ’

(%p7)

and the proof is completed by an application of Gronwall’s lemma.*

Part 3. The estimate (8.2.7) for the final parameters follows from (8.3.6). The remaining claims
in this part follow from the proof of Lemma 8.3.1, (8.4.18) on C’_%Tl, and Lemma 8.6.1.

Part 4. The estimate (8.2.8), the upper bound in (8.2.9), and the claim about the neighborhood
of the center follow from Lemma 8.6.1. The lower bound in (8.2.9) follows from Lemma 8.7.2, which
implies that +* grows linearly in v at very late times for any electromagnetic geodesic v in the
support of f. Since a neighborhood of Z7 is then electrovacuum, it is isometric to an appropriate
Reissner—Nordstrom solution by Birkhoff’s theorem.

Part 5. This follows immediately from Lemma 8.7.1.

Part 4. We now take m = 0 and seek to prove the upper bound in (8.2.11), the rest following
immediately from Birkhoff’s theorem. Let v(s) be an electromagnetic geodesic lying in the support

of f with v7(0) = ©. When m = 0, the mass shell relation, together with (8.4.8), (8.5.3), and (8.6.19)

gives the estimate
P 0 920 pH0) 5 0)
P’ r2(s) Q2(s) pU(s) p°(s) ~

4We have based this argument off of a non-gauge-invariant energy Q2p™, which is why the estimate (8.8.5) has to
be performed even in the Minkowski region of the spacetime. One could alternatively consider the gauge-invariant
energy (Oyr)p* — (Oyr)p¥, which is constant in the Minkowski region, but satisfies a more complicated evolution
equation where f # 0.
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which has integral < ¢~!. Therefore, the upper bound in (8.2.11) follows from (8.4.24) and taking
0 sufficiently large.

Part 5. When m = 0, the mass shell relation implies p* < v=2 for any electromagnetic geodesic

lying in the support of f. The estimates (8.2.12)—(8.2.14) follow from this and the formula (8.1.9). O

8.9 Patching together the ingoing and outgoing beams

8.9.1 The maximal time-symmetric doubled spacetime

Let o« € Pr or be of the form (r1,r2,0,0,0,0). Let n and € be beam parameters for which the
conclusion of Proposition 8.2.3 holds, recalling also Remark 8.2.4. Let M and é denote the final
Reissner—Nordstrom parameters of S = S,y We say that S is subextremal if € < M, extremal if

e=M , and superextremal if € > M5 If S is not superextremal, we may define
re =M+ VM2 - é2,

which is the formula for the area radii of the outer and inner horizons in Reissner—Nordstrom.
The following lemma is an easy consequence of the well-known structure of the maximally ex-

tended Reissner—Nordstrom solution:

Lemma 8.9.1. For any M,e>0and0<ry <r_ (if € < M), there exists a relatively open set

Extowy CHu < —ra}yn{v >ra} CRZ’U

€T

and an analytic spherically symmetric solution (r,Q2%,Q) of the Einstein-Mazwell equations on
EM,éM with the following properties: The renormalized Hawking mass w = M globally, the charge
Q = é globally, r(—ra,r2) = ro, Oyr(—re,ra) = —0ur(—ra,13) = %, and Q2 is constant along the
cones {u = —ra} N{v > r2} and {v =ra} N{u < —ra}. Moreover, we may choose (Ey; z ., 7 0%,Q)

to be mazimal with these properties, and it will then be unique.

Remark 8.9.2. The (3 + 1)-dimensional lift of (Ey; ;. .7, 02 Q) is isometric to a subset of the
maximally extended Reissner—Nordstrom solution with parameters M and é. The hypersurface
({r =0} N&y;,,) x 57 is then totally geodesic.

Remark 8.9.3. If M < €, then 61\7[,5,7-2 ={u < —ro} N{v > ro}. In the case ¢ < M, EM’éM is a

strict subset of {u < —ra} N {v > ry} with this choice of gauge.

5Recall that we are always taking ¢ > 0 and hence & > 0.
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Definition 8.9.4. Let (C,,,r, Q% @Q, f) be the maximal normalized development of § = S, . for
particles of mass m with final Reissner Nordstrom parameters (M, ¢) for which the conclusion of

Proposition 8.2.3 holds, recalling also Remark 8.2.4. Let
Cr, = {7 <0} {v>u}n{v<ry}
be the time-reflection of C,,. For (u,v) € C,,, define

F(u,v) = r(—v, —u),

Q2 (u,v) = Q3 (—v, —u),
Q(u,v) - Q(*U, *u),

f(ua ’Uapuvpv> = f(—’l), _uapvapu)'

Let # =C,, UCNT2 ué N, 20d define (1,92, Q, f) on .4 by simply gluing the corresponding functions
across the boundaries of the sets C,,, Cy,, and £ ¥z (We therefore now drop the tilde notation
on the solution in C,.,, except for in the proof of Lemma 8.9.5 below.) The tuple (.#,r, Q% Q, f) is

called the mazimal time-symmetric doubled spacetime associated to S.

Lemma 8.9.5. (.Z,r,02%,Q, f) is a smooth solution of the spherically symmetric Einstein—Mazwell-
Viasov system. The hypersurface {T = 0} N A is a totally geodesic hypersurface once lifted to the

(3 + 1)-dimensional spacetime by Proposition 2.5.10.

Proof. This is immediate except perhaps across {7 = 0} N {v < ro}. We only have to show that the
solution is O x C2? x C! x C'! regular across this interface by the regularity theory of Proposition 3.2.3.
By Definition 3.2.7 and Definition 3.2.10, the solution is clearly C* x C! x C° x C° regular. Using
Raychaudhuri’s equations (2.3.22), (2.3.23) and Maxwell’s equations (2.3.24), (2.3.25), it is easy
to see that r is C? and @ is C* across {7 = 0}. To check second derivatives of 22, differentiate
(O + 0,)Q22(—v,v) = 0 in v to obtain 92Q%(—v,v) = 92Q%(—v,v), which together with the wave
equation (2.3.21) implies C? matching. The p* and p¥ derivatives of f are also continuous by
inspection and continuity of spatial derivatives can be proved as follows: On {7 = 0}, 9, f can be
eliminated in terms of d, f and d%fa by (3.2.37). Then the Maxwell-Vlasov equation (2.3.26) can be
solved for 8, f. Performing the same calculation for f shows that d,f is continuous across {r =0}

The same argument applies for 9, f and the proof is complete. O
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8.9.2 The anchored Cauchy hypersurface

In order to define the family of Cauchy data in Theorem 1.2.1, we need to identify an appropriate

Cauchy hypersurface in each .Z. Let
Voo =4 (8.9.1)

and let ¥* : [-50M, vs) — R be the smooth function defined by
YU(v) = —100M — v

for v € [-50M 7], by solving the ODE

d Opr
—X*(v) = (8.9.2)
dv Ot | (5 w)v)
with initial condition X%(ry) = —100M — 7y for v € [r2,vs), and by applying the following easy
consequence of Borel’s lemma for v € [ry,73]:
Lemma 8.9.6. Given 0 < 1 < ro, M >0, and a sequence of real numbers ay,as, ... with a; <0,

there exists a smooth function X% : [r1,75] — [=100M — 1o, —100M — 1] such that A3vw) <0
for v € [r1,73], % has Taylor coefficients (—100]\;[ —r1,—1,0,0,...) at r1, and Taylor coefficients
(—IOOM —To,a1,as,...) at ro. Moreover, ifM and each a; are smooth functions of the parameters

wa, Q2,e,m, then f can be chosen to depend smoothly on ws, Q2,&,1.

Remark 8.9.7. For v > 1o, the curve X : v (¥%(v),v) € €y 5 ., lies in the domain of outer com-
munication if & < M and is contained in a constant time hypersurface in Schwarzschild coordinates.

Indeed, the time-translation Killing vector field in &y - . is given by the Kodama vector field
K = 2Q0720,r 8, — 2027 20,r 0y,
which is clearly orthogonal to 3.

8.9.3 Cauchy data for the Einstein—-Maxwell-Vlasov system

Let (M, g, F, f) be a solution of the (34 1)-dimensional Einstein-Maxwell-Vlasov system as defined

in Section 2.3.1. Let i : R3 - ¥ C M be a spacelike embedding with future-directed unit timelike
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normal n to . As usual, we may consider the induced metric § = i*¢g and second fundamental
form k (pulled back to R? along i) of 3. The electric field is defined by E = i*F(-,n) and the
magnetic field is defined by B = (x;i* F')¥, where f is taken relative to g. Since the domain of f is
the spacetime mass shell P™ which is not intrinsic to 3, one first has to define a projection procedure
to TS = TRR3, after which the restriction of f to ¥ can be thought of as a function f : TR3 — [0, 0).
Similarly, the volume forms in the Vlasov energy momentum tensor 7' and number current N have
to be written in terms of g, after which pr = i*T'(n,n) , jr = i*T(n,-) and px = i*N(n) can be
evaluated on  only in terms of g and f. For details of this procedure, we refer to [Rin13, Section

13.4].

Definition 8.9.8. A Cauchy data set for the Einstein-Maxwell-Vlasov system for particles of mass

m and fundamental charge ¢ consists of the tuple ¥ = (g, k, E, B, f) on R? satisfying the constraint

equations®

Ry — |3 + (trg k)* = | E[3 + | BI; + 2pr[f],

dng k— dtrg ];

—(g(E” A B"))* + jr[f]
divg E = epn|[f],

We denote by M, (R3, m, ¢) the set of solutions ¥ of the Einstein-Maxwell-Vlasov constraint system

on R? with the Cr subspace topology.

