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Abstract

In this dissertation, we investigate extremal black holes in general relativity. Extremal black holes are

exceptional solutions of Einstein’s equations which have absolute zero temperature in the celebrated

thermodynamic analogy of black hole mechanics.

Our first main result is a definitive disproof of the “third law of black hole thermodynamics.”

We construct examples of black hole formation from regular, one-ended asymptotically flat Cauchy

data for the Einstein–Maxwell-charged scalar field system which are exactly isometric to extremal

Reissner–Nordström after a finite advanced time along the event horizon. Moreover, in each of these

examples the apparent horizon of the black hole coincides with that of a Schwarzschild solution at

earlier advanced times. We also prove similar black hole formation results for very slowly rotating

Kerr black holes in vacuum.

Our second main result is a proof that extremal black holes arise on the threshold of gravita-

tional collapse. More precisely, we construct smooth one-parameter families of smooth, spherically

symmetric solutions to the Einstein–Maxwell–Vlasov system which interpolate between dispersion

and collapse and for which the critical solution is an extremal Reissner–Nordström black hole. We

call this critical phenomenon extremal critical collapse and the present work constitutes the first

rigorous result on the black hole formation threshold in general relativity.

The above mentioned results constitute Part I of this dissertation and were all obtained in joint

work with Christoph Kehle.

In Part II of this dissertation, we study extensions of the celebrated positive mass theorem to

a very general class of initial data, including extremal black holes. These results were obtained in

collaboration with Dan A. Lee, Martin Lesourd, and Shing-Tung Yau. We provide a resolution of the

spacetime positive mass theorem on manifolds with boundary, a resolution of the remaining cases

of Schoen and Yau’s Liouville conjecture for locally conformally flat manifolds, and demonstrate a

novel scalar curvature shielding phenomenon for the ADM mass.
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and the third law
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Chapter 1

Overview of Part I

One of the most spectacular predictions of general relativity is the existence and formation of black

holes, which are regions of spacetime where gravity is so strong that not even light can escape from

within. Matter and energy, evolving under the Einstein field equations [Ein15]

Ric(g)− 1
2R(g)g = 2T, (1.0.1)

can undergo gravitational collapse, becoming so dense that a black hole forms dynamically. The Ein-

stein equations relate the geometry of spacetime, a (3+1)-dimensional Lorentzian manifold (M4, g),

to its matter content, which is represented by the energy-momentum tensor T.

The first solution of (1.0.1) containing a black hole was discovered by Schwarzschild [Sch16]

almost immediately after Einstein’s formulation of the field equations. Building on earlier work of

Lemâıtre [Lem33], Oppenheimer and Snyder [OS39] produced the first actual example of gravita-

tional collapse by showing that a homogeneous dust cloud can collapse to form a Schwarzschild black

hole in finite time. However, the significance of this work was not understood for another 20 years,

until the celebrated work of Penrose [Pen65]. Now black holes are one of the central objects of study

in astrophysics and high energy physics.

The most important explicit black hole solutions of the Einstein equations are the Reissner–

Nordström and Kerr families. Each of these black holes is characterized by a mass M and either

a charge |e| ≤ M for Reissner–Nordström or a specific angular momentum |a| ≤ M for Kerr. As

with every black hole, the event horizon H+ of a Reisser–Nordström or Kerr black hole is a null

hypersurface. For each member of these families, there is a Killing vector field K normal and tangent
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to H+—the event horizons are Killing horizons. This Killing field satisfies

∇KK = κK

along H+, where κ ≥ 0 is a constant known as the surface gravity, which can be explicitly calculated

in terms of M and e or a. If |e| < M or |a| < M , κ > 0 and the black hole is called subextremal.

If |e| = M or |a| = M , κ = 0 and the black hole is called extremal. As we will see, extremal black

holes have exceptional properties and play a fundamental role in the structure of the moduli space

of solutions of the Einstein equations.

Part I of this dissertation describes the beginning of a research program, which is joint work with

Christoph Kehle, to study the dynamical formation of extremal black holes and develop a picture

of phase space around extremal black holes in gravitational collapse. More precisely, we pose and

solve the following three problems:

1. We prove that a subextremal black hole can become extremal in finite time in the gravitational

collapse of charged matter, which definitively disproves the so-called third law of black hole

thermodynamics. See already Section 1.1. This result was unexpected because the third law

was widely believed to be true, with a supposed proof by Israel [Isr86] and several other

supporting numerical and heuristic studies in the literature.

2. We prove that any sufficiently slowly rotating Kerr (including Schwarzschild) black hole can

form in vacuum gravitational collapse in finite time. See already Section 1.1.5. We hope that

the techniques developed here will allow us to prove that extremal Kerr can form in vacuum

gravitational collapse and disprove the third law in vacuum.

3. We prove that there exist extremal black holes on the threshold between collapsing and dis-

persing charged matter, without the use of infinitesimally thin shells or other singular matter.

See already Section 1.2. This is a novel critical phenomenon which we call extremal critical

collapse.

1.1 The third law of black hole thermodynamics

1.1.1 Retiring the third law

Following pioneering work of Christodoulou [Chr70] and Hawking [Haw71] on energy extraction from

rotating black holes and Bekenstein’s proposal of a black hole entropy [Bek72], Bardeen, Carter, and
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Hawking [BCH73] proposed—via analogy to classical thermodynamics—the celebrated four laws of

black hole thermodynamics. The analogy asserts that the entropy S of a black hole is proportional to

the surface area A of the horizon and the temperature T is proportional to the surface gravity κ of

the horizon. While these identifications were later vindicated by the discovery of Hawking radiation

[Haw75], the laws proposed by Bardeen–Carter–Hawking are a set of mathematical statements about

classical general relativity.

Law Classical thermodynamics Black hole dynamics

Zeroth T constant in equilibrium κ constant on stationary horizon

First dE = TdS + · · · dM = κdA+ · · ·

Second dS ≥ 0 dA ≥ 0

Third T ̸→ 0 in finite process κ ̸→ 0 in finite advanced time

Table 1.1: The four laws of black hole thermodynamics. Extremal black holes have absolute zero
temperature in this analogy. These “laws” are to be thought of as conjectures, and laws 0, 1, and 2
have been proved in the form stated here [Haw72a; BCH73]. In the physics literature, these “laws”
(sometimes suitably modified) are interpreted as fundamental meta-theorems which are to be true
in any reasonable physical theory.

In analogy to Nernst’s “unattainability law” in classical thermodynamics, we have:

Conjecture (The third law of black hole thermodynamics). A subextremal black hole cannot become

extremal in finite time by any continuous process, no matter how idealized, in which the spacetime

and matter fields remain regular and obey the weak energy condition.

This version is distilled from the literature, particularly from the work of Israel [Isr86; Isr92]

who added explicit mention of regularity and the weak energy condition to avoid previously known

examples [DI67; Kuc68; Bou73; FH79; SI80; Pró83] which would otherwise violate the third law. In

this dissertation (taken from the work [KU22]), we show that the third law is fundamentally flawed

in a manner that does not appear to be salvageable by further reformulation. Indeed, we construct

counterexamples in the Einstein–Maxwell-charged scalar field model in spherical symmetry, a model

which satisfies the dominant energy condition, arising from arbitrarily regular initial data on a

one-ended asymptotically flat hypersurface.
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Theorem 1.1.1. Subextremal black holes can become extremal in finite time, evolving from regular

initial data. In fact, there exist regular one-ended Cauchy data for the Einstein–Maxwell-charged

scalar field system which undergo gravitational collapse and form an exactly Schwarzschild apparent

horizon, only for the spacetime to form an exactly extremal Reissner–Nordström event horizon at a

later advanced time.

In particular, the “third law of black hole thermodynamics” is false.

For the more precise version of the theorem, see Theorem 1.1.11 below. For a Penrose diagram

of the counterexample, see Fig. 1.1 below.

i+

i0

I +
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g
u
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r
ce
n
te
r

H
+

BH

Σ

isometric to extremal

Reissner–Nordström
isometric to
Schwarzschild

(subextremal)

A′

Figure 1.1: Penrose diagram of our counterexample to the third law arising from regular initial data
on Σ. The northwest edge of the Schwarzschild region is exactly isometric to a section of the r = 2M
hypersurface in Schwarzschild. The outermost apparent horizon A′ is initially indistinguishable
from Schwarzschild and then jumps out in finite time to be exactly isometric to the event horizon
of extremal Reissner–Nordström. For speculations about the future boundary of the interior, see
already Section 1.1.4.1. The behavior of our solutions can be modified to be subextremal near i0,
see already Remark 1.1.2.

Our result also clarifies some issues raised by Israel in [Isr86; Isr92] who seemingly associated a

disconnected outermost apparent horizon with a severe lack of regularity of the spacetime metric

and/or matter fields. We stress that our examples are regular despite the disconnectedness of the ap-

parent horizon. We note moreover that Israel seemed to associate extremization with the black hole

“losing its trapped surfaces.” This confusion appears to be related to his implicit assumption that the

apparent horizon is connected. Since the Einstein–Maxwell-charged scalar field matter manifestly

obeys the dominant energy condition, trapped surfaces are not lost in any sense, nonetheless, the

black hole becomes extremal in finite time. In the examples we construct, there exists an open

set of trapped spheres inside the black hole region, which persist for all advanced time until they

encounter the Cauchy horizon or a curvature singularity inside the black hole. However, there is a

neighborhood of the event horizon which does not contain any (strictly) trapped surfaces. For an
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extended discussion of these issues, see already Section 1.1.3.

Remark 1.1.2. Note that in discussions of the third law, the focus is typically on dynamics near

the event horizon and apparent horizon, in late advanced time. Our counterexamples depicted in

Fig. 1.1 are isometric to extremal Reissner–Nordström for all sufficiently late advanced times and

all retarded times to the past of the event horizon, in particular near spatial infinity i0. However,

by using a scattering argument as in [Keh22b], one can easily modify our examples so as to be

subextremal in a neighborhood of i0, if desired.

The Einstein–Maxwell-charged scalar field (EMCSF) system featured in Theorem 1.1.1 reads

Rµν(g)− 1
2R(g)gµν = 2

(
TEM
µν + TCSF

µν

)
, (1.1.1)

∇µFµν = 2e Im(ϕDνϕ), (1.1.2)

gµνDµDνϕ = 0, (1.1.3)

for a quintuplet (M, g, F,A, ϕ), where (M, g) is a (3+1)-dimensional Lorentzian manifold, ϕ is a

complex-valued scalar field, A is a real-valued 1-form, F = dA is a real-valued 2-form, D = d+ ieA

is the gauge covariant derivative, e ∈ R \ {0} is a fixed coupling constant representing the charge of

the scalar field, and the energy momentum tensors are defined by

TEM
µν

.
= gαβFανFβµ − 1

4F
αβFαβgµν , (1.1.4)

TCSF
µν

.
= Re(DµϕDνϕ)− 1

2gµνg
αβDαϕDβϕ. (1.1.5)

We refer to Section 2.2 for the form of the EMCSF system in spherical symmetry.

Remark 1.1.3. Theorem 1.1.1 also holds for the Einstein–Maxwell–charged Klein–Gordon system in

which the wave equation (1.1.3) is replaced by the Klein–Gordon equation

gµνDµDνϕ = m2ϕ,

where m ∈ R>0 represents the mass of the scalar field and satisfies mM ≪ eM . Here M denotes the

mass of the black hole to be formed.

We emphasize that not only are our data in the above examples regular, but the spacetimes

arise from gravitational collapse, i.e., the initial data surface is one-ended, has a regular center, lies

entirely in the domain of outer communication, and the black hole forms strictly to the future of

initial data. In particular, in contrast to what has been suggested numerically [TA14; CIP21], there
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is no upper bound (strictly less than unity) on the charge to mass ratio of a black hole which can

be achieved in gravitational collapse for this model.

1.1.2 Gravitational collapse to Reissner–Nordström black holes with pre-

scribed parameters

For appropriate matter models, the Einstein equations (1.0.1) are well-posed (see [Fou52; CG69] for

the vacuum case) as a Cauchy problem for suitable initial data posed on a 3-manifold Σ, which will

then be isometrically embedded as a spacelike hypersurface in a Lorentzian manifold (M, g). The

textbook explicit black hole solutions such as the Schwarzschild spacetime do not contain one-ended

Cauchy surfaces Σ ∼= R3 but are instead foliated by two-ended hypersurfaces Σ ∼= R × S2. Thus, a

natural and physically relevant problem is to construct regular asymptotically flat data on Σ ∼= R3

which evolve to a black hole spacetime.

Our counterexample of the third law, Theorem 1.1.1, is preceded by a more general construction,

presented as Theorem 1.1.4 below. We construct regular one-ended Cauchy data for the Einstein–

Maxwell-charged scalar field system in spherical symmetry whose black hole exterior evolves (in

fact is eventually isometric) to a Schwarzschild black hole with prescribed mass M > 0 or to a

subextremal or extremal Reissner–Nordström black hole with prescribed massM > 0 and prescribed

charge to mass ratio q
.
= e/M ∈ [−1, 1].

Theorem 1.1.4 (Exact Reissner–Nordström arising from gravitational collapse). For any regularity

index k ∈ N and charge to mass ratio q ∈ [−1, 1], there exist spherically symmetric, asymptotically

flat Cauchy data for the Einstein–Maxwell-charged scalar field system, with Σ ∼= R3 and a regu-

lar center, such that the maximal future globally hyperbolic development (M4, g) has the following

properties:

• All dynamical quantities are at least Ck-regular.

• Null infinity I+ is complete.

• The black hole region is non-empty, BH .
= M\ J−(I+) ̸= ∅.

• The Cauchy surface Σ lies in the causal past of future null infinity, Σ ⊂ J−(I+). In particular,

Σ does not intersect the event horizon H+ .
= ∂(BH). Furthermore, Σ contains no trapped or

antitrapped surfaces.

• For sufficiently late advanced times v ≥ v0, the domain of outer communication, including the

event horizon, is isometric to that of a Reissner–Nordström solution with charge to mass ratio
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q. For v ≥ v0, the event horizon of the spacetime can be identified with the event horizon of

Reissner–Nordström.

For the Penrose diagram of this spacetime, see Fig. 1.2 below. The construction of Cauchy data

on Σ ∼= R3 in Theorem 1.1.4 will follow from the characteristic gluing statement Theorem 4.4.1,

which we present in Section 4.4 below. The detailed proof of Theorem 1.1.4 is given in Section 5.6.1.