8.9.4 The globally hyperbolic region

By Proposition 8.2.3, Remark 8.2.4, their time-reversed (u — —v, v — —u) versions, Remark 8.9.7,

and the structure of the Reissner—Nordstrom family, we have:

Proposition 8.9.9. Let S and (#,r,Q%,Q, f) be as in Definition 8.9.4 and let X% (v) be the function
defined in Section 8.9.2. Let

X={v>uln{v<ve}C A
and let ¥ = {(2%(v),v) : v € [-50M,ve0)}. Then the following holds:

1. The manifold M = ((X\T') x S?)UT" with metric g = —Q? dudv+r?y, electromagnetic field, and

Vlasov field lifted according to Proposition 2.3.10 is a globally hyperbolic, asymptotically flat

6The particle mass m is implicitly contained in the formulas for T' and N.
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spacetime, free of antitrapped surfaces, with Cauchy hypersurface ¥ = ((X\T) x S2)U (ZNT).
2. (M, g) possesses complete null infinities T* and is past causally geodesically complete.
3. Ife> M, then (M, g) is future causally geodesically complete.

< M, there are two options. (If Sane 18 to be untrapped, then necessarily ro ¢ [r—,r4].)

™

4. 1f

(a) Ifro < r_, then (M, g) is future causally geodesically incomplete. The spacetime contains
a nonempty black hole region, i.e., BH = M\ J~(I*) # 0. The Cauchy hypersurface ¥

is disjoint from BH. The event horizon HT = O(BH) is located at u = 1o — 27 .

(b) If ro > ry, then (M, g) is future causally geodesically complete.

8.9.5 Proof of the main theorem

Proof of Theorem 1.2.1. Fix a fundamental charge ¢ > 0, cutoff functions ¢, 6, and ¢ as in Sec-
tion 8.2.1, and a number A > 1 satisfying (8.2.1). Fix the extremal black hole target mass M > 0
and let 0 < r; < ro and § > 0 be as in Theorem 7.3.2. Let 19 > 0 be such that Proposition 8.2.3
applies to the multiparameter family of seed data Sx s, (which was defined in Definition 8.2.2)
for A € [-1,2], IM'— M| < 6,0 < n <o, e > 0 sufficiently small depending on 7, and particle mass
0 <m < mg, where myg is sufficiently small depending on 7 and .

Let F : [0,00)2 — [0,00)? be defined by F(\, M') = (A2M’,A\M’), which is easily verified to
be smoothly invertible on (0,00)2. Define the function F,.(\, M) = (M,¢), the final Reissner—

Nordstrém parameters of S a7.n... By (8.2.7), we find

| Fye (A M) = F(C(N), M) < (8.9.3)

~

for A € [-1,2], |IM' — M| <6, and 0 < n < 9. There exists a constant 0 < \g < 1 depending on 7

such that if A € [—1, Ao, then |F, (A, M’)| < $ry. Also, (8.9.3) implies

sup
MoSAS2,| M/ —M|<5

% - C(IA)’ < (8.9.4)

From smooth convergence of F, . to F as n — 0, we obtain

JORE

It follows that the charge to mass ratio &/ M is strictly decreasing as a function of A, for A > Ag.

sup
Xo<AL2,|M/—M|<8

<o - (8.9.5)
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On any fixed neighborhood of (1, M) € R?, F~1oF, . converges uniformly to the identity map by
(8.9.3). Therefore, by a simple degree argument” we find an assignment (,) — (X\(n,¢), M'(n, <))
such that Fy, .(A(n,€), M'(n,e)) = (M, M). We claim that for 7 sufficiently small, the family of seed

data A — Sx = Sx mv(n,e),n,e gives rise to the desired family of spacetimes and Cauchy data:

1. For A € [—1, )\g], the final Reissner—Nordstrém parameters of Sy are < %rl by definition of
Ao and hence the globally hyperbolic spacetime D) associated to Sy by Proposition 8.9.9 is
future causally geodesically complete and dispersive. At A = —1, the seed data is trivial and

hence the development is isometric to Minkowski space.

2. For A € [Ao, A(1,€)), the final charge to mass ratio /M is strictly decreasing towards 1 by
(8.9.5). Therefore, Dy is future causally geodesically complete and dispersive. A neighborhood

of spatial infinity i° is isometric to a superextremal Reissner-Nordstrém solution.

3. A = A(n,e) is, by construction, critical, with parameter ratio ¢/M = 1. Dy contains a
nonempty black hole region and for sufficiently large advanced time, the domain of outer
communication and event horizon are isometric to an appropriate portion of an extremal

Reissner—Nordstrom black hole.

4. For X € (\(n,¢),2], é/M decreases away from 1 by (8.9.5). By definition of ro, r_ > ry for
71 sufficiently small and hence D) contains a nonempty black hole region and for sufficiently
large advanced time, the domain of outer communication and event horizon are isometric to an
appropriate portion of a subextremal Reissner—Nordstrom black hole. By (8.9.4), the charge

to mass ratio at A = 2 can be made arbitrarily close to %

To complete the proof, we assign a smooth family of Cauchy data to Dy. Let iy : [0,00) — Xy
be the arc length parametrization (with respect to the metric gy) of the Cauchy surface associated
to Dy by Proposition 8.9.9. Then we may define the embedding iy = iy x idgz J~:R3 — Yy C M,
(where the central sphere is collapsed to a point). The natural map A — ¥y, where U}, is the Cauchy

data induced on ¥, by pullback along iy, is smooth. This completes the proof of the theorem. [

8.10 Weak* convergence to dust

In this section, we show that the spacetimes constructed in Proposition 8.9.9 weak* converge in an

appropriate sense to the bouncing charged null dust spacetimes given by Proposition 7.2.3. First,

7Specifically, we use the following statement: Let f : B; — R be a continuous map, where B is the closed unit
ball in R®. If supg, |f —id| < %, then the image of f contains By /5.
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we show convergence of an outgoing Vlasov beam to the underlying outgoing formal dust beam:

Proposition 8.10.1. Let a € Pr, let {n;} and {€;} be decreasing sequences of positive numbers
tending to zero, let (r,Q2,Q, f) be the solution of the Einstein-Mazwell-Viasov system associated to
(a,mi,e5) by Proposition 8.2.8 for j > i and arbitrary allowed mass, and let (rq,Q3, Qa, N3, T3?)
be the outgoing formal dust solution from Section 7.6.2 on C,,. Then the following holds for any

relatively compact and relatively open set U C Cy,:

1. We have the following strong convergence:

JLim (Ilr = raller @y + 192 = Q3llcr ) + 1Q — Qallcowy + IT“|lco@y + 1T [ coqry) =0,
>
(8.10.1)

where the limit is to be understood as taking i — co while keeping j sufficiently large for each

i such that the conclusion of Proposition 8.2.5 applies for S n, e, -

2. If U' C U is disjoint from a neighborhood of {T = 0}, then

7]141)1’{.10 ||Nu||co(U/) =0. (8102)
J>i

3. We have the following weak* convergence: For any ¢ € C}(R?) with sptoNC,, C U,

lim (N“,N”,T“”)gpdudv:/(O,Né’,Tf{")(pdudv. (8.10.3)
G5r U v

4. We have the following weak* convergence: For any ¢ € L*(U),

lim lim (N“,N”,T“”)cpdudv:/(O,Né’,T(’f”)cpdudv. (8.10.4)

1—00 j—00 17 U

Proof. 1t is clear from the estimates used in the proof of Lemma 8.5.1 that the Vlasov solutions con-

verge strongly to Minkowski space in the regions RY, .. It therefore suffices to prove the proposition
Yimin
main

Part 1. Using Lemma 8.3.1, (2.3.25), and (8.4.37), we already obtain

only for the case U =R , where we use the estimates of Lemma 8.4.1.

Q(u,v) = Qu)| S

for any (u,v) € U = R2..*"" and note that Q(u) = Qa(u,v) by (7.6.6). Using this estimate,
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Lemma 8.3.1, (8.4.37), and Gronwall’s inequality on the differences of (2.3.20), (2.3.21) and (7.6.1),
(7.6.2), we readily infer

|r—ra| + 9% — Q3] <7

on U, which completes the proof of (8.10.1).

Part 2. This follows immediately from (8.4.34) since 7 is bounded below on U’.

Part 3. Since ¢ is bounded,

—%7"1 v
</ ’ N dvdu < £1/?

~
—T2 —Uu

/ N"p dudv
U

by (8.4.37). Next, let ¢ = p/(—er?Q?), use Maxwell’s equation (2.3.24), and integrate by parts:

/N”gpdudv:/ 6‘uQ<ﬁdudv:7/ QOup dudv + QP (8.10.5)
U U U

oU
By Part 1, Q0,¢p — Qq0.Pq and QP — QqPq uniformly as ¢ — oo and j < i, where pq =
©/(—er2Q32). Therefore, passing to the limit, we have

lim [ N'pdudo = — / Qudupa dudv + / Quia = / 0 Qua = / NY dudo,
U U U U

1—00
iS5 U

where we have again integrated by parts and used (7.6.5). A similar argument applies for the
convergence of T using the Raychaudhuri equations (2.3.22) and (7.6.3). This completes the proof
of (8.10.3).

Part 4. We first fix ¢ and take j — co. By (8.4.34), N* <, 1, for every j < i, where we use the

notation A <; B to denote A < CB, where C' may depend on i. By the Banach—Alaoglu theorem,
there exists a subsequence j,, and an L>(U) function h such that N* > h in L>(U). However, by
(8.10.2), it is clear that h = 0 almost everywhere. Since the subsequential limit is unique, N*“ 20
as j — oo. This completes the proof of (8.10.4) for N*.