I +

H
+

RN e/M = q

Mink Σ

r
=

0

i0

i+

BH

Figure 1.2: Penrose diagram for Theorem 1.1.4. The textured line segment is where the data
constructed in Theorem 4.4.1 live.

The key step in the proof of Theorem 1.1.4 is a novel characteristic/null gluing result which

we report as Theorem 4.4.1 below. The study of the characteristic gluing problem for the Einstein

vacuum equations (outside of spherical symmetry) was recently initiated by Aretakis, Czimek, and

Rodnianski [ACR21; ACR23b; ACR23a] in the perturbative regime around Minkowski space. Our

setup is directly inspired by their work. In contrast, however, our null gluing construction (while in

spherical symmetry) necessarily exploits the large data regime in order to glue a cone of Minkowski

space to a black hole event horizon along a null hypersurface within the EMCSF model. The

characteristic gluing problem will be extensively discussed in Chapter 4.

Note that in the case |q| = 1, this does not yet furnish a counterexample to the third law of

black hole thermodynamics, as the spacetime does not necessarily contain a subextremal apparent

horizon. For the counterexample we must defer to Theorem 1.1.11 in Section 1.1.4 below.

However, in our proof of Theorem 1.1.4, forming an extremal black hole with |q| = 1 is no different

from any subextremal charge to mass ratio |q| < 1 (see already Section 1.1.4.2). In particular, in

contrast with what has been suggested by numerical simulations [TA14; CIP21], there is no universal

upper bound (strictly less than unity) for |q|. Given that we have now proved that extremal Reissner–

Nordström can arise in gravitational collapse, it would be interesting to rethink the numerical

approach to this problem and develop a scheme to construct such solutions numerically. Because

8



our construction is fundamentally teleological (see already Section 2.4), it might be challenging to

directly find suitable data on Σ by trial and error.

The formation of black holes is a very well studied problem in spherical symmetry. We men-

tion here only the Einstein-scalar field model, for which Christodoulou [Chr91b] first showed that

concentration of the scalar field can lead to formation of a black hole. This result played a decisive

role in Christodoulou’s proof of weak cosmic censorship in spherical symmetry [Chr99b]. Dafermos

constructed solutions of the Einstein-scalar field system which collapse to the future but are com-

plete and regular to the past [Daf09]. For work on other matter models, see for example [And14;

AL22a]. In this dissertation, we also consider black hole formation in vacuum, to be discussed in

Section 1.1.5 below.

Remark 1.1.5. Our derivation of Theorem 1.1.4 from Theorem 4.4.1 is completely soft and does not

make use of spherical symmetry. Therefore, if versions of the main gluing theorems were known for

the Einstein vacuum equations (for example, gluing a Minkowski cone to an extremal Kerr event

horizon, or more generally a Schwarzschild exterior sphere to an extremal Kerr event horizon),

then our procedure would yield vacuum spacetimes arising from gravitational collapse which are

eventually isometric to extremal Kerr. Furthermore, such a construction would also yield a disproof

of the third law in vacuum. See already Section 1.1.5.1 and Section 4.5 for the case of very slowly

rotating Kerr.

Remark 1.1.6. By the very nature of the gluing procedure, our constructions have finite regularity

(Ck for arbitrarily large k). It would be mathematically interesting to create such examples with

C∞ regularity. See already Remark 4.2.1.

Remark 1.1.7. The existence of dynamical spacetimes satisfying the dominant energy condition

which are extremal at spacelike infinity i0 does not contradict the positive mass theorem “with

charge” [GHHP83; CRT06] because the matter itself carries charge. Concretely, condition (27) in

[GHHP83] is false for various charged matter models, in particular the Einstein–Maxwell-charged

scalar field model with small (or zero) mass.

1.1.3 Commentary on the formulation of the third law

In this section we give more details on the background and history of the third law of black hole

thermodynamics, in particular the motivation for Israel’s formulation in [Isr86; Isr92].

While the zeroth, first, and second laws of black hole thermodynamics are by now well understood

in the literature (see e.g. [Wal01]), the validity of the third law has been a source of debate up until
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today. In the original form of Bardeen–Carter–Hawking (BCH), in analogy to Nernst’s version of

the third law of classical thermodynamics [Ner26]1, it reads:

It is impossible by any procedure, no matter how idealized, to reduce κ to zero by a finite sequence

of operations.

There were two main motivations in [BCH73] for proposing a third law of black hole ther-

modynamics (aside from the aesthetic desire of having the full analogy between black hole and

thermodynamics as laid out as in Table 1.1):

1. Heuristic perturbative calculations seemed to indicate that something like the third law could

be true. Our disproof of the third law shows that such calculations do not accurately represent

the fully dynamical regime of the Einstein equations.

2. It was thought that if one could charge/spin a black hole up to extremality, then one could

go further and create a naked singularity, which would violate the weak cosmic censorship

conjecture. This was a rather severe misunderstanding of the geometry of maximally extended

superextremal Reissner–Nordström and Kerr solutions. We will return to this point in Re-

mark 1.2.11 below.

A number of arguably pathological (e.g. singular or energy condition violating) examples of

extremal black hole formation were put forth in [Kuc68; DI67; Bou73; FH79; SI80; Pró83], which

Israel [Isr86; Isr92] took into account to make the third law more precise:

A nonextremal black hole cannot become extremal (i.e., lose its trapped surfaces) at a finite

advanced time in any continuous process in which the stress-energy tensor of accreted matter stays

bounded and satisfies the weak energy condition in a neighborhood of the outer apparent horizon.

The parenthetical comment “(i.e., lose its trapped surfaces)” is an extra source of confusion

which will be specifically addressed in Section 1.1.3.3. We will now discuss the papers [Kuc68; DI67;

Pró83; Bou73; FH79; SI80; Isr86; Isr92] and where the issues lie.

1.1.3.1 The singular thin charged shell model

It has been known since the 60’s that an extremal black hole can be formed instantly by collapsing an

infinitesimally thin shell of charged massive dust [Kuc68; DI67; Bou73; Pró83]. Later, Farrugia and

1For a discussion of various versions of the third law of classical thermodynamics, see [Wal97].
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Hajicek [FH79] showed how to “turn a subextremal Reissner–Nordström spacetime into an extremal

one” by firing an appropriately charged singular massive shell into the black hole.

The resulting spacetime metric is not C2-regular and the energy-momentum tensor is concen-

trated along a timelike hypersurface (the shell). The Penrose diagram of the spacetime they construct

is similar to our Fig. 1.1 (see [FH79, p. 296 Fig. 2]). In particular, we note the presence of a discon-

nected outermost apparent horizon in their example. Israel seemed to associate the disconnectedness

of the apparent horizon with a singularity of the matter and/or spacetime: “Violations can also be

produced by any process that induces discontinuous behavior of the apparent horizon—for example,

absorption of an infinitely thin massive shell, which will force this horizon to jump outward.”

On the basis of this, he dismissed this example in his formulation of the third law by explicitly

requiring regularity of the energy-momentum tensor. We note, however, that Farrugia and Hajicek

suggest that their construction can in principle be desingularized—we do not know if this point was

ever addressed again, because if true, it would seem to provide an alternative route to constructing

a counterexample apart from our own.

As is clear in Fig. 1.1, the outermost apparent horizon is disconnected in our counterexamples

to the third law. As we will discuss in Section 1.1.3.3, disconnectedness of the outermost apparent

horizon has nothing to do with regularity—it is an intrinsic feature of extremization. Therefore,

dismissing the charged thin shell on the basis of “undesirable” behavior of the apparent horizon was

unwarranted. We will return to the thin charged shell in Section 1.2.1 below.

1.1.3.2 The charged null dust model

An interesting example motivating explicit mention of the weak energy condition in the third law

was provided by Sullivan and Israel [SI80] in spherical symmetry, with the charged null dust matter

model. This matter model allows for dynamical violations of the weak energy condition—even if the

initial data satisfies the weak energy condition, the solution might violate it in the future. Sullivan

and Israel showed that extremization is impossible in this model without such a violation, which

can also be seen from Penrose diagrams. They interpreted this result as further evidence that the

third law holds as long as the weak energy condition is demanded near the apparent horizon.

We note, however, that Ori has proposed a different interpretation of the model studied by

Sullivan and Israel which does not violate the weak energy condition [Ori91]. This version is arguably

more physically correct, and it is a pity that Ori’s work was seemingly ignored in the literature. We

will return to Ori’s dust model in Chapter 7 below and prove that it arises as a limit of smooth

solutions to the Einstein–Maxwell–Vlasov system in Chapter 8.
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1.1.3.3 “Losing trapped surfaces” and connectedness of the outermost apparent hori-

zon

We will now clarify the issue of “losing trapped surfaces” appearing prominently in [Isr86; Isr92]

and the implicit assumption of connectedness of the outermost apparent horizon.

The black hole region in a subextremal Reissner–Nordström or Kerr spacetime is foliated by

trapped spheres. Conversely, extremal Reissner–Nordström and Kerr black holes have no trapped

surfaces, but the event horizon is a marginally trapped tube in both cases. As |q| → 1 (where

we take q
.
= e/M for Reissner–Nordström and q

.
= a/M for Kerr), r− → r+, and one might be

inclined to think that extremizing involves “squeezing” away the trapped region inside the black

hole. However, it is an immediate consequence of Raychaudhuri’s equation [HE73; Wal84] that

trapped surfaces persist in evolution as long as the spacetime satisfies the weak energy condition.

Since the typical explicit extremal black holes have no trapped surfaces (in particular none near the

event horizon), one might wonder if Raychaudhuri’s equation alone could be used to “prove” the

third law.

This is what Israel attempted to do in [Isr86; Isr92]. We will formalize his observation in Defini-

tion 1.1.8 and Proposition 1.1.10 below. In order to reconstruct Israel’s argument mathematically,

let us formulate the following definition. For precise definitions relating to spherical symmetry, see

already Chapter 2.

Definition 1.1.8. Let H be a connected dynamical apparent horizon, i.e., a connected, achronal

curve in the (1 + 1)-dimensional reduction (Q, gQ) of a spherically symmetric spacetime (M, g),

along which ∂vr vanishes identically. We say that H becomes extremal in finite time in the sense of

Israel if

1. H is not completely contained in a null cone.

2. Let τ 7→ H(τ) be a parametrization of H. Then there exists a τ0 ∈ R so that for all τ ≥ τ0,

τ 7→ H(τ) is a future-directed constant u curve.

3. There exists a τ1 > τ0 and a neighborhood N of Hτ≥τ1 such that N \ Hτ≥τ0 contains only

strictly untrapped spheres (∂vr > 0).

Remark 1.1.9. The outermost apparent horizon A′ (see already Section 2.4), if connected, is an

example of a connected dynamical apparent horizon.

As a simple consequence of Raychaudhuri’s equation in a spacetime satisfying the weak energy

condition [HE73; Wal84], we have:
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Proposition 1.1.10 (Israel’s observation). Let (M, g) be a spherically symmetric black hole space-

time. If the spacetime satisfies the weak energy condition, has a nonempty trapped region, and a

connected outermost apparent horizon A′ as defined in [Kom13], then the outermost apparent horizon

A′ does not become extremal in finite time in the sense of Israel.

However, it is clear that in view of our main theorem, the correct reading of this proposition is

the contrapositive, namely that violations of the third law necessarily have a disconnected apparent

horizon. This effect has nothing to do with singularities of spacetime or the matter model (and

there was never actually any a priori reason to believe that the outermost apparent horizon was

connected). This situation is depicted in Fig. 1.3.

A′
1

H
+

A
′
2

i+

r
=

0

BH

first extremal

sphere

∂vr > 0

Figure 1.3: Illustration of the contrapositive of Proposition 1.1.10. The outermost apparent horizon
A′ = A′

1 ∪ A′
2 becomes disconnected when a black hole with trapped surfaces “becomes extremal,”

while the spacetime and matter fields remain regular. The trapped region begins to the north of A′
1

and persists for all advanced time.

1.1.3.4 Aside: Extremal horizons with nearby trapped surfaces

Though not directly relevant for the considerations of this dissertation, we would like to point out

that there is another issue with the attempt to characterize extremality by the lack of trapped

surfaces near the horizon, i.e., by the third property of Definition 1.1.8. In fact, it would appear

that the property of having no trapped surfaces in the interior near the horizon is actually stronger

than being extremal.

For a spacetime (M, g) with Killing field K, a Killing horizon H is said to be extremal if the

surface gravity κ, defined by ∇KK = κK on H, vanishes identically. Equivalently, extremality

means that g(K,K) vanishes to at least second order along null geodesics crossing H transversely.

If K is timelike to the past of H and g(K,K) vanishes to an even order on H, then K passes from

timelike, to null, then back to timelike across H, and there are no strictly trapped surfaces near
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the horizon. This is precisely the situation for extremal Reissner–Nordström and Kerr black holes,

where g(K,K) vanishes to second order on the event horizon.

However, there exist spacetimes for which g(K,K) vanishes to an odd order (at least three), in

which case there may be trapped surfaces just behind the horizon. Indeed, in Proposition 5.A.1

of Section 5.A we construct an example of a stationary spacetime containing an extremal Killing

horizon, with trapped surfaces just behind the horizon, and satisfying the dominant energy con-

dition. In this case g(K,K) is exactly cubic in an ingoing null coordinate system. It would be

interesting to construct such a spacetime with a specific matter model, or an extremal black hole

with this behavior.

While extremal Kerr, Reissner–Nordström, and other known examples are extremal in the sense

of Definition 1.1.8, it is far from obvious that all hairy (i.e., carrying non-EM matter fields) extremal

black holes should be free of trapped surfaces. In view of our example in Section 5.A, any mechanism

which enforces this must necessarily be global in nature and/or depend on particular properties of

the matter model in question.

One could define the notion of a nondegenerate extremal Killing horizon, i.e., the Killing field K

has the property that g(K,K) vanishes only to second order, which would then be compatible with

Definition 1.1.8. See already Remark 5.A.2.

For more discussion about possible definitions of extremality, see for instance [BF08; Boo16;

MRT13].

1.1.4 Detailed description of our counterexample to the third law

With this discussion out of the way, we present now a detailed version of our counterexample to the

third law, which satisfies all of Israel’s requirements. It is essentially a corollary of the more general

version of our main gluing result Theorem 4.4.1 with a Schwarzschild exterior sphere in place of a

Minkowski sphere (see already Section 5.4) and will be given in Section 5.6.2. For an illustration of

the spacetime, we refer the reader back to Fig. 1.1.

Theorem 1.1.11 (Detailed version of Theorem 1.1.1). For any regularity index k ∈ N, there ex-

ist spherically symmetric, asymptotically flat Cauchy data for the Einstein–Maxwell-charged scalar

field system, with Σ ∼= R3 and a regular center, such that the maximal future globally hyperbolic

development (M4, g) has the following properties:

• The spacetime satisfies all the conclusions of Theorem 1.1.4 with q = 1, including Ck-regularity

of all dynamical quantities.
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• The black hole region contains an isometrically embedded portion of a Schwarzschild exterior

horizon neighborhood. In particular, there is a portion of a null cone behind the event horizon

of (M, g) which can be identified with a portion of the apparent horizon of Schwarzschild.

• The “Schwarzschild horizon” piece is a part of the outermost apparent horizon A′ of the space-

time. The set A′ is disconnected and agrees with the event horizon H+ to the future of the

first marginally trapped sphere on the event horizon.

• There is a neighborhood of the event horizon that contains no trapped surfaces. Nonetheless,

the black hole region contains trapped surfaces. In fact, there are trapped surfaces at arbitrarily

late advanced time in the interior of the black hole.

To reiterate, the scalar field collapses to form an exact Schwarzschild spacetime, including the

horizon, only to collapse further to form an exact extremal Reissner–Norström for all late advanced

time. The spacetime is regular (for any fixed k ≥ 1, one can construct an example which is Ck) and

the matter model satisfies the dominant energy condition.

1.1.4.1 Future boundary of the interior in third law violating solutions

The future boundary of the black hole region of dynamical black holes formed from gravitational

collapse in the EMCSF system is known to be intricate (see e.g. [Daf03; Kom13; Van18b]). We refer

to [Kom13] for a detailed description of the most general possible structure of the interior, but see

already Fig. 2.1 for a summary of the most salient features. In this subsection we will first discuss

the future boundary of the black hole interior in Theorem 1.1.11. Further, we will present additional

corollaries of our characteristic gluing method which provide examples of gravitational collapse to

black holes with a piece of null boundary (a “Cauchy horizon”) and a construction of spacetimes for

which a Cauchy horizon closes off the interior region.

For our main counterexample to the third law in Theorem 1.1.11, we obtain that the regular

center Γ extends into the black hole region. Regarding the future boundary of the spacetime, we

do not know whether there exists a piece of possibly singular null boundary emanating from i+

as in the subextremal case [Daf03; Van18b] or whether a spacelike singularity emanates from i+.

Note that the result of [GL19], which shows the existence of a Cauchy horizon emanating from i+,

does not apply directly since their analysis requires |e|M ≤ 0.1, whereas our construction requires

|e|M large. Nevertheless, one may speculate that a piece of Cauchy horizon occurs (for which the

linear analysis of [Gaj17a; Gaj17b] would be relevant), which could eventually turn into a spacelike
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singularity. (Note that one can readily set up the data such that the future boundary of the interior

in Theorem 1.1.11 has a piece of spacelike singularity. See however already Section 4.6.2.)

1.1.4.2 Exceptionality and stability of third law violating solutions

The third law is manifestly concerned with exceptional behavior, which is why the phrases “no

matter how idealized” [BCH73] or “in any continuous process” [Isr86] are specifically included in

formulations of the third law. Indeed, keeping a horizon at exactly constant temperature (or equiv-

alently constant surface gravity), any temperature, is of course exceptional. (Exactly stationary

behavior on the horizon for all late advanced times is itself an infinite codimension phenomenon in

the moduli space of solutions.) In view of our construction, the case of gravitational collapse to zero

temperature in finite time is no more exceptional than any other fixed temperature.

We would also like to address the interesting question of whether creating asymptotically extremal

black holes should be viewed any differently from the subextremal case. Indeed, any mechanism

which forms a black hole with exactly specified parameters is inherently unstable, because a small

perturbation can just change the parameters. As an example of this, we note the codimension-3

nonlinear stability of the Schwarzschild family by Dafermos–Holzegel–Rodnianski–Taylor [DHRT].

In order to preserve the final black hole parameters, only a codimension-3 submanifold of the moduli

space of data is admissible in their theorem.

The stability problem for extremal black holes is exceptional because they suffer from a linear

instability known as the Aretakis instability [Are11a; Are11b; Are15; Ape22]. This instability is

weak, and a restricted form of nonlinear stability is nevertheless conjectured to hold with the same

codimensionality as in the subextremal case. See [DHRT, Section IV.2] for conjectures about stability

of extremal black holes, [Ang16; AAG20] for stability results on a nonlinear model problem, and

numerical work [MRT13; LMRT13] which is consistent with the above conjecture. The Aretakis

instability should not be thought of as a manifestation of the third law and understanding its

ramifications in the full nonlinear theory is a fundamental open problem in general relativity.

Therefore, asymptotic stability for any fixed parameter ratio (up to and including extremality)

should be formulated as a positive codimension statement. In our spherically symmetric setting, we

are led to conjecture that for every solution constructed in Theorem 1.1.4, there exists a codimension-

1 family of perturbations which asymptote to a Reissner–Nordström black hole with the same final

parameter ratio. Since the conjectured codimension is the same for every ratio, we are then led to

conclude that asymptotically extremal black holes are not qualitatively rarer than any fixed positive

temperature.
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We will return to the issue of the stability of extremal black holes in Section 1.2.5 below.

1.1.5 Conjecture: the third law is false in vacuum

In light of Theorem 1.1.1, we are motivated to make the following conjecture:

Conjecture 1.1.12. There exist regular one-ended Cauchy data for the Einstein vacuum equations

Ric(g) = 0 (1.1.6)

which undergo gravitational collapse and form an exactly Schwarzschild apparent horizon, only for

the spacetime to form an exactly extremal Kerr event horizon at a later advanced time. In particular,

already in vacuum, the “third law of black hole thermodynamics” is false.

Remark 1.1.13. It is not possible to have a solution of the pure Einstein–Maxwell equations which

behaves like one of the solutions in Theorem 1.1.1. This is because the vacuum Maxwell equation

d⋆F = 0 always gives rise to a conserved electric charge (4π)−1
∫
S
⋆F , even outside of spherical

symmetry. On Schwarzschild, this charge is zero, and on Reissner–Nordström, it equals the charge

parameter e.

Remark 1.1.14. Similarly, if a vacuum spacetime has an axial Killing field Z, then the Komar

angular momentum (16π)−1
∫
S
⋆dZ♭ is conserved. Therefore, Conjecture 1.1.12 cannot be proved in

axisymmetry.

1.1.5.1 Gravitational collapse to very slowly rotating Kerr black holes with prescribed

parameters in vacuum

The black holes in Theorem 1.1.1 are constructed in two stages: First the scalar field is used to form

an exact Schwarzschild apparent horizon in finite time, which is then charged up to extremality by

exploiting the coupling of the scalar field with the electromagnetic field.

In [KU23], we showed how to generalize the first step of forming an exact Schwarzschild black

hole in vacuum. In fact, we can form any sufficiently slowly rotating Kerr black hole:

Theorem 1.1.15 (Gravitational collapse with prescribed M and 0 ≤ |a| ≪ M in vacuum). There

exists a constant 0 < a0 ≪ 1 such that for any mass M > 0 and specific angular momentum

parameter a satisfying 0 ≤ |a|/M ≤ a0, there exist one-ended asymptotically flat Cauchy data

(g0, k0) ∈ H
7/2−
loc × H

5/2−
loc for the Einstein vacuum equations (1.1.6) on Σ ∼= R3, satisfying the

17



constraint equations, such that the maximal future globally hyperbolic development (M4, g) contains

a black hole BH .
= M\ J−(I+) and has the following properties:

• The Cauchy surface Σ lies in the causal past of future null infinity, Σ ⊂ J−(I+). In particular,

Σ does not intersect the event horizon H+ .
= ∂(BH) or contain trapped surfaces.

• (M, g) contains trapped surfaces.

• For sufficiently late advanced times v ≥ v0, the domain of outer communication, including

the event horizon H+, is isometric to that of a Kerr solution with parameters M and a. For

v ≥ v0, the event horizon of the spacetime can be identified with the event horizon of Kerr.

For the relevant Penrose diagram, consult Fig. 1.2 below.

I +

H
+

0 ≤ |a|/M ≪ 1

Mink Σ

i0

i+

BH
Kerr

v
=
v
0

Figure 1.4: Penrose diagram for Theorem 1.1.15. The textured line segment is where the gluing
data constructed in Theorem 4.5.2 live.

Remark 1.1.16. It is a classical result that the Einstein equations are well posed in H
7/2−
loc ×H

5/2−
loc ,

see [HKM76] and also [PR07; Chr13].

The proof is again a characteristic gluing construction, but now for the Einstein vacuum equa-

tions. See already Section 4.5.

Outside of spherical symmetry (for the Einstein vacuum equations), formation of black holes was

studied by Christodoulou in the seminal monograph [Chr09]. Christodoulou constructed character-

istic data for the Einstein vacuum equations containing no trapped surfaces, but whose evolution

contains trapped surfaces in the future. Li and Yu [LY15] showed how to combine Christodoulou’s

construction with the spacelike gluing technique of Corvino and Schoen [CS06] to construct asymp-

totically flat Cauchy data containing no trapped surfaces, but whose evolution contains trapped

surfaces in the future. Later, Li and Mei [LM20] observed that the Corvino–Schoen gluing can be
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done “behind the event horizon,” which yields a genuine construction of gravitational collapse in

vacuum arising from one-ended asymptotically flat Cauchy data.2

The constructions of the above type rely on the observation that if an additional restriction is

imposed on the seed data in [Chr09], then the resulting spacetime has a region of controlled size

which is close to Schwarzschild. The Corvino–Schoen gluing then selects very slowly rotating Kerr

parameters for the exterior region. Our Theorem 1.1.15 can be compared with the main theorem of

Li and Mei in [LM20]. In particular, we also prove trapped surface formation starting from Cauchy

data outside of the black hole region.

Our proof of trapped surface formation starting from Cauchy data is fundamentally different from

[LM20] because it does not appeal to Christodoulou’s trapped surface formation mechanism [Chr09].

In fact, the only aspect of the evolution problem we require is Cauchy stability. Furthermore, we

can directly prescribe the (very slowly rotating) Kerr parameters of the black hole to be formed.

In particular, we may take a = 0, which guarantees the existence of a spacelike singularity, see

already Corollary 4.6.5. However, our data is of limited regularity (but still in a well-posed class).

Nevertheless, by appealing to Cauchy stability once again, Theorem 1.1.15 has the further corollary

of showing the existence of an open set of vacuum Cauchy data not containing trapped surfaces,

but which lead to trapped surface formation in evolution. This method of obtaining trapped surface

formation softly is new and fundamentally different from Christodoulou’s method in [Chr09], which

revolves around a semiglobal evolution problem.

Remark 1.1.17. In [KU23] (and this dissertation), the Cauchy data (ḡ, k̄) are constructed with

regularity H
7/2−
loc ×H

5/2−
loc , which is well above the threshold for classical existence and uniqueness

for the Einstein vacuum equations [HKM76; PR07; Chr13]. This limited regularity is because the

characteristic gluing results [ACR21; CR22] which we use as a black box are limited to C2 regularity

of transverse derivatives in the non-bifurcate case. Using the more recent spacelike gluing results of

Mao–Oh–Tao [MOT23], it is possible to construct suitable Cauchy data in Hs
loc ×Hs−1

loc for any s.

1.1.5.2 The Thorne bound

When a black hole forms in nature, it is typically surrounded by a so-called accretion disk, consisting

of gas, dust, and other diffuse material. The matter in the disk is susceptible to friction, which

raises the temperature and causes emission of electromagnetic radiation [PT74]. A famous heuristic

argument in astrophysics, called the Thorne bound [Tho74], would imply that Conjecture 1.1.12 is

2Here, gravitational collapse refers to a solution of Einstein’s equations containing a black hole, such that the
Cauchy hypersurface on which data are posed does not intersect the black hole region.
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false in the presence of an accretion disk because of the back-reaction of photons. It would be very

interesting to investigate this argument further in light of our recent results.

1.2 Extremal black hole formation as a critical phenomenon

1.2.1 Statement of the main result

In contrast to the examples of gravitational collapse presented in the previous section, small initial

data for the Einstein equations (with reasonable matter content) tend to disperse without a black hole

forming. It is a fundamental problem in classical general relativity to understand how these different

classes of spacetimes—collapsing and dispersing—fit together in the moduli space of solutions. The

interface between collapse and dispersion is known as the black hole formation threshold and families

of solutions crossing this threshold are said to exhibit critical collapse. Spacetimes lying on the

threshold are called critical solutions.

Critical collapse has been extensively studied numerically, starting with the influential work of

Choptuik [Cho93] on the spherically symmetric Einstein-scalar field model, in a regime where the

critical solutions are believed to be naked singularities. The Einstein–Vlasov system is believed

to have static “star-like” critical solutions [RRS98; OC02], but critical collapse involving naked

singularities has so far not been observed. These numerical studies on critical collapse (see also the

survey [GM07]) have yet to be made rigorous.

At first glance, the Reissner–Nordström family of metrics (indexed by the mass M > 0 and

charge e) appears to exhibit a type of critical behavior: the solution contains a black hole when

|e| < M (subextremal) or |e| = M (extremal) and does not contain a black hole when |e| > M

(superextremal). However, the Reissner–Nordström black holes are eternal and arise from two-

ended Cauchy data, while the superextremal variants contain an eternal “naked singularity” that has

historically caused much confusion. Moreover, it was long thought that extremal black holes could

not form dynamically (a consideration closely related to the third law of black hole thermodynamics).

Were this true, it would seem to rule out extremal Reissner–Nordström as the late-time behavior of

any critical solution. As discussed in the previous section, Kehle and the present author disproved the

third law in the Einstein–Maxwell-charged scalar field model and showed that an exactly extremal

Reissner–Nordström domain of outer communication can indeed form in gravitational collapse.

We now continue our investigation of extremal black hole formation by showing that extremal

Reissner–Nordström does arise as a critical solution in gravitational collapse for the Einstein–

20



Maxwell–Vlasov model, giving rise to a new phenomenon that we call extremal critical collapse.