Let mv ; and Qvl be the values of m and Q at r = %rl for the Vlasov seed Sq,;- Note
that these numbers do not depend on j. Let m; and QZ be the solutions of the system (7.6.12) and
(7.6.13) on [2r1, 73] with initial conditions 1y ; and Qv atr= 2ry, current N given by (7.6.15),
and identically vanishing energy-momentum tensor Tov. Following the proof of Proposition 7.6.6,
we obtain a unique smooth solution (rq;, Qfm, Qa,i» N§ ;, T3%) of the formal outgoing charged null

dust system on U which attains the initial data just described.
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By repeating the proof of Part 1 of the present proposition, we see that

lim ([lr — raller @) + 192 = Q3 ller ) + 1Q — Qaillcowy) =0

J—0o0

for fixed ¢. Arguing as in Part 2, we then see that

lim (N”,T””)cpdudv:/(N:{J,Té’fg)gadudv (8.10.6)
U

Jj—o0 U

for any p € C}(R?). Since NV, T%" <; 1, a standard triangle inequality argument shows that ¢ can

be replaced by any L' function in (8.10.6). Now it follows by construction that
INds = N§[+ T35 = T3"| S mi

on U, so we can safely take i — 0o in (8.10.6), which completes the proof of (8.10.4). O

In order to globalize this, we must first define bouncing charged null dust in the formal system
in double null gauge. So consider again the outgoing solution (rq, Qﬁ, Qa, N}, T}V) on C,, with seed
data (./\75,0,1"2,2) given by (7.6.15). As in Definition 8.9.4, we extend rq, Q3, and Qq to Cr, by

reflection, and set

Nclll(u7 U) = Ncllj(_va —u),

Téj’u(u, 'U) = T&w(_va _u)

for (u,v) € Cp, \ {7 = 0}. We extend N¥ and T3" to zero in Cy, \ {r = 0} and similarly extend N}
and Tj'* to zero in C;,. Using Lemma 8.9.1, we attach a maximal piece of Reissner-Nordstrom with

parameters @y and Q to Cp, UC,,. Let v, be as defined in (8.9.1).

Definition 8.10.2. The globally hyperbolic bouncing formal charged null dust spacetime associated
to a set of parameters a € Pr is the tuple (Xy,74,Q3, Qa, NY, Ny, T4 TYV), where Xg = {v >

ul N{v < v }-

For 7 > 0, (rq, Q3, N3, T%") solves the outgoing formal dust system and for 7 < 0, (rg, Q3, N¥, T4")
solves the ingoing formal dust system. The functions rq and Q3 are C' across {7 = 0} and Qq, T3,
and TY" are CY across {r = 0}. The currents N} and N} are discontinuous across {T = 0} (since
we extended by zero), but of course N} = NJ at {r = 0}.

Using this definition and Proposition 8.10.1, we immediately obtain the following
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Theorem 8.10.3. Let o € Pr, let {n;} and {e;} be decreasing sequences of positive numbers tend-
ing to zero, let (X,r,9% Q, f) be the globally hyperbolic solution of the Einstein—Mazwell-Vlasov
system associated to (o, m;,€5) by Proposition 8.9.9 for j < i and arbitrary allowed mass, and let
(Xa,7a, %, Qa, Ny, NY, T T¥) be the globally hyperbolic bouncing formal charged null dust space-
time associated to o by Definition 8.10.2. Then the following holds for any relatively compact open

set U C Xyq:

1. We have the following strong convergence:

Jim ([l = raller @y + 192 = Qdller @) + 11Q — Qallcowy + 1T |lcowry) = 0.
J>

2. We have the following weak* convergence: For any ¢ € CL(U),

lim [ (N, N, T"*, T"")pdudv = lim [ (N§,NJ, Ty, T4 )¢ dudv.
G U

3. We have the following weak* convergence: For any ¢ € L'(R?) with spt C U,

lim lim [ (N“, N°, 7", T"")pdudv = lim | (N§, N3, Ty, T4%)e dudv.
i—»00 j—o0 Jir 1]—><<010 U

Remark 8.10.4. The globally hyperbolic region X depends on 7; and €;, but it always holds that

U C X for i sufficiently large and j > 1.

8.11 The third law in Einstein—-Maxwell-Vlasov and event
horizon jumping at extremality

Using the technology of bouncing Vlasov beams developed in the proof of Theorem 1.2.1, we are now
able to quickly prove Theorems 1.2.22 and 1.2.23. As complete proofs would require more lengthy
setup, we only sketch the proofs of these results. We refer the reader back to Section 1.2.7 for the

theorem statements and discussion.

8.11.1 Counterexamples to the third law

Refer to Fig. 8.6 for global Penrose diagrams.
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m=20

trapped
R region

Figure 8.6: Penrose diagrams of counterexamples to the third law of black hole thermodynamics
in the Einstein-Maxwell-Vlasov model. The disconnected thick black curve denotes the outermost
apparent horizon A’, which jumps outward as the black hole becomes extremal. This behavior is
necessary in third law violating spacetimes which obey the weak energy condition, see Proposi-
tion 1.1.10 and [Isr86].

Proof of Theorem 1.2.22. Let a € P be third law violating dust parameters as in Theorem 7.4.1.
We desingularize this dust beam as in the proof of Theorem 1.2.1, noting that the charge on the
inner edge of the beam is bounded below and hence no auxiliary beam is required. In order to
achieve extremality we must modulate « slightly as in Theorem 1.2.1, but all required inequalities
for this construction are strict, so this can be done. By this procedure we obtain the time-symmetric
solution Deyy depicted in Fig. 8.7 below.

Let (w1, @1) be the initial Reissner-Nordstrém parameters of o, which will also be the initial
parameters of Dey;. Using the same methods as Theorem 1.2.1 and Lemma 7.3.1, we can construct
a solution Dg,p, of Einstein—-Maxwell-Vlasov collapsing to a subextremal Reissner—Nordstrom black
hole with parameters w; and ;. In the case of massless particles, the desired third law violating
spacetime is then obtained by deleting an appropriate double null rectangle from Dg,;, and gluing
in an appropriate piece of Deyi. In the case of massive particles, the beams from Dy and Dgyp, will
possibly interact in the early past, but as is clear from the proof of Proposition 8.2.3, this happens
in the dispersive region and the proof of Lemma 8.6.1 can be repeated to show global existence and

causal geodesic completeness in the past. O
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Figure 8.7: Penrose diagram of the time symmetric Einstein-Maxwell-Vlasov solution Deyy interpo-
lating between subextremality and extremality. This diagram is valid for both massive and massless
particles.

8.11.2 (Semi)continuity of the location of the event horizon
8.11.2.1 General results for spherically symmetric event horizons

We now consider general weakly tame spherically symmetric Einstein-matter systems, i.e., those
satisfying the dominant energy condition and the weak extension principle. We refer to [Daf05b;
Kom13] for the precise definition of the weak extension principle, but note that it is a strictly
weaker condition than the generalized extension principle as formulated in Proposition 3.2.4 and
therefore holds for the Einstein-Maxwell-Klein—-Gordon, Einstein-Higgs, and Einstein—-Maxwell-
Vlasov systems [Chr93; Daf05a; Kom13; DR16].

Let U = (X,3,k,...) be a spherically symmetric, asymptotically flat Cauchy data set on R3
with a regular center in the given matter model. We will assume that W contains no spherically
symmetric antitrapped surfaces, i.e., that d,r < 0 on ¥. This assumption is physically motivated
by the observation that if the maximal Cauchy development D = (Q,r,Q?,...) does not contain a
white hole, then there are no antitrapped surfaces in the spacetime. Furthermore, by Raychaudhuri’s
equation (2.1.7) and the dominant energy condition, d,r < 0 is propagated to the future of the
Cauchy hypersurface 3.

Under these assumptions, a very general a priori characterization of the boundary of (Q,r, Q?)
is available due to the work of Dafermos [Daf05b] and we refer to Kommemi [Kom13] for a detailed

account. We will utilize the following two facts:

Fact 1. If (Q,r,Q?) contains a trapped or marginally trapped surface, i.e., 9,7 (ug,vo) < 0 for
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some (ug,vg) € Q, then the black hole region is nonempty (BH = Q\ J=(Z1) # 0), future null

infinity is complete in the sense of Christodoulou [Chr99al, and (ug,vg) € BH.

Fact 2. The Hawking mass m extends to a (not necessarily continuous) nonincreasing and
nonnegative function on future null infinity ZT, called the Bondi mass. If the Hawking mass of
¥ is bounded,® then the Bondi mass is also bounded and the final Bondi mass My = infz+m is
finite. Then the “event horizon Penrose inequality” supq,+ 7 < 2M holds and by the no antitrapped
surfaces condition we also obtain

supr < 2My. (8.11.1)
BH

We wish to consider sequences of initial data and their developments. In order to compare them,
we have to ensure that the double null gauges are synchronized in an appropriate sense. We consider
only developments D = (Q,r,Q?,...) for which the center I' is a subset of {u = v} C R} , and if
i:[0,00) = X denotes the embedding map of the Cauchy hypersurface into Q, we demand that

1(0) € I'. Clearly, these conditions can always be enforced by an appropriate transformation of the

double null gauge.

Assumption 8.11.1. Let {¥;} be a sequence of spherically symmetric asymptotically flat Cauchy
data for a weakly tame Einstein-matter system. Let D; = (Qj,rj7Q?7 ...) denote the maximal
development of ¥; with Cauchy hypersurface ¥; C Q; and embedding map i; : [0,00) — X;
normalized as above. We assume that ¥; converges to another data set ¥, and the developments

converge in the following sense:

1. Gauge condition: Let D, denote the maximal development of V., with Cauchy hypersurface

and embedding map iy : [0,00) — Xo. We assume that D; and Dy have continuously
synchronized gauges in the sense that (u,v)oi; : [0,00) — R? converges uniformly on compact

sets as j — oo.