Theorem 1.2.1. There exist extremal black holes on the threshold between collapsing and dispersing

smooth configurations of charged matter. More precisely, for any mass M > 0, fundamental charge

e ̸= 0, and particle mass 0 ≤ m ≤ m0, where 0 < m0 ≪ 1 depends only on M and e, there

exists a smooth one-parameter family of smooth, spherically symmetric, one-ended asymptotically

flat Cauchy data {Ψλ}λ∈[0,1] for the Einstein–Maxwell–Vlasov system for particles of fundamental

charge e and mass m, such that the maximal globally hyperbolic development of Ψλ, denoted by Dλ,

has the following properties.

1. D0 is isometric to Minkowski space and there exists λ∗ ∈ (0, 1) such that for λ < λ∗, Dλ is

future causally geodesically complete and disperses towards Minkowski space. In particular, Dλ

does not contain a black hole or naked singularity. If λ < λ∗ is sufficiently close to λ∗, then

for sufficiently large advanced times and sufficiently small retarded times, Dλ is isometric to

an appropriate causal diamond in a superextremal Reissner–Nordström solution.

2. Dλ∗ contains a nonempty black hole region BH .
= M \ J−(I+) and for sufficiently large

advanced times, the domain of outer communication, including the event horizon H+ .
= ∂(BH),

is isometric to that of an extremal Reissner–Nordström solution of mass M . The spacetime

contains no trapped surfaces.

3. For λ > λ∗, Dλ contains a nonempty black hole region BH and for sufficiently large advanced

times, the domain of outer communication, including the event horizon H+, is isometric to

that of a subextremal Reissner–Nordström solution. The spacetime contains an open set of

trapped surfaces.

In addition, for every λ ∈ [0, 1], Dλ is past causally geodesically complete, possesses complete null

infinities I+ and I−, and is isometric to Minkowski space near the center {r = 0} for all time.

In the proof of Theorem 1.2.1, we construct one-parameter families of charged Vlasov beams

coming in from past timelike infinity (if m > 0, cf. Fig. 1.5) or from past null infinity (if m = 0,

cf. Fig. 1.6). In the dispersive case λ < λ∗, the area-radius r of the beam grows linearly in time as

the matter expands towards the future. Moreover, the macroscopic observables of the Vlasov matter

(the particle current N and energy momentum tensor T ) decay at the sharp t−3 rate in the massive

case and at the sharp t−2 rate in the massless case (with faster decay for certain null components),

see already (8.2.10)–(8.2.14) in Proposition 8.2.3. In fact, this same dispersive behavior occurs in

the past for every λ ∈ [0, 1].

21



I +

λ = λ∗: extremal BH λ > λ∗: subextremal BHλ < λ∗: dispersion

i−

I
−

i0

r
=

0

CH +

i+

H
+

Minkowski

no trapped

region

|e| =M

I
−

i0

i−

r
=

0

i+

CH +

i+

H
+

Minkowski

trapped

region

|e| < M

I
−

i0

i−

r
=

0

Minkowski

I +

I +

|e| > M

Figure 1.5: Penrose diagrams of the one-parameter family {Dλ} from Theorem 1.2.1 in the case of
massive particles. The dark gray region depicts the physical space support of the Vlasov matter
beam. The region of spacetime to the left of the beam is exactly Minkowski space and the region to
the right of the beam is exactly Reissner–Nordström with the parameter ratio as depicted. In every
case, the beam “bounces” before it hits the center {r = 0} due to the repulsive effects of angular
momentum and the electromagnetic field. When λ < λ∗, the beam bounces before a black hole is
formed. The leftmost figure, with superextremal exterior parameters, represents the case of λ close
to λ∗. For λ close to zero, the exterior parameters can be subextremal (but nevertheless no black
hole forms). We note already that the beams actually have more structure than is depicted here in
these “zoomed out” pictures. See already Fig. 8.2.

As a direct consequence of Theorem 1.2.1, we obtain

Corollary 1.2.2. The very “black hole-ness” of an extremal black hole arising in gravitational

collapse can be unstable: There exist one-ended asymptotically flat Cauchy data for the Einstein–

Maxwell–Vlasov system, leading to the formation of an extremal black hole, such that an arbitrarily

small smooth perturbation of the data leads to a future causally geodesically complete, dispersive

spacetime.

This is in stark contrast to the subextremal case, where formation of trapped surfaces behind

the event horizon—and hence stable geodesic incompleteness [Pen65]—is expected. Despite this

inherent instability of the critical solution, we expect extremal critical collapse itself to be a sta-

ble phenomenon: We conjecture that there exists a teleologically determined “hypersurface” Bcrit

in moduli space which consists of asymptotically extremal black holes, contains Dλ∗ , and locally

delimits the boundary in moduli space between future complete and collapsing spacetimes. This

“codimension-one” property is expected to hold for other variants of critical collapse and will be

discussed in detail in Section 1.2.5.

We further expect extremal critical collapse to be a more general phenomenon: we conjecture it
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Figure 1.6: Penrose diagrams of the one-parameter family {Dλ} from Theorem 1.2.1 in the massless
case. In the ingoing (resp., outgoing) phases, the massless beams are entirely contained in slabs of
finite advanced (resp., retarded) time. Therefore, for sufficiently early advanced times and sufficiently
late retarded times, the solutions are vacuum and isometric to Minkowski space.

to occur in the spherically symmetric Einstein–Maxwell-charged scalar field model and also for the

Einstein vacuum equations, where extremal Kerr is the model critical solution. In this paper, we

also prove (see already Theorem 7.3.2 in Section 7.3) that extremal critical collapse already occurs

in the simpler—but singular—bouncing charged null dust model, which was first introduced by Ori

in [Ori91]. The proof of Theorem 1.2.1, which will be outlined in Section 8.1, can be viewed as a

global-in-time desingularization of these extremal critical collapse families in dust.

Besides the Einstein–Maxwell–Vlasov and bouncing charged null dust models, it turns out that

the thin charged shell model [Isr66; DI67] also exhibits extremal critical collapse: Prószyński observed

in [Pró83] that if a thin charged shell is injected into Minkowski space (so the interior of the shell is

always flat), the parameters can be continuously varied so that the exterior of the shell goes from

forming a subextremal Reissner–Nordström black hole, to forming an extremal Reissner–Nordström

black hole, to forming no black hole or naked singularity at all: the shell “bounces” off to future

timelike infinity. Because the thin shell model is quite singular (the energy-momentum tensor is

merely a distribution and the metric can fail to be C1 across the shell), it seems to have been

discounted as a serious matter model. We refer to the previous discussion in Section 1.1.3.1 in

reference to the thin charged shell counterexample to the third law by Farrugia and Hajicek [FH79].

Theorem 1.2.1 can be viewed as a vindication of [Pró83], since our smooth Einstein–Maxwell–massive

Vlasov solutions exhibit all of the qualitative features of Prószyński’s dust shells. In particular,

Fig. 8.1 below is strikingly similar to Fig. 3 in [Pró83].
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1.2.2 The Einstein–Maxwell–Vlasov system

In Theorem 1.2.1, we consider the Einstein–Maxwell–Vlasov system, which models a distribution of

collisionless, self-gravitating charged particles with mass m ≥ 0 and fundamental charge e ∈ R\{0}.

The model consists of a quadruple (M4, g, F, f), where (M4, g) is a spacetime, F is a closed 2-form

representing the electromagnetic field strength, and f = f(x, p), called the distribution function of

the Vlasov matter, is a smooth nonnegative function defined on the mass shell

Pm .
= {(x, p) ∈ TM : p is future-directed causal and g(p, p) = −m2}.

The equations of motion are

Rµν − 1
2Rgµν = 2

(
TEM
µν + Tµν

)
, (1.2.1)

∇µF
µν = −eNν , (1.2.2)

Xf = 0, (1.2.3)

where TEM
µν

.
= Fµ

αFνα − 1
4gµνFαβF

αβ is the energy-momentum tensor of the electromagnetic field,

N and T are the number current and energy-momentum tensor of the Vlasov matter, defined by

Nµ[f ](x)
.
=

∫
Pm

x

pµf(x, p) dµm
x (p), Tµν [f ](x)

.
=

∫
Pm

x

pµpνf(x, p) dµm
x (p), (1.2.4)

and X ∈ Γ(TTM) is the electromagnetic geodesic spray vector field, defined relative to canonical

coordinates (xµ, pµ) on TM by

X
.
= pµ

∂

∂xµ
−
(
Γµαβp

αpβ − eFµαp
α
) ∂

∂pµ
. (1.2.5)

For the definition of the family of measures dµm
x on Pm and a proof of the consistency of the system

(1.2.1)–(1.2.3), we refer to Section 2.3.1.

The integral curves of the vector field X consist of curves of the form s 7→ (γ(s), p(s)) ∈ TM,

where p = dγ/ds and p satisfies the Lorentz force equation

Dpµ

ds
= eFµνp

ν .

We refer to such curves γ as electromagnetic geodesics. The vector field X is tangent to Pm for any

m ≥ 0, and the Vlasov equation (1.2.3) implies that f is conserved along electromagnetic geodesics.
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Since f ≥ 0, N is a future-directed causal vector field on M and the model satisfies the dominant

energy condition.

When m > 0, the system (1.2.1)–(1.2.3) is locally well-posed outside of symmetry, which can

be seen as a special case of results in [BC73] or by applying the general methods of [Rin13]. Well-

posedness when m = 0 is conditional and is a delicate issue that we will return to in Section 3.2.1.

We emphasize at this point that Theorem 1.2.1 produces examples of extremal critical collapse for

any sufficiently small positive particle mass, where well-posedness is unconditional and valid outside

of spherical symmetry.

1.2.3 The problem of critical collapse

We would like to place Theorem 1.2.1 into the larger picture of critical collapse, the general study of

the black hole formation threshold. In particular, we conjecture that our examples in Theorem 1.2.1

have a suitable codimension-one property as is expected to hold for other, so far only numerically

observed, critical phenomena in gravitational collapse.

In order to discuss the general concept of critical collapse, it is very helpful to have a notion of

“phase space” or moduli space for initial data (or maximal Cauchy developments) for the Einstein

equations. Consider, formally, the set M of one-ended asymptotically flat Cauchy data for the

Einstein equations with a fixed matter model (or vacuum) and perhaps with an additional symmetry

assumption. We will be intentionally vague about what regularity elements of M have, what decay

conditions to impose, or what topology to endow M with. We will also not discuss gauge conditions,

which could be viewed as taking specific quotients of M. These questions are related to several

fundamental issues in general relativity, see for instance [Chr94; Chr99b; Chr02; DS18; LO19;

Keh22a; RSR23; Keh23; KM24; Sin24].3 Indeed, it seems likely that there is no single “correct”

definition—it is doubtful that a single moduli space will capture every interesting phenomenon.

Nevertheless, we will pretend in this section that a “reasonable” definition of M exists. At the

very least, M ought to consist of initial data possessing a well-posed initial value problem. For

each element Ψ = (ḡ, k̄, . . . ) ∈ M (where ḡ is a Riemannian metric on R3, k̄ the induced second

fundamental form, and . . . denotes possible matter fields), we have a unique maximal globally

hyperbolic development D = (M, g, . . . ) of Ψ, where M ∼= R4 [Fou52; CG69; Sbi16].4 We assume

3In particular, it would actually be most natural to define M in terms of (perhaps a quotient space of) scattering
data on past infinity (past null infinity I− in the case of massless fields). However, since a nonlinear scattering theory
for the full Einstein equations has not yet been developed in any regime, we limit ourselves to the Cauchy problem
for now.

4By an abuse of terminology, we will interchangeably refer to either Ψ or its development D, which is of course
only unique up to isometry.
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that (M, g) is asymptotically flat. In particular, we assume that we have a well-defined notion of

future null infinity I+ and past null infinity I−.

Remark 1.2.3. In the proof of Theorem 1, we define a “naive moduli space” M∞ consisting of all

smooth solutions of the Einstein–Maxwell–Vlasov constraint equations on R3, equipped with the

C∞
loc topology, and with no identifications made. See already Definition 8.9.8. This topology is

inadequate for addressing asymptotic stability questions but since our families are electrovacuum

outside a fixed large compact set anyway, they will be continuous in any “reasonable” topology that

respects asymptotic flatness.

Let C ⊂ M denote the subset of initial data with future causally geodesically complete develop-

ments. We also highlight the special class D ⊂ C of initial data with dispersive developments, i.e,

those solutions whose geometry asymptotically converges to Minkowski space in the far future and

matter fields decay suitably.5 Nontrivial stationary states, if they exist, lie in C \D since they do

not decay.6 Let B ⊂ M denote the set of initial data leading to the formation of a nonempty black

hole region, i.e., BH .
= M \ J−(I+) ̸= ∅. The question of critical collapse is concerned with the

study of phase transitions between C, D, and B, that is, the structure of the boundaries ∂C, ∂D,

and ∂B, how they interact, and characterizing solutions lying on the threshold.

A natural way of exploring this phase transition is by studying continuous paths of initial data

interpolating between future complete and black hole forming solutions.

Definition 1.2.4. An interpolating family is a continuous one-parameter family {Ψλ}λ∈[−1,1] ⊂ M

such that Ψ0 ∈ C and Ψ1 ∈ B. Given such a family, we may define the critical parameter λ∗ and

the critical solution Dλ∗ (the development of Ψλ∗) by

λ∗
.
= sup{λ ∈ [0, 1] : Ψλ ∈ C}.

The prototypical critical collapse scenario consists of a spherically symmetric self-gravitating

massless scalar field pulse with fixed profile and “total energy” ∼ λ. At λ = 0, the solution is

Minkowski space and for λ very close to 0, the solution disperses and is future complete [Chr86].

As λ approaches 1, a trapped surface forms in evolution, signaling the formation of a black hole

[Chr91c]. This is precisely the scenario first studied numerically by Christodoulou in his thesis

[Chr71] and then later by Choptuik in the influential work [Cho93]. Based on numerical evidence,

5Again, we are being intentionally vague here.
6According to a famous theorem of Lichnerowicz, the Einstein vacuum equations do not admit nontrivial asymp-

totically flat stationary solutions on R3 × R (with an everywhere timelike Killing field) [Lic55]. On the other hand,
the Einstein–Vlasov and Einstein–Maxwell–Vlasov systems, for example, have many asymptotically flat stationary
solutions [RR93; Tha19; Tha20].
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it is believed that the critical solutions for these types of families are naked singularities that form

a codimension-one “submanifold” in moduli space. For discussion of Choptuik’s results we refer to

the survey [GM07].

Remark 1.2.5. A codimension-one submanifold of naked singularities is nongeneric and therefore

compatible with the weak cosmic censorship conjecture, which has been proved in this model by

Christodoulou [Chr99b].

Remark 1.2.6. A rigorous understanding of Choptuik’s critical collapse scenario would in particular

give a construction of naked singularities in the Einstein-scalar field system starting from smooth

initial data, in contrast to Christodoulou’s examples in [Chr94]. It already follows from work of

Christodoulou [Chr91c] that a critical solution cannot be a black hole in this model and from work

of Luk and Oh that a critical solution cannot “scatter in BV norm” [LO15]. This leaves the possibility

of either a first singularity along the center not hidden behind an event horizon7 or a solution in

C \D which “blows up at infinity.” Ruling out this latter case is an interesting open problem.

When massive fields are introduced, such as in the spherically symmetric Einstein–massive Klein–

Gordon or Einstein–massive Vlasov systems, then static “star-like” critical solutions can be observed

numerically [BCG97; RRS98; OC02; AR06; AAR21]. These static solutions are nonsingular and lie

in C\D. It is interesting to note that while Einstein–Klein–Gordon also displays Choptuik-like naked

singularity critical solutions, there is no numerical evidence for the existence of naked singularities

in the Einstein–Vlasov system. We again refer to [GM07] for references and would also like to point

out the new development [Bau+23] on numerical critical collapse in vacuum.

1.2.4 Extremal critical collapse

So far, all numerically observed critical solutions are believed to be either naked singularities or

complete and nondispersive. It follows at once from Penrose’s incompleteness theorem [Pen65] and

Cauchy stability that a critical solution cannot contain a trapped surface. While a generic black

hole is expected to contain trapped surfaces,8 members of the extremal Kerr–Newman family do

not. In view of this, we raise the question of whether extremal black holes can arise on the black

hole formation threshold:

Definition 1.2.7. An interpolating family {Ψλ}λ∈[0,1] exhibits extremal critical collapse if the

critical solution Dλ∗ asymptotically settles down to an extremal black hole.

7See [Kom13, Page 10] for a catalog of the possible Penrose diagrams in this case.
8By the celebrated redshift effect, one expects a spacetime asymptoting to a subextremal Kerr–Newman black hole

to contain trapped surfaces asymptoting to future timelike infinity i+. See [Daf05c; DR05b; DL17; Van18a; AH23].
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Our main result, Theorem 1.2.1, proves that the Einstein–Maxwell–Vlasov system exhibits ex-

tremal critical collapse, with critical solution Dλ∗ exactly isometric to extremal Reissner–Nordström

in the domain of outer communication at late advanced times. As shown by Prószyński [Pró83] and

the present authors in Theorem 7.3.2, the fundamentally singular thin charged shell and charged null

dust models, respectively, exhibit extremal critical collapse, also with extremal Reissner–Nordström

as the critical solution. We expect this phenomenon to also occur in the spherically symmetric

Einstein–Maxwell-charged scalar field system and even for the Einstein vacuum equations, where

the critical solution is expected to be based on the extremal Kerr solution. Note that we only re-

quire the asymptotic geometry of the critical solution to be an extremal black hole in Definition 1.2.7,

which is a much weaker condition than being exactly extremal as in Theorem 1.2.1.

Remark 1.2.8. Because black holes in the spherically symmetric Einstein-scalar field model always

contain trapped surfaces [Chr91c], this model does not exhibit extremal critical collapse. In particu-

lar, since the presence of a trapped surface in this model already implies completeness of null infinity

and the existence of a black hole [Daf05b], B is open in the spherically symmetric Einstein-scalar

field model. Moreover, black holes in this model always settle down to (subextremal) Schwarzschild

[Chr87].

Remark 1.2.9. We reiterate the points of Remarks 1.1.13 and 1.1.14. It is not possible for a Kerr

solution with nonzero angular momentum (i.e., not Schwarzschild) to appear as the asymptotic state

in axisymmetric vacuum gravitational collapse. This is because the Komar angular momentum is in-

dependent of the sphere S, which is nullhomologous. Similarly, it is not possible for a Kerr–Newman

solution with nonzero charge (i.e., not Kerr) to appear as the asymptotic state in gravitational col-

lapse for the Einstein–Maxwell system. This is because the charge is independent of the sphere S,

which is nullhomologous. The presence of charged matter is essential in Theorem 1.2.1.

Remark 1.2.10 (Stationary solutions and the extremal limit). In the 1960s and ’70s, it was suggested

that astrophysical black holes could form through quasistationary accretion processes. In a landmark

work, Bardeen and Wagoner [Bar70; BW71] numerically studied axisymmetric stationary states of

the Einstein-dust system (modeling accretion disks) and found that a “black hole limit” was only

possible in the “extremal limit” of the dust configuration.9 In this limit, the exterior metric of the

disk converges, in a certain sense, to the metric of the domain of outer communication of extremal

9Recall that the classical Buchdahl inequality states that a spherically symmetric stationary fluid ball is always
“far away” from being a black hole in the sense that 2m

r
< 8

9
, which quantitatively forbids (even marginally) trapped

surfaces [Buc59]. This bound is relaxed outside of spherical symmetry or in the presence of charge. In particular,
the sharp charged Buchdahl inequality in [And09] is consistent with becoming arbitrarily close to extremality and
forming a marginally trapped surface.
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Kerr.

However, the event horizon of a stationary black hole is necessarily a Killing horizon and therefore

an exactly stationary black hole solution cannot admit a one-ended asymptotically flat Cauchy

hypersurface.10 It follows that a sequence of one-ended stationary states cannot actually smoothly

converge to a black hole spacetime up to and including the event horizon, and that the black hole

threshold cannot be directly probed by studying limits of stationary states—black hole formation is

a fundamentally dynamical process.

Nevertheless, there is a substantial body of numerical and heuristic literature exploring “extremal

black hole limits” of stationary solutions in dust models [NM95; Mei06; Mei+08; MH11; KLM11] and

using Einstein–Yang–Mills–Higgs magnetic monopoles [LW99; LW00]; see also references therein.

In particular, we refer the reader to [MH11] for a cogent explanation of the exact nature of the

convergence of these stationary states to extremal Reissner–Nordström/Kerr exteriors and throats.

It would be interesting to see if perturbing these “near-extremal” non-black hole stationary states

can provide another route to extremal critical collapse (and also perhaps to new examples of third

law violating solutions), but this seems to be a difficult and fully dynamical problem as stationarity

necessarily has to be broken in order for a black hole to form.

Remark 1.2.11 (Overcharging and overspinning). Extremal critical collapse should not be confused

with the attempt to overcharge or overspin a black hole, i.e., the attempt to destroy the event

horizon and create a “superextremal naked singularity” by throwing charged or spinning matter

into an extremal or near-extremal black hole. The fear of forming such a naked singularity provided

some impetus for the original formulation of the third law in [BCH73]11 and many arguments

for and against have appeared in the literature, see [Wal74; Hub99; JS09; SW17] and references

therein. Overcharging has been definitively disproved in spherical symmetry for the class of “weakly

tame” matter models [Daf05b; Kom13], which includes the Einstein–Maxwell-charged scalar field

and Einstein–Maxwell–Vlasov systems considered in this dissertation. We expect overcharging and

overspinning to be definitively disproved with a positive resolution of the black hole stability problem

for extremal black holes, to be discussed in Section 1.2.5 below.

10The original dust disk configuration is one-ended.
11With this in mind, the formulation of the third law in [BCH73] can be thought of as simply outright forbidding

the formation of extremal black holes. The formulation in Israel’s work [Isr86] is more refined and specifically refers
to subextremal black holes “becoming” extremal in a dynamical process. In any case, both formulations are false as
demonstrated in this dissertation.
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1.2.5 Stability of extremal critical collapse

Before discussing the stability of our interpolating families in Theorem 1.2.1, we must first address

the expected notion of stability for the domain of outer communication of the extremal Reissner–

Nordström solution.

Firstly, since the asymptotic parameter ratio of the black hole is inherently unstable, we can

at most expect a positive codimension stability statement for extremal Reissner–Nordström. This

should be compared with the codimension-three nonlinear stability theorem of the Schwarzschild

solution by Dafermos, Holzegel, Rodnianski, and Taylor [DHRT]: Only a codimension-three “sub-

manifold” of moduli space can be expected to asymptote to Schwarzschild, which has codimension

three in the Kerr family (parametrized by the mass and specific angular momentum vector). In the

case of Reissner–Nordström, the set of extremal solutions has codimension one in the full family.

Indeed, any fixed parameter ratio subfamily of the Reissner–Nordström family has codimension one.

See already Remark 1.2.17.

Secondly, and far less trivially, the stability problem for extremal black holes is complicated by the

absence of the celebrated redshift effect, which acts as a stabilizing mechanism for the event horizon

of subextremal black holes. The event horizon of extremal Reissner–Nordström (and axisymmetric

extremal black holes in general) suffers from a linear instability known as the Aretakis instability

[Are11a; Are11b; Are15; Ape22], which causes ingoing translation invariant null derivatives of solu-

tions to the linear wave equation to (generically) either not decay, or to blow up polynomially along

the event horizon as v → ∞. Weissenbacher has recently shown that a similar instability (non-decay

of the first derivative of the energy-momentum tensor) occurs for the linear massless Vlasov equation

on extremal Reissner–Nordström [Wei23].

However, the Aretakis instability is weak and does not preclude asymptotic stability and decay

away from the event horizon. Including the horizon, we expect a degenerate type of stability,

with decay in directions tangent to it, and possible non-decay and growth transverse to it (so-

called horizon hair). This behavior has been shown rigorously for a semilinear model problem on a

fixed background [Ang16; AAG20] and numerically for the coupled spherically symmetric nonlinear

Einstein–Maxwell-(massless and neutral) scalar field system [MRT13].

To further complicate matters, the massive and massless Vlasov equations behave fundamentally

differently and we state two separate conjectures. In these statements, we consider characteristic

data posed on a bifurcate null hypersurface Cout ∪ C in, where Cout is complete and C in penetrates

the event horizon in the case of trivial data. Solutions of the linear massless Vlasov equation
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decay exponentially on subextremal Reissner–Nordström black holes [Big23; Wei23] and Velozo Ruiz

has proved nonlinear asymptotic stability of Schwarzschild for the spherically symmetric Einstein–

massless Vlasov system [Vel23]. Based on this, [MRT13; Ang16; AAG20], and [DHRT, Conjecture

IV.2], we make the

Conjecture 1.2.12. The extremal Reissner–Nordström solution is nonlinearly asymptotically sta-

ble to spherically symmetric perturbations in the Einstein–Maxwell–massless Vlasov model in the

following sense: Given sufficiently small characteristic data posed on a bifurcate null hypersurface

Cout ∪ C in and lying on a “codimension-one submanifold” Mstab (which contains the trivial solu-

tion) of the moduli space of such initial data, the maximal Cauchy development contains a black hole

which asymptotically settles down to the domain of outer communication of an extremal Reissner–

Nordström solution, away from the event horizon H+. Moreover, along the horizon, the solution

decays towards extremal Reissner–Nordström in tangential directions, with possibly growing “Vlasov

hair” transverse to the horizon.

Remark 1.2.13. There exist nontrivial spherically symmetric static solutions of the Einstein–massless

Vlasov system containing a black hole which are isometric to a Schwarzschild solution in a neighbor-

hood of the event horizon [And21].12 However, these are not small perturbations of Schwarzschild

as the structure of trapping for null geodesics is significantly modified in the construction. Their

existence is therefore consistent with [Vel23] and Conjecture 1.2.12.

The massive Vlasov equation admits many nontrivial stationary states on black hole backgrounds,

which is an obstruction to decay and we do not expect a general asymptotic stability statement to

hold, even in the subextremal case. In fact, it has been shown that there exist spherically symmetric

static solutions of Einstein–massive Vlasov bifurcating off of Schwarzschild [Rei94; Jab21]. We refer

to [Vel23] for a characterization of the “largest” region of phase space on which one can expect decay

for the massive Vlasov energy-momentum tensor on a Schwarzschild background. However, one

might still hope for orbital stability of the exterior, with a non-decaying Vlasov matter atmosphere,

and that the horizon itself decays to that of extremal Reissner–Nordström:

Conjecture 1.2.14. The extremal Reissner–Nordström solution is nonlinearly orbitally stable to

spherically symmetric perturbations in the Einstein–Maxwell–massive Vlasov model in the following

sense: Given sufficiently small characteristic data posed on a bifurcate null hypersurface Cout ∪C in

and lying on a “codimension-one submanifold” Mstab of the moduli space of such initial data, the

12A similar construction can presumably be performed for the Einstein–Maxwell–massless Vlasov system and
Reissner–Nordström black holes which makes this relevant to the current discussion.
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Figure 1.7: A cartoon depiction of the conjectured structure of a neighborhood of moduli space near
an interpolating family {Ψλ} from Theorem 1.2.1. We have suppressed infinitely many dimensions
and emphasize the codimension-one property of the critical “submanifold” Bcrit which consists of
asymptotically extremal black holes in accordance with Conjectures 1.2.12 and 1.2.14. The interpo-
lating family {Ψ′

λ} is a small perturbation of {Ψλ} which also crosses Bcrit and exhibits extremal
critical collapse. Locally, B is foliated by “hypersurfaces” B(r) consisting of black hole spacetimes
with asymptotic parameter ratio r close to 1.

maximal Cauchy development contains a black hole which remains close to an extremal Reissner–

Nordström solution in the domain of outer communication and asymptotically settles down to ex-

tremal Reissner–Nordström tangentially along the horizon, with possibly growing “Vlasov hair” trans-

verse to the horizon.

Remark 1.2.15. We emphasize that this type of nonlinear orbital stability for massive Vlasov has

not yet been proven even in the subextremal case, where we do not expect horizon hair to occur.

With the conjectured description of the stability properties of the exterior of the critical solution

at hand, we are now ready to state our conjecture for the global stability of the extremal critical

collapse families in Theorem 1.2.1. Refer to Fig. 1.7 for a schematic depiction of this conjecture.