2. Cauchy stability of the area-radius: If U C Q is a relatively compact open set, then U C Q;

for j sufficiently large and r; — ro in C*(U).

Remark 8.11.2. The notion of continuous synchronization also makes sense for continuous one-
parameter families of Cauchy data A — ¥,. In this case we require the maps (u,v) o iy(z) to be

jointly continuous in A and x € [0, 00).

Remark 8.11.3. The initial data and developments given by Proposition 8.9.9 are continuously

synchronized as functions of the beam parameters («,n,e,m).

8This can be regarded as a part of the definition of asymptotic flatness.
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Proposition 8.11.4. Let ¥; — W, be a convergent sequence of one-ended asymptotically flat
Cauchy data for a weakly tame spherically symmetric Einstein-matter system, containing no spher-
ically symmetric antitrapped surfaces, and satisfying Assumption 8.11.1. Assume that the sequence
has uniformly bounded Bondi mass and that the development D; of ¥; contains a black hole for
each j € N. Let r; 1+ denote the limiting area-radius of the event horizon "H; of D and u; 4+ its

retarded time coordinate (also for j = 0o if Ds contains a black hole). Then the following holds:

1. If future timelike infinity i3, is a limit point of the center T’ in Dy, (in particular, Do does
not contain a black hole), then

lim w; 3+ = supu. (8.11.2)
j—o0 -

2. If Do contains a black hole, then

(a) The retarded time of the event horizon is lower semicontinuous:
lim inf Uj H+ > Uoo, H - (8.11.3)
Jj—o0

(b) Assume further that there are trapped surfaces asymptoting to il in the following sense:
Let (too i+, Voo,i+) denote the coordinates® of i¥, and suppose there exist sequences u; >
Up > o = Usg i+ and V1 < Vg < -0 = Voo i+ SUch that Oyroe (Ui, vi) < 0 for every i > 1.

Then (8.11.3) is upgraded to

im uj gt = Uso e+ (8.11.4)
j—o0
and it additionally holds that
liminf r; 3+ > rog 3+ (8.11.5)
J—00

Proof. Part 1: The inequality < in (8.11.2) follows directly from Cauchy stability, which implies the
stronger statement

lim sup sup u < sup u.
j—oo  Qj Qoo

We now prove the inequality >. Let ug < supg_ w and let M be an upper bound for the Bondi
mass of the sequence {D,}. Since the cone C,, in Q. reaches future null infinity, we can choose
vo such that ro(ug,vo) > 2M. By Cauchy stability, r;(uo,vo) > 2M for j sufficiently large, so

(ug,vo) ¢ BH; by (8.11.1). This implies w3+ > uo which completes the proof.

guooﬁ_ is necessarily finite and equals Uoo 3+ but Voo, it could be +oc0.
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Part 2 (a): The argument to prove (8.11.3) is the same as the proof of Part 1, since C,,, reaches
future null infinity in Q. for any up < e 3+-

Part 2 (b): By (8.11.3) we must now show that for ug > s 3+, u;y+ < ug for j sufficiently
large. Let (u;,v;) be a trapped sphere for D as in the statement, with ug > u; > uee 3+. By
Cauchy stability, (u;, v;) is then trapped in D; for j sufficiently large and therefore u; > u; 3+, which
completes the proof of (8.11.4). Using this, we now have by Cauchy stability and monotonicity of
r; along ’H;r that

liminfr; 3+ > Hm 7;(u; 9+, v0) = Too(Uso 3+, V0)

for any vg < v 4+. Letting vg — v 4+ completes the proof. O

Remark 8.11.5. Tt is natural to ask if the “reverse” of (8.11.5), i.e.,

lim sup 7 3+ < oo 3+ (8.11.6)
j—oo

holds at this level of generality (even assuming trapped surfaces asymptoting towards i%,). It turns
out that (8.11.6) is false without additional assumptions. On the one hand, assuming additionally a
strict inequality in (8.11.3), a minor modification of the arguments used to show (8.11.3) can be used
to show (8.11.6).19 On the other hand, without the assumption of a strict inequality in (8.11.3),
using the ingoing (uncharged) Vaidya metric, one can construct a counterexample to (8.11.6) which
moreover satisfies the asymptotic trapped surface assumption of Part 2 (b). One is to imagine
inflating the event horizon of a Schwarzschild black hole by injecting a fixed dust packet at later and
later advanced times v ~ j. In the limit j — oo, the dust disappears, and limsupr; p+ > oo 3+-
Curiously, since black holes in the Vaidya model always have trapped surfaces behind the horizon,
Part 2 (b) of the proposition implies that u; 4+ is actually continuous in this process. This is
because injecting a fixed amount of matter at later and later times causes the horizon to move
outwards less and less (in u), causing it to converge back to the original Schwarzschild horizon as
j — oo. Therefore, in order for (8.11.6) to hold, one must assume that ¥; converges to ¥, in a
norm that sufficiently respects the asymptotically flat structure. We emphasize at this point that
the conclusions of Proposition 8.11.4 hold only under an assumption of local Cauchy stability—no

asymptotic stability or weighted convergence is required.

10Note that in this case, there cannot be trapped surfaces asymptoting towards i !
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8.11.2.2 Proof of event horizon jumping in the Einstein—-Maxwell-Vlasov model

Proof of Theorem 1.2.23. This is proved by following the proof of Theorem 1.2.22 and varying the

final parameters of Dyy as in the proof of Theorem 1.2.1. O

This theorem shows that it is not always possible to have equality in (8.11.3) when D, is

extremal: the event horizon can and does jump as a function of the initial data.
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Part 11

Positive mass theorems with black

holes and arbitrary ends
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Chapter 9

Overview of Part 11

9.1 Introduction

Let M™ be a smooth manifold, g a complete Riemannian metric on M, and k a symmetric (0, 2)-
tensor on M™. Such a triple naturally arises as an initial data set' for the Cauchy problem in
general relativity. We say that (M™, g, k) is asymptotically flat with compact core if there exists a
compact set K C M such that M \ K is diffeomorphic to R \ B, and in the coordinates z* induced
by this diffeomorphism, g;; — d;; and k;; decay suitably. This definition is intended to capture the
configuration of an isolated system in a Cauchy hypersurface of an asymptotically flat spacetime.
Given an initial data set, the mass density u (a scalar) and the momentum density J (a vector

field) are defined by

p=13 (By —[k[g + (trg k)?)

J' = (divy k)" — V'(tr, k).

If (M, g, k) arises as a spacelike hypersurface in a Lorentzian manifold satisfying the Einstein equa-
tions (1.0.1), then p = T% and J* = T, where 0 denotes the timelike direction normal to the
hypersurface. We say that (M, g, k) satisfies the dominant energy condition (DEC') if > |J|4. This
condition is satisfied by reasonable matter systems, such as those considered in Part I of this disser-

tation. As a special case, (M, g, k) is vacuum if y and J vanish identically.? In this case, (M, g, k)

IThis terminology, though standard, is misleading. The triple (M, g, k) need not solve constraints for any specific
Einstein-matter system to be called an “initial data set” in this part of the dissertation.

2The vacuum constraints have the character of an underdetermined elliptic system. The DEC u — |J|g > 0 may
be thought of as an underdetermined elliptic inequality.
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can be developed into a globally hyperbolic spacetime satisfying the Einstein vacuum equations
(1.1.6) [Fou52; CG69].

Associated to an asymptotically flat end is the ADM energy-momentum vector (E, Pt, ..., P") €
R"*1, which captures a notion of total energy and momentum of the initial data set at infinity.
The celebrated spacetime positive mass theorem of Schoen and Yau states that the total energy-
momentum of an asymptotically flat data set is nonnegative if the local energy-momentum density
is:

Theorem 9.1.1 (Schoen—Yau [SY81a]). Let (M3, g, k) be a 3-dimensional asymptotically flat initial
data set with compact core and satisfying the dominant energy condition. Then (E, P) is a future-
directed causal vector, that is, E > |P|. In particular, the total mass E > 0. If E = |P|, then

(M3, g,k) embeds into Minkowski space.

For the history of this theorem, we refer the reader to the excellent textbook [Leel9]. Schoen
and Yau’s proof of Theorem 9.1.1 involves a reduction to the Riemannian positive mass theorem,

which is itself a fundamental result in scalar curvature geometry:3

Theorem 9.1.2 (Schoen—Yau [SY79a]). Let (M3, g) be a 3-dimensional asymptotically flat Rieman-
nian manifold with compact core and nonnegative scalar curvature. Then mapym > 0 and mapy = 0

if and only if g is flat.
In this part of the dissertation, we consider two natural generalizations of Theorem 9.1.1:

1. In Chapter 10, we show that Theorem 9.1.1 holds for asymptotically flat data sets with compact
core and nonempty compact boundary in dimensions 3 through 7.* The natural boundary
condition is for OM to be weakly outer trapped, which means M contains an apparent horizon.
We therefore call this result the spacetime positive mass theorem for black holes. This result
removes the restrictive topological assumption of spin from the theorem of Gibbons, Hawking,

Horowitz, and Perry [GHHPS3].

2. In Chapter 11, we show that Theorem 9.1.2 holds for complete asymptotically flat manifolds—
without the compact core assumption. The manifolds considered may have other non-asymptotically
flat ends. We therefore call this result the positive mass theorem with arbitrary ends. This the-

orem was conjectured by Schoen—Yau in [SY88] in connection with conformal geometry, which

3In the context of the Riemannian positive mass theorem, it is customary to denote E by mapwm.

4In this part of the dissertation, we always take 3 < n < 7, where n is the dimension of the manifold. The
dimension restriction comes from the regularity theory of minimal hypersurfaces. Removing this bound is a very
difficult open problem, though there have been some attempts and partial results in recent years. The results in this
dissertation can be applied as a black box to the higher dimensional case once the relevant regularity theory has been
developed.
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will be discussed in Section 9.4. Furthermore, our methods imply corollaries for incomplete

manifolds containing a positive scalar curvature shield.