Conjecture 1.2.16. Extremal critical collapse is stable in the following sense: Consider the moduli

space M of the spherically symmetric Einstein–Maxwell–Vlasov system for particles of mass m. Let

{Ψλ} be one of the interpolating families given by Theorem 1.2.1. Then there exists a “codimension-

one submanifold” Bcrit of M such that Ψ0 ∈ Bcrit ⊂ B, which has the following properties:

1. Bcrit is critical in the sense that B and C locally lie on opposite sides of Bcrit.

2. If m = 0 and Ψ ∈ Bcrit, the domain of outer communication of the maximal Cauchy devel-

opment of Ψ asymptotically settles down to an extremal Reissner–Nordström black hole as in

Conjecture 1.2.12.

3. If m > 0 and Ψ ∈ Bcrit, the domain of outer communication of the maximal Cauchy de-

velopment of Ψ remains close to an extremal Reissner–Nordström black hole and the event
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horizon asymptotically settles down to an extremal Reissner–Nordström event horizon as in

Conjecture 1.2.14.

Therefore, any nearby interpolating family {Ψ′
λ} also intersects Bcrit and exhibits extremal critical

collapse.

Remark 1.2.17. We further conjecture that given r ∈ [1 − ε, 1] for some ε > 0, there exists a one-

parameter family of disjoint “codimension-one submanifolds” B(r) ⊂ B, varying “continuously” in

r, such that B(1) = Bcrit and if Ψ ∈ B(r), then the maximal Cauchy development of Ψ contains a

black hole which asymptotes to a Reissner–Nordström black hole with parameter ratio r = ef/Mf ,

where Mf is the final renormalized Hawking mass and ef is the final charge. One can then interpret

equation (8.9.5) below as saying that the families {Ψλ} in Theorem 1.2.1 intersect the foliation

{B(r)} transversally, as depicted in Fig. 1.7.

While one should think thatBcrit in Conjecture 1.2.16 corresponds toMstab in Conjectures 1.2.12

and 1.2.14, Part 1 of Conjecture 1.2.16 is also a highly nontrivial statement about the interiors of

the black holes arising from Bcrit. In particular, by the incompleteness theorem, it would imply

that there are no trapped surfaces in the maximal developments of any member of Bcrit; see [GL19,

Remark 1.8] and the following remark.

Remark 1.2.18. Conjecture 1.2.16 implies that B is locally closed near Ψ0: there exists an open set

U ⊂ M containing Ψ0 such that B ∩ U is closed in U . This property is not expected to hold near

other types of critical solutions, such as naked singularties or star-like solutions.

Remark 1.2.19. Using arguments from [LO19, Appendix A], one can show the following statement

in the spherically symmetric Einstein–Maxwell-(neutral and massless) scalar field model: If the

maximal Cauchy development of a partial Cauchy hypersurface13 with ∂ur < 0 contains a black

hole with asymptotically extremal parameter ratio, then the development does not contain trapped

symmetry spheres. The argument uses crucially the constancy of charge and absence of Tuv in this

model.

1.2.6 Extremal critical collapse of a charged scalar field and in vacuum

It is natural to conjecture the analog of Theorem 1.2.1 for a massless charged scalar field in spherical

symmetry:

13By this, we mean an asymptotically flat spacelike hypersurface which terminates at a symmetric sphere with
positive area-radius. If the charge is nonzero and nondynamical (as in the neutral scalar field model), one cannot
have a regular center.
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Conjecture 1.2.20. Extremal critical collapse occurs in the spherically symmetric Einstein–Maxwell-

charged scalar field model and there exist critical solutions which are isometric to extremal Reissner–

Nordström in the domain of outer communication after sufficiently large advanced time.

In [KU22] (see Section 4.6.2 below), we showed that a black hole with an extremal Reissner–

Nordström domain of outer communication and containing no trapped surfaces can arise from regular

one-ended Cauchy data in the spherically symmetric charged scalar field model (see Corollary 4.6.3).

The proof is based on a characteristic gluing argument, in which we glue a late ingoing cone in

the interior of extremal Reissner–Nordström to an ingoing cone in Minkowski space. The desired

properties of the spacetime are obtained softly by Cauchy stability arguments. In particular, the

method is inadequate to address whether the solution constructed in Corollary 4.6.3 is critical.

It is also natural to conjecture the analog of Theorem 1.2.1 for the Einstein vacuum equations,

Ric(g) = 0, (1.2.6)

where the role of extremal Reissner–Nordström is played by the rotating extremal Kerr solution.14

Conjecture 1.2.21. Extremal critical collapse occurs in vacuum gravitational collapse and there

exist critical solutions which are isometric to extremal Kerr in the domain of outer communication

after sufficiently large advanced time.

In [KU23] (refer to Section 1.1.5 in this dissertation), the present authors constructed examples

of vacuum gravitational collapse which are isometric to Kerr black holes with prescribed massM and

specific angular momentum a, where M and a are any Kerr parameters satisfying 0 ≤ |a|/M ≤ a0

for some small positive constant a0. The proof does not work for large values of a and whether

extremal Kerr black holes can form in gravitational collapse remains open.

If extremal critical collapse involving the Kerr solution does occur, then one may also ask about

stability as in Section 1.2.5. In this case, the question hangs on the stability properties of extremal

Kerr, which are more delicate than for extremal Reissner–Nordström. While extremal Kerr is mode-

stable [TdC20], axisymmetric scalar perturbations have been shown to exhibit the same non-decay

and growth hierarchy as general scalar perturbations of extremal Reissner–Nordström [Are12; Are15].

In light of the newly discovered azimuthal instabilities of extremal Kerr by Gajic [Gaj23], in which

growth of scalar perturbations already occurs at first order of differentiability, the full (in)stability

picture of extremal Kerr may be one of spectacular complexity!

14Recall also Remark 1.2.9: replacing “vacuum” with “electrovacuum” and “Kerr” with “Kerr–Newman with
nonzero charge” in Conjecture 1.2.21 is not possible!
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Figure 1.8: Penrose diagram of a counterexample to the third law of black hole thermodynamics in
the Einstein–Maxwell–Vlasov model from Theorem 1.2.22. The broken curve A′ is the outermost
apparent horizon of the spacetime. This view is zoomed in on the Vlasov beam that charges up the
subextremal black hole to extremality. We refer to Fig. 8.6 in Section 8.11.1 for diagrams of the
entire spacetime.

1.2.7 Event horizon jumping at extremality

The techniques used to prove Theorem 1.2.1 can also be immediately used to disprove the third law

in the Einstein–Maxwell–Vlasov model, which complements our previous disproof in the Einstein–

Maxwell-charged scalar field model [KU22]. The present method has the advantage of constructing

counterexamples which are past causally geodesically complete, like the spacetimes in Theorem 1.2.1.

Theorem 1.2.22. There exist smooth solutions of the Einstein–Maxwell–Vlasov system for either

massless or massive particles that violate the third law of black hole thermodynamics: a subextremal

Reissner–Nordström apparent horizon can evolve into an extremal Reissner–Nordström event horizon

in finite advanced time due to the incidence of charged Vlasov matter.

More precisely, there exist smooth, spherically symmetric, one-ended asymptotically flat Cauchy

data for the Einstein–Maxwell–Vlasov system for either massive or massless particles such that the

maximal globally hyperbolic development D has the following properties.

1. D contains a nonempty black hole region and for sufficiently large advanced times, the domain

of outer communication, including the event horizon H+, is isometric to that of an extremal

Reissner–Nordström solution.

2. D contains a causal diamond which is isometric to a causal diamond in a subextremal Reissner–

Nordström black hole, including an appropriate portion of the subextremal apparent horizon.

This subextremal region contains an open set of trapped surfaces.
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3. The outermost apparent horizon A′ of D has at least two connected components. One com-

ponent of A′ coincides in part with the subextremal apparent horizon and the last component

(with respect to v) coincides with the extremal event horizon.

4. D is past causally goedesically complete, possesses complete null infinities I+ and I−, and is

isometric to Minkowski space near the center {r = 0} for all time.

Refer to Fig. 1.8 for a Penrose diagram of one of these solutions. Note the disconnectedness of

the outermost apparent horizon A′, which is necessary in third law violating spacetimes—refer back

to the discussion in Section 1.1.3.3. It is striking that the Vlasov beams we construct in the proof

of Theorem 1.2.22 do not even touch the subextremal apparent horizon, which should be compared

with the hypothetical situation depicted in Fig. 1 of [Isr86]. As with Theorem 1.2.1, Theorem 1.2.22

is proved by desingularizing suitable bouncing charged null dust spacetimes which we construct in

Section 7.4.

It is now very natural to ask if some critical behavior can be seen in the examples from The-

orem 1.2.22. They are clearly not candidates for critical collapse because they contain trapped

surfaces. Nevertheless, by tuning the final charge to mass ratio of the outermost beam in Theo-

rem 1.2.22 (subextremal to superextremal as in Theorem 1.2.1), we construct one-parameter families

of solutions satisfying the following

Theorem 1.2.23. There exist smooth one-parameter families of smooth, spherically symmetric,

one-ended asymptotically flat Cauchy data {Ψλ}λ∈[−1,1] for the Einstein–Maxwell–Vlasov system

for either massive or massless particles with the following properties. Let Dλ be a choice of maximal

globally hyperbolic development15 of Ψλ for which the double null gauge (u, v) is continuously syn-

chronized as a function of λ. (See already Assumption 8.11.1 and Remark 8.11.2 for the definition

of continuous synchronization.) Then the following holds:

1. For λ ̸= 0, Dλ contains a black hole whose domain of outer communication is isometric to

that of a subextremal Reissner–Nordström black hole with mass Mλ and charge |eλ| < Mλ for

sufficiently large advanced times.

2. D0 contains a black hole whose domain of outer communication is isometric to that of an

extremal Reissner–Nordström black hole with mass M0 and charge |e0| = M0 for sufficiently

large advanced times.

15Typically, one refers to “the” maximal globally hyperbolic development [CG69], which is an equivalence class of
isometric developments. In this statement, however, it is crucial that the development comes equipped with a fixed
coordinate system.
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3. The location of the event horizon is discontinuous as a function of λ: Let uλ,H+ denote the

retarded time coordinate of the event horizon H+
λ of Dλ with respect to the continuously syn-

chronized gauge (u, v). Then λ 7→ uλ,H+ is continuous from the left but discontinuous from

the right, and

lim
λ→0+

uλ,H+ > lim
λ→0−

uλ,H+ . (1.2.7)

4. The functions λ 7→ Mλ and λ 7→ eλ are continuous from the left but discontinuous from the

right, and

lim
λ→0+

Mλ < lim
λ→0−

Mλ, lim
λ→0+

|eλ| < lim
λ→0−

|eλ|, (1.2.8)

lim
λ→0+

|eλ|
Mλ

< lim
λ→0−

|eλ|
Mλ

= 1, lim
λ→0+

rλ,H+ < lim
λ→0−

rλ,H+ , (1.2.9)

where rλ,H+
.
=Mλ +

√
M2
λ − e2λ.

In addition, for every λ ∈ [−1, 1], Dλ is past causally geodesically complete, possesses complete null

infinities I+ and I−, and is isometric to Minkowski space near the center {r = 0} for all time.

From the perspective of the dynamical extremal black hole D0, an arbitrarily small perturbation

to Dλ with λ > 0 causes the event horizon to jump by a definite amount in u (i.e., not o(1) in λ)

and the parameter ratio to drop by a definite amount. The proof of Theorem 1.2.23 relies crucially

on the absence of trapped surfaces in a double null neighborhood of the horizon in the solutions of

Theorem 1.2.22, cf. Fig. 1.8. In the asymptotically subextremal case, trapped surfaces are expected

to asymptote towards future timelike infinity i+. In this case, we prove in Proposition 8.11.4 below

that the location of the event horizon is continuous as a function of initial data, under very general

assumptions in spherical symmetry. Therefore, (1.2.7) is a characteristic feature of extremal black

hole formation.

We expect this “local critical behavior” to be stable in the sense of Section 1.2.5 and to play a

key role in the general stability problem for extremal black holes.

Remark 1.2.24. By a suitable modification of the characteristic gluing techniques in [KU22], Theo-

rem 1.2.23 can be proved for the spherically symmetric Einstein–Maxwell-charged scalar field model,

but past completeness of the solutions does not follow immediately from our methods. It is also nat-

ural to conjecture analogs for Theorem 1.2.23 in (electro)vacuum; see in particular [DHRT, Section

IV.2].16

16In fact, the statement of Theorem 1.2.23 is not actually reliant on the black holes forming in gravitational collapse
and can be made sense of in terms of characteristic data as in Conjectures 1.2.12 and 1.2.14. In this case, one can study
the local critical behavior of extremal Reissner–Nordström in electrovacuum since Remark 1.2.9 no longer applies.
Indeed, this is precisely the context of the discussion in [DHRT, Section IV.2].

37



Minkowski space

future-complete spacetimes C

black hole spacetimes B

non-critical asymptotically

extremal black holes
black hole formation threshold

critical asymptotically

extremal black holes
critical naked

singularities

non-critical naked singularities

(not necesssarily codim-one)

critical star-like solutions

interpolating families

Figure 1.9: A cartoon picture of the conjectured structure of the black hole formation threshold in
moduli space. The dashed red line represents the black hole formation threshold which is crossed
by three interpolating families of data. On the threshold we have highlighted three distinct regimes
of critical collapse: naked singularities, star-like solutions, and asymptotically extremal black holes.
These thick black lines represent codimension-one submanifolds. Near the critical extremal black
hole threshold, the structure is represented in more detail by Fig. 1.7. The figure also schemati-
cally depicts that not all extremal black holes are critical—there are codimension-one submanifolds
consisting of asympotically extremal black holes which do not like in the closure of C, such as
those with trapped surfaces far behind the horizon. When crossing such a hypersurface in moduli
space, one might be subjected to the discontinuities of Theorem 1.2.23. Furthermore, there might
be non-critical naked singularities, but there is no a priori reason to believe that these constitute
codimension-one submanifolds.

1.2.8 The conjectural picture of moduli space

We conclude this introduction with a conjectural picture of the qualitative structure of the black hole

formation threshold and related phenomena. Refer to Fig. 1.9. The reader is warned that Fig. 1.9

is to be taken with a large grain of salt—the author has taken some artistic liberties in representing

the relative sizes, locations, number of connected components, and shapes of the highlighted areas.