Both of these results also have applications to extremal black hole spacetimes, as these often do

not contain trapped surfaces or asymptotically flat Cauchy hypersurfaces with compact cores.

Density theorems

These main common thread between these two lines of results is the use of density theorems to
perturb the original asymptotically data into something easier to work with. The first result of this
kind was proved by Schoen and Yau in [SY81b], who showed how to perturb an asymptotically flat,
scalar-flat metric

9ij(x) = 615 + Oa(|z ), (9.1.1)

to an asymptotically flat, scalar-flat metric satisfying

Gij(x) = u*(x)dy (9.1.2)

outside a compact set, where u is a harmonic function with respect to the underlying Euclidean
structure and u(xz) — 1 as |z| = co. Such a metric has so-called Schwarzschild asymptotics, which
can be seen by expanding u in spherical harmonics, and so may be treated using the methods
of [SY79a]. This result can be generalized to show that an asymptotically flat, nonnegative scalar
curvature metric can also be perturbed so that (9.1.2) holds outside a compact set, while maintaining
nonnegative scalar curvature [LP87; Kuw90]. One may characterize these results as saying that
metrics with asymptotic expansion (9.1.2) are dense among metrics with asymptotic expansion
(9.1.1), either subject to the constraint R, = 0, or the constraint Ry > 0, where R, denotes the
scalar curvature of g.

Density theorems of this kind are used in every minimal hypersurface, marginally outer trapped
surface (MOTS), and Jang reduction proof of the positive mass theorem [SY79a; SY81b; SY81a;
Sch89; Loh99; Eicl13; EHLS16; Loh16; Loh17; SY19]. The improved asymptotics are crucially used
to construct barriers and perform asymptotic analysis on area-minimizing hypersurfaces (or stable
MOTS) spanning large spheres in the asymptotically flat region. Therefore, most of the analytic
work in proving the positive mass theorem lies in establishing an appropriate density theorem—the
geometric arguments take place on the perturbed, simplified manifold. Most of Chapter 10 and

Chapter 11 is indeed concerned with proving density theorems in the relevant settings.
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9.2 The spacetime positive mass theorem for black holes

In Chapter 10, we settle the full spacetime positive mass theorem with boundary and without a spin
assumption, at least in dimensions where we have regularity of C-minimizing integral currents. This

theorem was proved in joint work with Dan A. Lee and Martin Lesourd [LLU22].

Theorem 9.2.1 (Spacetime positive mass theorem with boundary). Let 3 < n < 7, and let
(M™, g, k) be a complete asymptotically flat initial data set with compact boundary OM such that the
dominant energy condition holds on M, and each component of OM is either weakly outer trapped
(0 < 0) or weakly inner untrapped (0= > 0), with respect to the normal pointing into M. Then

E > |P| in each end, where (E, P) denotes the ADM energy-momentum vector of (g, k).

The quantities 8+ are the null expansions of the boundary. The definitions and precise assump-
tions for this theorem will be given in Section 10.2.1.

The OM = () case of Theorem 9.2.1 was proved by Eichmair, Huang, Lee, and Schoen in [EHLS16].
The OM # () case is desirable from a physical perspective, since it verifies the intuition that the
geometry lying behind an “apparent horizon” cannot influence the asymptotic geometry. In general
relativity, a surface with 67 < 0 cannot be seen from null infinity, and therefore must lie inside a
black hole [Haw72b]. Previously, the OM # () case was only known to be true for spin manifolds,
by work of Gibbons, Hawking, Horowitz, and Perry [GHHP83] (see also [Her98]), who implemented
Witten’s spinor method [Wit81] with a boundary condition. In 3 dimensions, Theorem 9.2.1 also
follows from recent work of Hirsch, Kazaras, and Khuri [HKK21], using an unrelated method. The
short note of Galloway and Lee [GL21] proves Theorem 9.2.1 under the stronger assumption that
each component of M either has 67 < 0 or 6~ > 0.

Despite these advances and the general belief that Theorem 9.2.1 was true, the problem remained
open for a long time. It is natural to adapt the proof of the M = @) case in [EHLS16], and in fact,
the proof is essentially unchanged for M # () if one already has so-called harmonic asymptotics,
which is the “initial data set version” of condition (9.1.2). However, it is not clear how to prove a
density theorem to achieve harmonic asymptotics as in [EHLS16, Theorem 18] when a boundary is
present. This is what we accomplish with Theorem 10.1.1, and we explain how Theorem 9.2.1 follows
from Theorem 10.1.1 and [EHLS16] in Section 10.4.1. The reason why Theorem 10.1.1 is a nontrivial
generalization of Theorem 18 of [EHLS16] is that the latter is proved by solving an elliptic system,
and the weakly outer trapped condition on the boundary is not an elliptic boundary condition for
this system. We solve this problem by supplementing the weakly outer trapped condition with other

conditions to create an elliptic boundary condition.
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Since one expects that E = |P| is only possible if the initial data set sits inside Minkowski
space, which does not contain weakly outer trapped surfaces, one should be able to strengthen
Theorem 9.2.1 to conclude that E > |P|. Indeed, we are able to do this if one is willing to make

stronger assumptions about the asymptotics.

Theorem 9.2.2. Assume the hypotheses of Theorem 9.2.1 with OM # 0, and furthermore, assume
that (M, g, k) satisfies the stronger asymptotic assumption appearing in Theorem 10.4.1. Then E >
Pl

By work of Beig and Chrusciel [BC96] (see also [CMO06]), this result should also hold for all spin
manifolds, and this argument is sketched® in [BC03, Remark 11.5] in dimension 3. The 3-dimensional
case was also obtained by [HKK21], and more recently, Hirsch and Yiyue Zhang used this approach
to remove the “stronger asymptotic assumption” in 3 dimensions [HZ23]. In the spin case, Hirsch—
Zhang have characterized E = |P| spacetimes with “weak” decay as “pp wave” spacetimes in the
very recent paper [HZ24].

Our proof of Theorem 9.2.2 follows fairly easily from Theorem 9.2.1 combined with known tech-
niques in the OM = ) case. Specifically, we break the proof into two parts. In the first part, presented
in Section Section 10.4.2, we suppose that £ = |P| and conclude that £ = |P| = 0 by adapting
the M = () proof by Huang and the first author [HL20]. This is where the stronger asymptotic
assumption in Theorem 10.4.1 is needed. In the second part, presented in Section Section 10.4.3,
we show that £ = 0 is impossible by examining Eichmair’s Jang equation proof (in the OM = ()
case) that £ > 0 in [Eicl3] (which itself generalized Schoen—Yau’s pioneering result in dimension
3 [SY81Db]). Technically, in dimension 3 our argument requires the assumption that tr, k = O(|z|~7)
for some v > 2, but we choose to leave this assumption out of the statement of Theorem 9.2.2 by
explicitly relying on either [HKK21] or [BC03, Remark 11.5] (both of which require very different

methods than the ones discussed in this dissertation).

Remark 9.2.3. Huang and Lee have given a very beautiful and completely different proof of £ =0

rigidity in [HL23], which makes use of some results from [LLU22].
Remark 9.2.4.

Besides the positive mass theorem, another application of Theorem 10.1.1 concerns the gluing
problem for initial data sets. Indeed, since the gluing-across-annulus theorem of Corvino—Schoen

[CS06] is appropriately local and done in a region where the data is vacuum and has good asymp-

totics, we can combine it with Theorem 10.1.1 to obtain the following.

5Note that this discussion only appears in the arXiv version of the paper.
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Corollary 9.2.5. Let (M,g,k) be an asymptotically flat initial data set satisfying the assumptions

of Theorem 10.1.1, such that E > |P|. Then, for any € > 0, there is an initial data set (Q,IE) with
the following properties:

e (g, k) satisfies the dominant energy condition,

the outer null expansion of M with respect to (g, ];) s unchanged, that is, o+ =6+,

° (g,l?:) is e-close to (g,k) in WE’;’ « Wi’f,l,

e (fi,J) is e-close to (u,J) in L,

) is isometric to an initial data set for a Kerr

outside a compact set containing OM, (

9
spacetime® with ADM energy-momentum (E, P), where |E — E| + |P — P| < ¢.

9.3 The positive mass theorem with arbitrary ends

An interesting geometric feature of extremal black holes is that Cauchy surfaces for their domains
of outer communication can have arbitrary ends. For example, the ¢ = 0 slice of extremal Reissner—
Nordstrém has one asymptotically flat end as r — oo but is actually asymptotically cylindrical as
r — 0. This Cauchy surface does not have a compact core, and therefore Theorem 9.1.2 does not
apply. As it turns out, the arbitrary ends cause difficulties in every step of the proof.

In joint work with Lesourd and Yau [LUY21] and Lee and Lesourd [LLU23], we were able to
remove the compact core assumption on Theorem 9.1.2, while keeping the most general possible

asymotptics on the asymptotically flat end:

Theorem 9.3.1 (The positive mass theorem with arbitrary ends). Let (M™,g), 3 < n <7, be
a complete manifold with nonnegative scalar curvature and at least one asymptotically flat end €
n—2

of Sobolev type (p,q), where p > n and q > "5=. Then the ADM mass of £ is nonnegative.

Furthermore, if the mass is zero, then (M, g) is isometric to Euclidean space.

Remark 9.3.2. In [LUY21], we proved this theorem under a stronger decay assumption on £ and
were unable to conclude a rigidty statement. We revisted the problem in [LLU23] with more robust

methods, which resulted in the stronger version of the theorem stated here.

Our proof makes use of Gromov’s p-bubble technique [Gro96; Grol8] to localize the Schoen—Yau

descent scheme of [SY79b] to the asymptotically flat end (see already Section 9.3.2). Our methods

6More specifically, this Kerr initial data comes from an element of the “reference family” for Kerr, as described
in [CDO03].
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actually prove the following stronger result, which is a positive mass analogue of Gromov’s band

width inequality.

Theorem 9.3.3 (Quantitative shielding theorem). Let (M™,g), 3 < n < 7, be an asymptotically

n—2

flat manifold of Sobolev type (p,q), with p > n and q > "5=,

not assumed to be complete or to have
nonnegative scalar curvature everywhere. Let Uy, Uy, and Uy be neighborhoods of an asymptotically

flat end & such that Uy C Uy, Uy C Uy, and Uy \ € is compact, and let

DO = C.listg(al-jo7 Ul) and D1 = distg(UQ,BUl).

If the following hold:
1. g has no points of incompleteness in Uy,
2. Rg >0 on Uy, and

3. the scalar curvature satisfies the largeness assumption

Ry > on Uy \ Uy, (9.3.1)

DoD:

then the ADM mass of the asymptotically flat end £ is strictly positive.

We call this a shielded version of the positive mass theorem because the positive scalar curvature
band shields &€ from M \ Uy, on which we make no assumption.

Our methods also imply an inextendibility result: Given an asymptotically flat end & with
nonnegative scalar curvature and negative mass, Theorem 9.3.1 tells us that it is impossible to
extend & to be a complete manifold with nonnegative scalar curvature. The following corollary of
Theorem 9.3.3 states that, in fact, there is a fized distance D that puts a limit on how far we can
extend the metric away from & before hitting either a point of incompleteness or a point of negative

scalar curvature.

Corollary 9.3.4. Let (M",g), 3 <n <7, be a Riemannian manifold, not assumed to be complete,
with an asymptotically flat end € of Sobolev type (p, q), wherep > n and g > % Ifmapm(€,9) <0,
then there exists a constant D, depending only on mapm (€, g) and ||g —5||Wz,p(5), with the following

property. In the D-neighborhood Np(E) of £, one or both of the following must be true:

1. R, < 0 somewhere in Np(E), or
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2. Np(€) contains an incomplete point.

We have given further applications of these techniques to questions about quasilocal mass in

[LLU24).

Remark 9.3.5 (Spinor methods). Using Dirac operators on a space with a strong weight on the
other ends, Bartnik and Chrusciel are able to prove a remarkable spacetime positive mass theorem
with arbitary ends under a spin assumption [BC03]. After [LUY21] appeared, Cecchini and Zeidler
revisted the Riemannian positive mass theorem in the spin setting [CZ21]. They use Callias operators
(i.e., Dirac operators with a potential) as a localization tool. They obtain analogues of all our results
stated above, which is not needed for spin arguments. Also, their asymptotics are slightly stronger
than ours, but we do not believe that this is essential to their method. We would also like to point

the reader to the very interesting paper [CZ20].

9.3.1 Outline of the proof of Theorem 9.3.1

An essential ingredient to obtaining the positive mass theorem with the weakest decay assumptions
is a density theorem that reduces the problem to studying an asymptotically flat manifold with har-
monic asymptotics (i.e., of the form (9.1.2)). See already Theorem 11.1.1 for the precise statement.

With such a density theorem in hand, Theorem 9.3.1 can be proved in one of two ways:

Proof 1. Assume for the sake of contradiction that mapy < 0. One now makes a slight confor-
mal change of the metric that makes the scalar curvature strictly positive in an annular region
surrounding the asymptotically flat end €. (This procedure is called “bumping up,” see already
Proposition 11.4.2 below.) The mass is still negative after this perturbation and one has a contra-

diction to Theorem 9.3.3 after choosing Uy, Uy, and U, appropriately.
We give the details of this proof in Section 11.5.2 below.

Proof 2. Assume for the sake of contradiction that mapy < 0. Applying the density theorem, we
perturb the metric to be conformally flat far out on £ while keeping the mass negative. Lohkamp
[Loh99] observed that one can then deform w to be constant outside of a (possibly very large)
compact set, while staying superharmonic (see also [CP11]).” This means that the deformed metric
has nonnegative scalar curvature everywhere, and is flat outside of this compact set. By identifying

sides of a cube surrounding the non-flat region, and taking X to be the one-point compactification

"This deformation step uses mapy < 0 crucially and gives the positive mass theorem the flavor of a Liouville
theorem.
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of M along &, one obtains a complete metric on X" # T™ with positive scalar curvature.® When
X™ is compact, a classical result of Schoen and Yau [SY79b] states that X™ # T™ does not admit
a metric of positive scalar curvature, which would give the required contradiction. However, if M
has arbitrary ends, then X™ # T™ is noncompact and the proof of [SY79b] breaks down in a serious
manner. Nevertheless, using Gromov’s p-bubble technique, Chodosh and Li were able to extend

Schoen and Yau’s result to the complete noncompact case:

Theorem 9.3.6 (Chodosh-Li [CL24]). Let 3 <n < 7 and let X" be a smooth manifold of dimension

n. Then X™ #T™ does not admit complete a metric of positive scalar curvature.

This gives the required contradiction.

9.3.2 Gromov’s pu-bubble technique

A natural question in scalar curvature geometry is whether minimal hypersurface and Dirac operator
arguments can be effectively localized around a particular geometric feature. This is particularly
important when working in ambient spaces that are noncompact, incomplete, or contain boundaries.
In the case of minimal hypersurfaces, minimizing sequences are susceptible to various problems: they
can escape every compact set and fail to converge, they can degenerate to something noncompact
and unwieldy, or they can hit points of incompleteness and become singular.

To get around these issues, Gromov introduced the technique of p-bubbles as a way of localizing
the Schoen—Yau minimal hypersurface descent scheme [SY79b] to stay within a well understood and
usually compact region of the ambient space [Gro96; Grol8]. The basic idea is to replace stable
minimal hypersurfaces by stable prescribed mean curvature hypersurfaces (called p-bubbles), where
the prescription function (called the potential) blows up in the “forbidden” region of the manifold.
There is now a wealth of examples where p-bubbles have been used to study problems in scalar
curvature curvature which previously seemed out of reach [CL24; Gro23; Gro20; Zhu23; Zhu2l;
LUY21; CLSZ21].

To make the idea clear, we give the following definition.

Definition 9.3.7. Let (M, g) be a Riemannian manifold and let h : M — R (called the potential)

be a continuous function with the following properties:

1. h is smooth on the open set {—0co < h < oo} in M.

8Lohkamp’s work [Loh99] was concerned with asymptotically flat manifolds with compact core. However, his
arguments go through unchanged in the case of arbitrary ends once the density theorem is proved.
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2. Let My denote the closure of {—oco < h < oo} in M. Then OMy = M, UOM_, where OMy

are nonempty smooth closed embedded hypersurfaces and h|gnr, = £oo.

Let Qg be a Caccioppoli set in My which contains OM,. For  another such Caccioppoli set, we

define

F@Q) = H 1 (0°9) - / (xer — xeu) h iy

Mo
We say that Q is a p-bubble if it is a critical point of this functional under variations satisfying
QA Qy CC My, or equivalently, if 9 has prescribed mean curvature h (with the normal oriented

pointing towards OM_). Stable and minimizing p-bubbles are defined in the obvious way.
It is relatively straightforward to show that in the above setting, stable py-bubbles always exist.
Lemma 9.3.8. If2 <n <7, nonempty stable pu-bubbles exist and are smooth.

Sketch of Proof. Let {§;} be a minimizing sequence for F. This sequence can be modified to avoid
a neighborhood of OM, and still be minimizing. Since M4 are closed, smooth hypersurfaces, any
foliation of a tubular neighborhood has uniformly bounded mean curvature. Therefore, H < h near
OM (with the normal pointing away from M, ) and H > h near OM_ (with the normal pointing
away from OM_). These surfaces act as barriers and by performing a suitable replacement, for each
i we can find a Caccioppoli set ; C {|h| < C}, where C is a sufficiently large constant independent
of 4, satisfying also Q) A Q; CC My and F(2}) < F(£;). For details of this argument, we refer to
[CL24].

Since My is compact and h is bounded on Q; AQq, F(£2;) 2 —1. We obviously have M(9*Q)}) < 1
and M(£2;) < 1 by previous observations. So by the BV compactness theorem, there exists a
subsequence of {Q;} converging in the sense of Caccioppoli sets. By standard regularity theory, the
limiting set will have smooth boundary with mean curvature h. As it is F-minmizing, it is also

automatically stable. O
The utility of stable u-bubbles is explained by the following computation:

Lemma 9.3.9. IfQ is a smooth stable p-bubble with boundary 3, then 3 = 0N) satisfies the stability
inequality

1Tl 3Rt (B G2k - 20(0)) o ds > 0, (9:3:2)
%

for every ¢ € CY(X), where v is the unit normal pointing away from 0, M.
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Proof. The second variation of the p-bubble functional is given by (see [LUY21, Proposition 2.3])
/ IVe|* — 2 (Rg — Re + |A]*) ¢* — & (h* +2v(h)) ¢* dus > 0. (9.3.3)
b

We then write |A]? = LH? + |A]2 = Lp2 4+ |A|2, insert this into the second variation, and rearrange

to obtain (9.3.2). O

Recall that a closed Riemannian manifold (M™, g) is Yamabe positive (nonnegative) if it contains
a positive (nonnegative) scalar curvature metric in its conformal class. Alternatively, (M™,g) is

Yamabe positive (nonnegative) if

/ oLp>0 (>0) (9.3.4)
M
for every ¢ € C1(M), where L is the conformal Laplacian

n—1

L=—-4—
n—2

Ay + Ry. (9.3.5)
From the stability inequality (9.3.2), we see that if
Ry + 25h* —2|Vh| >0 (>0), (%)

then ¥ is Yamabe positive (nonnegative). We will refer to this inequality as condition (x).” There-
fore, p-bubbles may be used in place of stable minimal hypersurfaces to study scalar curvature as
long as one can construct suitable potential functions. This is exactly how Chodosh and Li proved
Theorem 9.3.6. One of the innovations of [LLU23] is an interpretation of the y-bubble technique
in terms of marginally outer trapped surfaces (MOTS). See already Section 11.5 and “Proof 2” in

Section 9.3.3 below.