Not every part of this picture will be present for every model, of course. For the spherically sym-

metric scalar field model, we have already remarked that extremal critical collapse cannot happen

(Remark 1.2.8). It is not known (or even suggested numerically) whether naked singularities occur in

spherically symmetric Einstein–Vlasov models. Therefore, while we have proved in this dissertation

that interpolating families exhibiting extremal critical collapse do occur for the spherically symmet-

ric Einstein–Maxwell–Vlasov model, we do not yet have evidence for whether Fig. 1.9 accurately

reflects the rest of the moduli space. However, Fig. 1.9 does seem to be a reasonable conjectural

representation for the spherically symmetric Einstein–Maxwell–charged Kein–Gordon model or the
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Einstein–Maxwell–Vlasov system outside of symmetry.

1.3 Outline of the contents of Part I

Chapter 2: In this chapter, we set up the Einstein–Maxwell-charged scalar field and Einstein–

Maxwell–Vlasov systems in spherical symmetry. In Section 2.1, we lay the foundations for the

study of spherically symmetric charged spacetimes and electromagnetic geodesics. In Section 2.2 we

define the spherically symmetric Einstein–Maxwell-charged scalar field system and in Section 2.3

the spherically symmetric Einstein–Maxwell–Vlasov system. In Section 2.4, we recall Kommemi’s a

priori characterization of the spacetime boundary which is valid for both of these models. Finally,

in Section 2.5 we show that there are no nonspherically symmetric trapped or antitrapped surfaces

in a spacetime if there are no spherically symmetric trapped or antitrapped surfaces.

Chapter 3: In this chapter, we study the characteristic intial value problem for the spherically

symmetric Einstein–Maxwell-charged scalar field and Einstein–Maxwell–Vlasov systems. We handle

the case of a charged scalar field in Section 3.1 and charged Vlasov in Section 3.2. In Section 3.2,

we also prove the generalized extension principle for the charged Vlasov model and set up the

spacelike/characteristic initial value problem which will be utilized in the construction of extremal

critical collapse in Chapter 8. Finally, in Section 3.3 we give a detailed proof of local well-posedness

for Einstein–Maxwell–Vlasov.

Chapter 4: In this chapter, we give an overview of the characteristic gluing method and appli-

cations to black hole formation. After providing a general outline of the problem in Section 4.1,

we explain Aretakis’ work on characteristic gluing for the linear wave equation in Section 4.2. In

Section 4.3, we recall Aretakis, Czimek, and Rodnianski’s work on characteristic gluing for the Ein-

stein vacuum equations near Minkowski space. In Section 4.4, we explain our event horizon gluing

result for the spherically symmetric charged scalar field model and give an outline of the proof. In

Section 4.5, we explain our event horizon gluing result for slowly rotating Kerr in vacuum. Finally,

in Section 4.6 we give several additional applications of our characteristic gluing methods.

Chapter 5: In this chapter, we prove characteristic gluing results in the spherically symmetric

charged scalar field model and disprove the third law of black hole thermodynamics for this model.

We give a precise definition of sphere data, cone data, and characteristic gluing in Section 5.1

and Section 5.2 and define the reference sphere data in Minkowski, Schwarzschild, and Reissner–
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Nordström in Section 5.3. In Section 5.4, we give the precise statements of our gluing theorems,

which are then proved in Section 5.5. In Section 5.6, we construct the glued spacetimes and disprove

the third law. Finally, in the appendix Section 5.A we show that there is no local mechanism that

forces an extremal Killing horizon to not have trapped surfaces behind it (by constructing an explicit

example).

Chapter 6: In this chapter, we prove characteristic gluing of Minkowski space to Schwarzschild

and very slowly rotating Kerr in vacuum. We recall the setup of the Einstein vacuum equations in

double null gauge in Section 6.1 and Section 6.2. In Section 6.3 we define sphere data outside of

symmetry and define the reference Minkowski, Schwarzschild, and Kerr sphere data in Section 6.4. In

Section 6.5, we recall the near-Minkowski obstruction free gluing of Czimek and Rodnianski [CR22].

In Section 6.6, we prove our vacuum gluing results and then construct the spacetimes in Section 6.7.

Chapter 7: Before turning to the proof of extremal critical collapse in the Einstein–Maxwell–

Vlasov model in Chapter 8, we show in this chapter that a singular toy model—Ori’s bouncing

charged null dust model—exhibits extremal critical collapse. We first recall the definition of the

model in Section 7.1. We then introduce a radial parametrization of bouncing charged null dust

spacetimes in Section 7.2 in which we teleologically prescribe a regular, spacelike, totally geodesic

bounce hypersurface. These spacetimes consist of an explicit ingoing charged Vaidya metric pasted

along the radially parametrized bounce hypersurface to an outgoing charged Vaidya metric through

a physically motivated surgery procedure. In Sections 7.3 and 7.4, we use the radial parametrization

to construct new examples of bouncing charged null dust spacetimes. In Section 7.3, we show that

Ori’s model exhibits extremal critical collapse (Theorem 7.3.2) and in Section 7.4, we show that the

third law of black hole thermodynamics is false in Ori’s model (Theorem 7.4.1). We then discuss the

fundamental flaws of Ori’s model in Section 7.5: the ill-posedness across the bounce hypersurface, the

singular nature of the solutions, and the ill-posedness near the center. In Section 7.6, we conclude

the chapter with the formal radial charged null dust system in double null gauge which will be

important for the setup of our initial data in Chapter 8.

Chapter 8: This chapter is devoted to the construction of extremal critical collapse for the

Einstein–Maxwell–Vlasov system, Theorem 1.2.1. The proof relies crucially on a very specific tele-

ological choice of Cauchy data which aims at desingularizing the dust examples of extremal critical

collapse in Theorem 7.3.2, globally in time. In Section 8.1, we give a detailed guide to the proof of

Theorem 1.2.1. In Section 8.2, we define the hierarchy of beam parameters and state the key ingre-
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dient in the proof of Theorem 1.2.1: the existence and global structure of outgoing charged Vlasov

beams (Proposition 8.2.3). These beams arise from data posed on a Cauchy hypersurface which is

analogous to the “bounce hypersurface” associated to Ori’s model in Chapter 7. In Section 8.3, we

solve the constraint equations and prove estimates for the solution along the initial data hypersur-

face. Section 8.4 is devoted to estimates for the “near region” establishing the bouncing character of

our Vlasov beams. To overcome certain difficulties associated with low momenta, our construction

features an “auxiliary beam” which is treated in Section 8.5. Section 8.6 is concerned with the “far

region” and in Section 8.7 we prove the sharp dispersive estimates in the case of massive particles.

In Section 8.8 we conclude the proof of Proposition 8.2.3. This proposition is then used to prove

Theorem 1.2.1 in Section 8.9. Finally, in Section 8.10 we show that in a certain hydrodynamic limit

of our parameters, the family of solutions constructed in Theorem 1.2.1 converge in a weak* sense to

the family constructed in the charged null dust model in Chapter 7. This result rigorously justifies

Ori’s bouncing charged null dust construction from [Ori91]. Section 8.11. In this final section, we

disprove the third law of black hole thermodynamics for the Einstein–Maxwell–Vlasov model (The-

orem 1.2.22) in Section 8.11.1. Section 8.11.2 is concerned with the phenomenon of event horizon

jumping at extremality. We first show in Proposition 8.11.4 that for a general class of (so-called

weakly tame) spherically symmetric Einstein-matter systems the retarded time coordinate of the

event horizon is lower semicontinuous as a function of initial data. Secondly, we show by example

(Theorem 1.2.23) that event horizon jumping can occur in the Einstein–Maxwell–Vlasov system for

extremal horizons, which proves the sharpness of semicontinuity in Proposition 8.11.4.
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Chapter 2

Spherically symmetric charged

matter models

In this chapter, we introduce basic definitions and properties of Einstein-matter systems and elec-

tromagnetic fields in spherical symmetry and formulate the Einstein–Maxwell-charged scalar field

and Einstein–Maxwell–Vlasov models.

2.1 The geometry of spherically symmetric charged space-

times

2.1.1 Double null gauge

Let (M, g) be a smooth, connected, time-oriented, four-dimensional Lorentzian manifold. We say

that (M, g) is spherically symmetric with (possibly empty) center of symmetry Γ ⊂ M if M \ Γ

splits diffeomorphically as Q̊ × S2 with metric

g = gQ + r2γ,

where (Q, gQ), Q = Q̊ ∪ Γ, is a (1+1)-dimensional Lorentzian spacetime with boundary Γ (possibly

empty), γ
.
= dϑ2+sin2 ϑ dφ2 is the round metric on the unit sphere, and r is a nonnegative function

on Q which can be geometrically interpreted as the area-radius of the orbits of the isometric SO(3)

action on (M, g). In a mild abuse of notation, we denote by Γ both the center of symmetry in M

and its projection to Q. Moreover, if Γ is non-empty, we assume that the SO(3) action fixes Γ and
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that Γ consists of one timelike geodesic along which r = 0. We further assume that (Q, gQ) admits

a global double-null coordinate system (u, v) such that the metric g takes the form

g = −Ω2 dudv + r2γ (2.1.1)

for a positive function Ω2 .
= −2gQ(∂u, ∂v) on Q and such that ∂u and ∂v are future-directed. Our

conventions are so that u = t − r and v = t + r give a double null coordinate system on (3 + 1)-

dimensional Minkowski space, with r = 1
2 (v−u) and Ω2 ≡ 1. We will also use the notation /g

.
= r2γ.

The constant u and v curves are null in (Q, gQ) and correspond to null hypersurfaces “upstairs” in

the full spacetime (M, g). We further assume that along the center Γ, the coordinate v is outgoing

and u is ingoing, i.e., ∂vr|Γ > 0, ∂ur|Γ < 0. We will often refer interchangeably to (M, g) and the

reduced spacetime (Q, r,Ω2).

Recall the Hawking mass m : M → R, which is defined by

m
.
=
r

2
(1− g(∇r,∇r))

and can be viewed as a function on Q according to

m =
r

2

(
1 +

4∂ur∂vr

Ω2

)
. (2.1.2)

We will frequently use the formula

Ω2 =
4(−∂ur)∂vr

1− 2m
r

(2.1.3)

to estimate Ω2 when 1− 2m
r > 0.

The isometric action of SO(3) on (M, g) extends to the tangent bundle TM as follows: Let

ϱ : SO(3) → Diff(M) be the representation of SO(3) given by the spherically symmetric ansatz, so

that the group action is given by

R · x .
= ϱ(R)(x)

for R ∈ SO(3) and x ∈ M. For (x, p) ∈ TM, we define

R · (x, p) .= (ϱ(R)(x), ϱ(R)∗p), (2.1.4)

where of course ϱ(R)∗p lies in Tϱ(R)(x)M.

Finally, we note that the double null coordinates (u, v) above are not uniquely defined and for
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any strictly increasing smooth functions U, V : R → R, we obtain new global double null coordinates

(ũ, ṽ) = (U(u), V (v)) such that g = −Ω̃2 dũ dṽ + /g, where Ω̃2(ũ, ṽ) = (U ′V ′)−1Ω2(U−1(ũ), V −1(ṽ))

and r(ũ, ṽ) = r(U−1(ũ), V −1(ṽ)).

2.1.2 Canonical coordinates on the tangent bundle

Given local coordinates (ϑ1, ϑ2) on a (proper open subset of) S2, the quadruple (u, v, ϑ1, ϑ2) defines

a local coordinate system on the spherically symmetric spacetime (M, g). Given p ∈ TxM, we may

expand

p = pu∂u|x + pv∂v|x + p1∂ϑ1 |x + p2∂ϑ2 |x.

The octuple (u, v, ϑ1, ϑ2, pu, pv, p1, p2) defines a local coordinate system on TM, and is called a

canonical coordinate system on TM dual to (u, v, ϑ1, ϑ2). One is to think of p as the “momentum

coordinate” and x as the “position coordinate.” The tangent bundle of Q trivializes globally as

Q× R2, with coordinates pu and pv on the second factor. We let

π : TQ → Q

denote the canonical projection.

On a spherically symmetric spacetime, we define the angular momentum function by

ℓ : TM → [0,∞)

(x, p) 7→
√
r2/gABpApB ,

where summation over A,B ∈ {1, 2} is implied. This function is independent of the angular coordi-

nate system chosen and is itself spherically symmetric as a function on TM.

Given a double null gauge (u, v), it will be convenient to define a “coordinate time” function

τ
.
= 1

2 (v + u).

Associated to this time function is the τ -momentum coordinate

pτ
.
= 1

2 (p
v + pu).
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2.1.3 The Einstein equations and helpful identities in double null gauge

A tensor field on a spherically symmetric spacetime is said to be spherically symmetric if it is itself

invariant under the SO(3)-action of the spacetime. If (M, g) is a spherically symmetric spacetime

satisfying the Einstein equations (1.0.1), then the energy-momentum tensor T is a spherically sym-

metric, symmetric (0, 2)-tensor field. We may decompose

T = Tuu du
2 +Tuv(du⊗ dv + dv ⊗ du) +Tvv dv

2 + S/g,

where

S
.
=

1

2
/g
ABTAB =

1

2
trg T+

2

Ω2
Tuv.

It will be convenient to work with the contravariant energy momentum tensor, which takes the form

T♯♯ = Tuu∂u ⊗ ∂u +Tuv(∂u ⊗ ∂v + ∂v ⊗ ∂u) +Tvv∂v ⊗ ∂v + S/g
−1,

where

Tuu = 1
4Ω

4Tvv, Tuv =
1
4Ω

4Tuv, Tvv =
1
4Ω

4Tuu.

The Christoffel symbols involving null coordinates are given by

Γuuu = ∂ulog Ω
2, Γvvv = ∂vlog Ω

2,

ΓuAB =
2∂vr

Ω2r
/gAB , ΓvAB =

2∂ur

Ω2r
/gAB ,

ΓABu =
∂ur

r
δAB , ΓABv =

∂vr

r
δAB ,

and the totally spatial Christoffel symbols ΓABC are the same as for γ in the coordinates (ϑ1, ϑ2).