9.3.3 Outline of the proof of Theorem 9.3.3

We now explain two different proofs of Theorem 9.3.3 based on the p-bubble idea.

Proof 1. Assume for sake of contradiction that mapy < 0. By applying a density theorem, one
can assume harmonic asymptotics on €. Then mapy < 0 implies large cylinders in the asymptotic
region are mean-convex, and one can apply a “Plateau problem” version of the u-bubble technique

to construct large stable p-bubbles spanning cross-sectional spheres of these cylinders. Arguing

9n [LUY21], the condition is written as Rps + h? — 2|VA| > 0. This implies the current condition since —2- > 1.

n—1
The difference comes from keeping the trace part of |A|? versus just throwing it away.
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similarly to [Sch89], one constructs a complete “strongly stable” u-bubble which can be conformally
deformed to produce a counterexample to the positive mass theorem in dimension n — 1. One then
argues by induction on dimension, with the n = 3 case following from the Gauss—Bonnet theorem

and the logarithmic cutoff trick.

Remark 9.3.10. In [LUY21], we did not have a density theorem available for asymptotically flat
manifolds with arbitrary ends. Therefore, we were not able to obtain Theorem 9.3.3 with the
most general assumptions on £. It turns out that the argument just described works directly for

asymptotically Schwarzschild manifolds with a fair bit of work, without a density theorem.

Proof 2. Using the same u-bubble potential function i as in Proof 1, define an “auxiliary second

fundamental form” kj by

kp = — g. (9.3.6)

n—1
It follows from a very short computation that (M’, g, kj,) satisfies the hypotheses of Theorem 9.2.2

where M’ = {|h| < C} for C chosen sufficiently large. Therefore mapy > 0.

This very short and surprising proof was found in [LLU23]. We give the details in Section 11.5.1

below.

9.4 The Liouville theorem for locally conformally flat mani-

folds

Let (M, g) and (N, h) be two Riemannian manifolds of the same dimension. A smooth map ¢ : M —
N is said to be conformal if there exists a smooth positive function v on M such that ¢*h = ug. It
is easy to see that any conformal map is an immersion. If ¢ is in addition a diffeomorphism, we say
that it is a conformal diffeomorphism. An n-dimensional Riemannian manifold (M, g) is said to be
locally conformally flat (LCF) if is it locally conformally diffeomorphic to S™ with the round metric.

A fundamental theorem of Kuiper states that any LCF manifold M™ (n > 3) can be conformally
immersed in S™ [Kui49]. A conformal immersion ® : M™ — S™ is called a developing map. In [SY8S],
Schoen and Yau studied the question of when @ is injective, as this has implications for the higher
homotopy groups of LCF manifolds. By combining the work of Schoen—Yau in [SY88], the scalar
curvature rigidity theorem of Chodosh-Li (Theorem 9.3.6), and a Lohkamp-type compactification

argument, we were able to prove the following theorem in joint work with Lesourd and Yau [LUY20].
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Theorem 9.4.1 (Liouville theorem for LCF manifolds). Let (M™,g), n > 3, be a complete locally
conformally flat Riemannian manifold with with nonnegative scalar curvature. If ® : M™ — S™ is a

conformal map, then ® is injective and OP(M) has zero capacity.

This theorem was proved in [SY88] with various additional assumptions (either assuming n > 7
or some global geometric restrictions). The original idea in [SY88] for proving this most general
form of the Liouville theorem was to reduce it to the positive mass theorem. However, when M™ is
noncompact, this requires presisely the positive mass theorem with arbitrary ends. Therefore, given
our Theorem 9.3.1, we are able to carry out the original idea of [SY88] in one stroke. The details of

this argument will be given in Section 11.6 below.

9.A Positive scalar curvature on noncompact surfaces

In this appendix, we prove the n = 2 version of Theorem 9.3.6, which has a cute and elementary
proof. Since the 2-torus has vanishing Euler characteristic, the Gauss—Bonnet theorem immediately

implies:
Proposition 9.A.1. The torus T? does not admit a metric of positive scalar curvature.

One can alternatively argue using closed geodesics (which incidentally motivates the stable min-
imal hypersurface technique for studying positive scalar curvature). Indeed, the torus contains a
nontrivial free homotopy class of curves £. Using the Arzela—Ascoli theorem, we may find a closed
geodesic v € L of minimal length. The second variation formula implies this geodesic is unstable
because of positive curvature, which contradicts its minimality.

The compactness of the torus is used in two places. Firstly, to apply the Arzela—Ascoli theorem
to maps S* — T2 and secondly, to ensure the positivity of the convexity radius of (T2, g) which is
used to conclude that the minimizer is closed. However, the argument actually goes through if we

b2

know that the “relevant” curves all lie in some large ball.

Theorem 9.A.2. Let X? be a smooth surface. Then X2 # T? does not admit a complete metric of

positive scalar curvature.

Proof. Suppose g is a complete metric on X2 # T2 with positive scalar curvature. Consider a
free homotopy class £ corresponding to going once around one of the circular factors in T2. Let
C C T?#X? be a “surgery circle” associated to the connected sum. Then C' ¢ £. In T2, C' bounds

an open disk. Call the complement of this disk K C X2 # T?2. Let {v;} C L be a length-minimizing
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sequence of smooth curves. For each i, 7, N K # ) for otherwise ; would be nullhomotopic in
T?, contradicting the choice of £. Let £ = sup; L(;) < oo. Then by the triangle inequality, ; is
contained in the 2¢-neighborhood of K for i sufficiently large. Since g is complete, this neighborhood
is relatively compact. Now a subsequence of {7;} tends to a closed length-minimizing geodesic which

can be shown to be unstable by the second variation formula, and we have a contradiction. O

The topology of X2 # T2 prevents the minimizing sequence from “escaping off to infinity” —the
compact set K anchors L. In fact, the completeness of g prevented the curves from entering the
noncompact end at all. This is much stronger than what can be expected for minimal hypersurfaces

and in general we will have degeneration of topology at infinity.
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Chapter 10

The spacetime positive mass

theorem for black holes

10.1 The density theorem for initial data sets

When discussing initial data sets (M", g, k), it is often convenient to replace the second fundamental

form k;; by the conjugate momentum tensor
7 = K — (tr, F)g'.
and we will also refer to (M, g, 7) as an initial data set. Then the formulas for x4 and J become

1 1
p=g (Rg + m(trg m)? — |7T|§)

J =divgm.

The first density theorem for initial data sets was proved by Corvino and Schoen [CS06], who
showed that asymptotically flat vacuum initial data sets (g,7) can be approximated by vacuum

initial data satisfying the harmonic asymptotics condition
gij = U45ij, 7~Tij = u76£5Yij (1011)

outside a compact set, for some function u and vector field Y which have good asymptotic expansions.

The notation £ is defined by the formula £,Y% = (Lyg)¥ — (div,Y)g" for an arbitrary metric g,
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where Ly denotes the Lie derivative. In the extension of the positive mass theorem to initial data sets
in higher dimensions [EHLS16], Eichmair, Huang, Lee, and Schoen proved a harmonic asymptotics
density theorem for initial data sets satisfying the dominant energy condition. This theorem also
plays a crucial role in Eichmair’s Jang reduction and rigidity theorems [Eic13], as well as Lohkamp’s
compactification approach to the spacetime positive mass theorem [Loh17].

In this chapter, we generalize the density theorems of Corvino—Schoen [CS06] and Eichmair—

Huang-Lee—Schoen [EHLS16] to allow for initial data sets with compact boundary.

Theorem 10.1.1 (Density theorem for initial data sets with boundary). Let (M™, g, k) be a com-
plete asymptotically flat initial data set with compact boundary OM, such that the dominant energy
condition, p > |J|g, holds on M. Let p > n and "7_2 < q <n—2 such that q is less than the decay
rate of (g,k). Let 0% denote the outer null expansion of OM.

Then for any € > 0, there exists an asymptotically flat initial data set (g, k) on M also satsifying
the dominant energy condition such that (§,k) has harmonic asymptotics in each end of M, (§, k)
is e-close to (g,k) in ng’ X Wi’(f_l, the new constraints (ji, J) are e-close to (u,J) in L', and the
new outer null expansion 07 is equal to 67 on OM.

Furthermore, we can choose (g, k) such that the strict dominant energy condition holds, fi > |J|,.
Simultaneously, ([, j) may be chosen to decay as fast as we like.

Alternatively, we can choose (§,k) to be vacuum (that is, fi = |J|, = 0) outside a compact set.

Moreover, if (g, k) is vacuum everywhere, then (g, k) can be chosen to be vacuum everywhere.

Remark 10.1.2. More generally, we may prescribe 0% to be any function sufficiently close to 7 in
the fractional Sobolev space WlosP (OM). This theorem is more precisely stated as Theorem 10.3.7
below. In particular, 6+ may be chosen to be strictly less than 01 at every point. Moreover, we may

alternatively choose to prescribe the inner expansion 6~ (instead of ) on any given components

of OM.

The proof of the density theorem is given in Section 10.3 and the proof of the spacetime positive

mass theorem with boundary is given in Section 10.4.

10.2 Preliminaries

10.2.1 Notation and definitions

Let M™ be a smooth n-dimensional manifold (n > 3) with compact boundary dM, and fix a smooth

background metric g which is identically Euclidean on the finitely many noncompact ends of M,
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which are all diffeomorphic to R™ minus a ball.

Let £ denote such an end with coordinates 2°. For p > 1 and s € R, we define a weighted L?

p
lullizie) = (/|x|s |n) .

For k € N, weighted Sobolev norms on £ are defined by

norm by

Lf—ri(g)'

k
lullyyney = D |
i=0
Weighted C* norms are defined by
lullcrey = ZSUPHW *0"ul.

For a € (0,1), weighted C'® seminorms are defined by

k _ ok
Pl = sup (Jof 2o sup 2= O,

€€ yee |J,‘ - y|a

Let &1,...,EN denote the collection of Euclidean ends of M and let K denote a compact set such

that M \ K = Uj\;l &;. The weighted norms on (M,g) are defined by:

el agy = Nallyoge, + lallwes i)

vy = llullerey + llullox k),

+ [8%}03(5)

l[ull gr.o

and the corresponding spaces are defined to the corresponding collections of functions (or tensor

fields) for which the norms are well-defined and finite. See [Leel9] for more details.

Definition 10.2.1. We say that an initial data set (M™, g, k) is asymptotically flat if (g, k) is locally
C? x O for some 0 < o < 1, and there exists a compact set K C M such that M \ K is a disjoint

union of Euclidean ends such that in the associated coordinate charts,

gij(x) = b5 + O2(|z[ ™) (10.2.1)

kij = 01(|$|_q_1) (1022)

for some g > ”7_27 and also (p, J) € L*(M). We refer to this g as the asymptotic decay rate of (g, k).
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In this case, the ADM energy-momentum (F, P) is well-defined. We refer the reader to [Leel9]

for details and references.

Throughout most of this chapter, we will use 7 in place of k. Given a fixed manifold M, we

define the constraint map ® by

®(g,m) = (2p, J),

for any initial data (g,7) on M.
Given a hypersurface 3 with unit normal v in an initial data set (M, g, k), we define the outer

and inner null expansions 9; and 65, respectively, with respect to (g, m) by
0% = +Hys +trs k,
where Hy, is the mean curvature of M with respect to g and v, and
try k = (gij - I/iz/j)k:ij = *7Tijl/il/j

is the trace of k over TX. In the case when (M, g, k) sits inside a spacetime, 9% can be interpreted
in terms of Lorentzian geometry, but we shall not need this viewpoint here. In this chapter we will
always choose ¥ to be M, and we choose v to be the unit normal pointing into M. We will want

to prescribe either HgM or 05,, on each boundary component, so we make the following definition.

Definition 10.2.2. Let M be a fixed manifold with boundary, and let T M and 8~ M designate
unions of components of M such that 9M = 9+ M U d~ M. Given initial data (g, 7) on M, define
O(g, ™) to be the function OM that is equal to HaiM on OF M with respect to the data (g,7) and the

normal pointing into M.

For PDE purposes, it is convenient to slightly enlarge the space of data sets under consideration.
We will consider initial data (g, 7), where g — g € WE’,;’(T*M OT*M) and 7 € Wi’;fl(TM OTM),
where p > n, "T_Q < q <n—2, and q is less than the decay rate in Definition 10.2.1. Note that such

a pair (g, ) need not satisfy our definition of asymptotic flatness, and in particular, need not have

well-defined ADM energy-momentum. We define
D= (g +WEN(TM © T*M)) x WP (TM & TM), (10.2.3)
so that D is a (affine) Banach space of initial data sets. Note that the tangent space of D at (g, ),
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T(4,m D, can be identified with WP (T*M © T*M) x WP (TM © TM).

Lemma 10.2.3. Let p > n and "7_2 < qg<n-—2. 0On a fited asymptotically flat manifold M™
with compact boundary decomposed as in Definition 10.2.2, the descriptions of ® and © given above

define a smooth map of Banach spaces
(,0):D — L x W 5P(5M),

where

L=1P, (M) xLP _,(TM), (10.2.4)

and Wlf%’p(aM) is a fractional Sobolev space on OM. (See, for example, [Gri85, Section 1.4].)

Proof. The claim about & is standard and easy to verify, so we focus on the map ©. We can realize
OM as a level set of a smooth function f, which has no critical points in a small neighborhood U of

OM . Then the formula
IV flg

defines a vector field on U which is the unit normal to the level sets of f in U, and it is has W?2?
regularity. Next, the formula

b

o= lo? =)y
g

(03 f —T500f),

defines a function on U which is equal to the mean curvature of the level sets of f in U. We can
also see that Hy has WP regularity since I'j; € W'? and W'* is a Banach algebra. Similary, the
quantity —m;;v°v7 is a WP function on U. More precisely, we observe that we have a bounded
map from from (g,7) € D to £H, — m;j;v'vd € WHP(U). The result follows from viewing © as the

composition of this map with the usual bounded trace operator from W1 (U) to WP (oM). O

The proof above made use of a trace theorem. Later on, we will need the following sharp trace

theorem.

Lemma 10.2.4. Let (M™,g) be as above and let g € g+ WE’;(T*M@T*M). Then, for any s € R,

the weighted Sobolev space W2P (M) enjoys a bounded trace operator

TS - W2P(M) — W25 P(OM) x W5 P(9M)
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which is the unique extension of

ou
U — U|BM, 87
g9

8]\/[)

foru e C*(M)NW2P(M). The mapping Ty is surjective and admits a bounded right inverse. The

operator norms of T§ and its right inverse depend only on ||g — gl|;y2.»-
—q
We emphasize that the normal vector field v, is the one corresponding to the metric g.

Proof. The existence and properties of Ty are easily reduced to the case of bounded domains [Gri85,
Theorem 1.5.1.2] by means of cutoff functions. In particular, we may take elements in the image of

the right inverse to be supported in a neighborhood of OM. O

10.2.2 “Conformal” initial data sets

Conformal transformations play a special role in the study of mass and the Riemannian positive
mass theorem. The following notion of conformal transformations of initial data sets plays a crucial
role in the density theorem and the positive mass theorem [CS06; EHLS16].
Let
c= (1 + WE;f(M)) x WEP(TM) (10.2.5)

denote the (affine) Banach space of conformal deformations. Note that the tangent space of C at
(1,0), T(1,0/C, can be identified with WP (M) x W2P(TM). For (g,7) € D fixed and (u,Y) € C,

we define

- .8
—Ug,

LS

R

= U (r 4 L,Y),
where s = ﬁ is the conformal exponent and £,Y was defined in the introduction. We denote

\If(g’ﬂ.) :C—D

(u,Y) = (g, 7).

Definition 10.2.5. Let (M", g, 7) be an asymptotically flat initial data set. We say that (M, g, )
has harmonic asymptotics in a particular end if in the asymptotically flat coordinates, the initial

data takes the form

(97 ﬂ-) = \II(E,O) (u7 Y)
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outside a compact set, where u and Y are a function and vector field pair satisfying

w(x) =1+ alz~" + Oz a(lz|'™") (10.2.6)

Yi(x) = bila*~" + Oa,a (|| ™), (10.2.7)
for some « € (0,1). When the initial data set is of this form, the ADM energy-momentum has a
particularly simple expression: F = 2a and P; = —Z—jbi.

Initial data sets in the image of W 5 o) have harmonic asymptotics if the constraints decay quickly

enough:

Lemma 10.2.6 ([EHLS16, Proposition 24]). Suppose there exist (u,Y) € C such that (g,7) =
VU (g,0)(u,Y) outside a compact set. If (u,J) € 02’5_1_5 for some § > 0, then u and Y admit the

expansions (10.2.6) and (10.2.7). Hence (g, m) has harmonic asymptotics.

Next we define

P=(T,7) = (,0) 0 W(yn:C— Lx WP (OM). (10.2.8)

In the following, we let (y, J,0) be the value of (®,©) on the fixed data set (g, ).

Proposition 10.2.7. The map P is a smooth map of Banach spaces and is explicitly given by

L
T(u,Y) = (u {fbu + g (trg m+ try £,Y)% — (72 + 2(L,Y, 7) + ng|§)} , (10.2.9)

Vju

u_%s [(divg eV + dng ﬂ_)i + %(ﬂ_ + Sgy)ij — %trg(ﬂ' + SgY)gij Véu:|>

T(u,Y)=u"% (9 + @%(bg u) +divoy YT + HY,v) — (V,Y L) + (YT, v,,m) :

(10.2.10)

where the + depends on whether the point lies in OFM. Here v is any extension of the g-unit
normal vector field of M (pointing into M), Y+ = (Y,v)v, and YT =Y — Y. Note that the
quantities V,Y+ and V,v depend on the particular extension chosen, but —(V, Y+ vy + (YT, V,v)

is an invariant quantity. The linearization of P at (1,0) is given by

DP,0y(v, Z) = (DT 1,0y, DY (1,0)) (v, Z),
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where

DT|¢1,0)(v, Z) = ( —s(n—1)Agv + 25 (trgm)(divy Z) — 47 -V Z — 25w,

(div, £,2)" + Wﬂ'ijvjv — 2(trym)g Vv — %sJiv) ,

(10.2.11)

DY|(1.0)(v,2) = —56v + @% +divoy ZT + H(Z,v) — (V, 25 0) +(Z7, V). (10.2.12)

Proof. The formula (10.2.9) is given in the erratum for Exercise 9.7 in [Leel9]. To prove (10.2.10),

we first use the standard formula

I —3 s(n—1 8
H=u>2 (H+(2)ay(logu) .

. ~ —3
Using 7 = u~ 2v, we compute

(0,0) =u"% (n(v,v) + £,Y (v,v)).

M|

F