For a spherically symmetric metric g written in double null gauge (2.1.1), the Einstein equations

(1.0.1) separate into the wave equations for the geometry,

∂u∂vr = − Ω2

2r2
m+ 1

4rΩ
4Tuv, (2.1.5)

∂u∂vlog Ω
2 =

Ω2m

r3
− 1

2Ω
4Tuv − Ω2S, (2.1.6)
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and Raychaudhuri’s equations

∂u

(
∂ur

Ω2

)
= − 1

4rΩ
2Tvv, (2.1.7)

∂v

(
∂vr

Ω2

)
= − 1

4rΩ
2Tuu. (2.1.8)

The Hawking mass (2.1.2) satisfies the equations

∂um = 1
2r

2Ω2(Tuv∂ur −Tvv∂vr), (2.1.9)

∂vm = 1
2r

2Ω2(Tuv∂vr −Tuu∂ur). (2.1.10)

If X is a spherically symmetric vector field, then

X = Xu∂u +Xv∂v

and X satisfies divgX = 0 if and only if

∂u(r
2Ω2Xu) + ∂v(r

2Ω2Xv) = 0. (2.1.11)

The contracted Bianchi identity,

divg T = 0,

which follows from the Einstein equations (1.0.1), implies the following pair of identities:

∂u(r
2Ω4Tuu) + ∂v(r

2Ω4Tuv) = ∂vlog Ω
2 r2Ω4Tuv − 4r∂vrΩ

2S, (2.1.12)

∂v(r
2Ω4Tvv) + ∂u(r

2Ω4Tuv) = ∂ulog Ω
2 r2Ω4Tuv − 4r∂urΩ

2S. (2.1.13)

If α is a spherically symmetric two-form which annihilates TS2, then it may be written as

α = −Ω2f

2r2
du ∧ dv,

where f : Q → R is a smooth function. We then have

∇µαuµ =
∂uf

r2
, ∇µαvµ = −∂vf

r2
. (2.1.14)
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2.1.4 Spherically symmetric electromagnetic fields

We will additionally assume that our spherically symmetric spacetime (M, g) carries a spherically

symmetric electromagnetic field with no magnetic charge. The electromagnetic field is represented

by a closed two-form F , which takes the Coulomb form

F = −Ω2Q

2r2
du ∧ dv, (2.1.15)

for a function Q : Q → R. The number Q(u, v) is the total electric charge enclosed in the (u, v)-

symmetry sphere Su,v ⊂ M, which can be seen from the gauge-invariant formula

Q(u, v) =
1

4π

∫
Su,v

⋆F, (2.1.16)

where ⋆ is the Hodge star operator and we orient M by du ∧ dv ∧ dϑ ∧ dφ.

The electromagnetic energy momentum tensor is defined by

TEM
µν

.
= Fµ

αFνα − 1
4gµνFαβF

αβ , (2.1.17)

and relative to a double null gauge is given by

TEM =
Ω2Q2

4r4
(du⊗ dv + dv ⊗ du) +

Q2

2r4
/g

in spherical symmetry. If F satisfies Maxwell’s equation

∇αFµα = Jµ

for a charge current J , then the divergence of the electromagnetic energy momentum tensor satisfies

∇µTEM
µν = −FναJα. (2.1.18)

In spherical symmetry, Maxwell’s equations read (see (2.1.14))

∂uQ = − 1
2r

2Ω2Jv, ∂vQ = 1
2r

2Ω2Ju.
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Finally, we will utilize the renormalized Hawking mass

ϖ
.
= m+

Q2

2r
(2.1.19)

to account for the contribution of the electromagnetic field to the Hawking mass m.

2.1.5 The Lorentz force

We next briefly recall the Lorentz force law for the motion of a charged particle. Let (M, g, F ) be

a charged spacetime, where F is a closed 2-form representing the electromagnetic field. If γ is the

worldline of a particle of mass m > 0 and charge e ∈ R, then it satisfies the Lorentz force equation

m
Duµ

dτ
= eFµνu

ν ,

where τ is proper time and u
.
= dγ/dτ (so that g(u, u) = −1). Defining the momentum of γ by

p
.
= mu and rescaling proper time to s = m−1τ (so that p = dγ/ds), we can rewrite the Lorentz

force equation as

Dpµ

ds
= eFµνp

ν . (2.1.20)

This equation, which we call the electromagnetic geodesic equation, makes sense for null curves as

well, and can be taken as the equation of motion for all charged particles [Ori91].

Remark 2.1.1. Because the Lorentz force equation (2.1.20) is not quadratic in p, s is not an affine

parameter, which has fundamental repercussions for the dynamics of the electromagnetic geodesic

flow. In particular, trajectories of the Lorentz force with parallel, but not equal, initial velocities

will in general be distinct, even up to reparametrization.

The electromagnetic geodesic flow has two fundamental conserved quantities which will feature

prominently in this work.

Lemma 2.1.2. Let γ : I → M be a causal electromagnetic geodesic in a spherically symmetric

charged spacetime, where I ⊂ R is an interval. Let p = dγ/ds. Then the rest mass

m[γ]
.
=
√
−gγ(p, p)

and the angular momentum

ℓ[γ]
.
= ℓ(γ, p)
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are conserved quantities along γ.

Proof. To show that m is constant, we compute

d

ds
g(p, p) = 2g

(
Dp

ds
, p

)
= 2eF (p, p) = 0,

where the final equality follows from the antisymmetry of F .

Since ℓ is independent of the coordinates chosen on S2, we may assume that (ϑ1, ϑ2) are normal

coordinates on S2 at the point (γ1(s0), γ
2(s0)). To show that ℓ is constant, we then compute

d

ds
r4γABp

ApB
∣∣∣∣
s=s0

= 4r3
dr

ds
γAB γ̇

Aγ̇B − 2r4γAB
(
−2ΓACuγ̇

u − 2ΓACvγ̇
v
)
γ̇B γ̇C = 0,

where we used the formulas for the Christoffel symbols in spherical symmetry from Section 2.1.3.

For an electromagnetic geodesic γ(s) with angular momentum ℓ = ℓ[γ] and mass m = m[γ], the

Lorentz force law can be written as

d

ds
pu = −∂ulog Ω2(pu)2 − 2∂vr

rΩ2

ℓ2

r2
− e

Q

r2
pu, (2.1.21)

d

ds
pv = −∂vlog Ω2(pv)2 − 2∂ur

rΩ2

ℓ2

r2
+ e

Q

r2
pv, (2.1.22)

Ω2pupv =
ℓ2

r2
+m2, (2.1.23)

where pu
.
= dγu/ds, pv

.
= dγv/ds, and the third equation, known as the mass shell relation, is

directly equivalent to the definition of mass and angular momentum. In this work, it will not be

necessary to follow the angular position of the electromagnetic geodesics in the (3 + 1)-dimensional

spacetime. It is very convenient to rewrite (2.1.21) and (2.1.22) as

d

ds
(Ω2pu) =

(
∂vlog Ω

2 − 2∂vr

r

)
ℓ2

r2
− e

Q

r2
(Ω2pu), (2.1.24)

d

ds
(Ω2pv) =

(
∂ulog Ω

2 − 2∂ur

r

)
ℓ2

r2
+ e

Q

r2
(Ω2pv). (2.1.25)
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2.2 The Einstein–Maxwell-charged scalar field system

In this section we introduce the spherically symmetric Einstein–Maxwell-charged scalar field (EM-

CSF) system, which will feature in Chapter 5. The Einstein–Maxwell-charged scalar field system

Rµν(g)− 1
2R(g)gµν = 2

(
TEM
µν + TCSF

µν

)
,

∇µFµν = 2e Im(ϕDνϕ),

gµνDµDνϕ = 0,

is invariant with respect to the following gauge transformations

ϕ 7→ e−ieχϕ, A 7→ A+ dχ (2.2.1)

for real-valued functions χ = χ(u, v), where A = Audu + Avdv is the potential 1-form and e is

a dimensionful coupling constant representing the charge of the scalar field. More abstractly, the

Einstein–Maxwell-scalar field system is a U(1)-gauge theory and we refer to [Kom13] for more details.

In order to break the symmetry we will use the global electromagnetic gauge

Av = 0 (2.2.2)

when discussing this model.

Definition 2.2.1. The spherically symmetric Einstein–Maxwell-charged scalar field model with

coupling constant e ∈ R consists of a spherically symmetric charged spacetime (Q, r,Ω2, Q) and a

smooth complex-valued scalar field ϕ : Q → C. The system satisfies the wave equations

∂u∂vϕ = −∂uϕ∂vr
r

− ∂ur∂vϕ

r
+
ieΩ2Q

4r2
ϕ− ieAu

∂vr

r
ϕ− ieAu∂vϕ, (2.2.3)

∂u∂vr = −Ω2

4r
− ∂ur∂vr

r
+

Ω2

4r3
Q2, (2.2.4)

∂u∂v log(Ω
2) =

Ω2

2r2
+ 2

∂ur∂vr

r2
− Ω2

r4
Q2 − 2Re(Duϕ∂vϕ), (2.2.5)

the Raychaudhuri equations,

∂u

(
∂ur

Ω2

)
= − r

Ω2
|Duϕ|2, (2.2.6)

∂v

(
∂vr

Ω2

)
= − r

Ω2
|∂vϕ|2, (2.2.7)
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and the Maxwell equations,

∂uQ = −er2Im(ϕDuϕ), (2.2.8)

∂vQ = er2Im(ϕ∂vϕ), (2.2.9)

∂vAu = −QΩ2

2r2
(2.2.10)

From these equations we easily derive

∂v(r∂ur) = −Ω2

4

(
1− Q2

r2

)
, (2.2.11)

∂v∂u(rϕ) = −Ω2m

2r2
ϕ+ i

eΩ2Q

4r
ϕ+

Ω2Q2

4r3
ϕ− ieAu∂v(rϕ), (2.2.12)

as well as

∂vm = 2Ω−2r2(−∂ur)|∂vϕ|2 +
1

2

Q2

r2
∂vr, (2.2.13)

which will be useful later.

2.3 The Einstein–Maxwell–Vlasov system

In this section, we introduce the main matter model considered in Chapter 8, the Einstein–Maxwell–

Vlasov system. This model describes an ensemble of collisionless self-gravitating charged particles

which are either massive or massless. We begin by defining the general system outside of sym-

metry in Section 2.3.1 and then specialize to the spherically symmetric case in Section 2.3.2. In

Sections 3.2.1 and 3.2.2, we formulate the fundamental local theory for this model, local existence

and a robust continuation criterion known as the generalized extension principle. Finally, in Sec-

tion 3.2.3, we define a procedure for solving the constraint equations for the spherically symmetric

Einstein–Maxwell–Vlasov system.

2.3.1 The general system

2.3.1.1 The volume form on the mass shell

Let (M4, g) be a spacetime. For x ∈ M and m ≥ 0, we define the (future) mass shell at x by

Pm
x

.
= {p ∈ TxM : p is future directed and gx(p, p) = −m2, p ̸= 0}
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and the associated smooth fiber bundle

Pm .
=
⋃
x∈M

Pm
x ,

with projection maps πm : Pm → M.

Fix x ∈ M and let (xµ) be normal coordinates at x so that

gx = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

Let pµ be dual coordinates to xµ on TM, defined by pµ = dxµ(p) for p ∈ TxM. For m ≥ 0, the

restrictions of p1, p2, p3 to Pm
x , denoted by p̄1, p̄2, p̄3, define a global coordinate system on Pm

x , with

p0 determined by

p0 =
√
m2 + |p̄1|2 + |p̄2|2 + |p̄3|2. (2.3.1)

Definition 2.3.1. Let m ≥ 0 and x ∈ M. The canonical volume form µm
x ∈ Ω3(Pm

x ) is defined by

µm
x = (p0)−1 dp̄1 ∧ dp̄2 ∧ dp̄3,

in normal coordinates at x, where p0 is given by (2.3.1).

One can show that this form is independent of the choice of normal coordinates. When m > 0,

Pm
x is a spacelike hypersurface in TxM if it is equipped with the Lorentzian metric gx. In this

case, µm
x = m−1ωm

x , where ω
m
x is the induced Riemannian volume form on Pm

x . The factor of m−1

is needed to account for the degeneration of ωm
x as m → 0, since P 0

x is a null hypersurface. For

more information about the volume form on the mass shell, see [SW77; Rin13; SZ14]. The canonical

volume form is uniquely characterized by the following property, which can be found in [SW77,

Corollary 5.6.2].

Lemma 2.3.2. The form µm
x defined above does not depend on the choice of local coordinates on

M. Moreover, it is uniquely characterized by the following property. Let H(p)
.
= 1

2gx(p, p). If α is

a 3-form in TxM defined along Pm
x such that

dH ∧ α =
√

−det g(x) dp0 ∧ dp1 ∧ dp2 ∧ dp3,

then i∗mα = µm
x , where im : Pm

x → TxM denotes the inclusion map.

We denote the integration measure associated to µm
x by dµm

x . A distribution function is a non-
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negative function f ∈ C∞(Pm) which decays sufficiently quickly on the fibers so that the relevant

integrals are well-defined and are smooth functions of x. Given a distribution function f we may

now define the number current N and the energy momentum tensor T of f by

Nµ(x)
.
=

∫
Pm

x

pµf(x, p) dµm
x , Tµν(x)

.
=

∫
Pm

x

pµpνf(x, p) dµm
x . (2.3.2)

These are readily verified to be tensor fields on M. Taking divergences, we have [Rin13, Appendix

D]

∇µN
µ =

∫
Pm

x

X0(f) dµ
m
x , ∇µT

µν =

∫
Pm

x

pνX0(f) dµ
m
x , (2.3.3)

where X0
.
= pµ∂xµ − Γµνρp

νpρ∂pµ ∈ Γ(TTM) is the geodesic spray vector field.

2.3.1.2 The equations

Definition 2.3.3. The Einstein–Maxwell–Vlasov system for particles of mass m ∈ R≥0 and fun-

damental charge e ∈ R \ {0} consists of a charged spacetime (M, g, F ) and a distribution function

f : Pm → [0,∞) satisfying the following equations:

Rµν − 1
2Rgµν = 2

(
TEM
µν + Tµν

)
, (2.3.4)

∇αFµα = eNµ, (2.3.5)

Xf = 0, (2.3.6)

where TEM is the electromagnetic energy momentum tensor defined in (2.1.17), Tµν and Nµ are the

Vlasov energy-momentum tensor and number current, respectively, defined in (2.3.2), and

X
.
= pµ

∂

∂xµ
−
(
Γµαβp

αpβ − eFµαp
α
) ∂

∂pµ
∈ Γ(TTM) (2.3.7)

is the electromagnetic geodesic spray vector field.

The vector field X is easily seen to be tangent to the mass shell Pm, which means that the Vlasov

equation (2.3.6) is indeed a transport equation on Pm. The vector field Fµαp
α∂pµ is itself tangent

to Pm and we have the integration by parts formulas

∫
Pm

x

Fµαp
α∂pµf dµ

m
x = 0,

∫
Pm

x

Fµαp
νpα∂pµf dµ

m
x = −F ναNα,

which are easily verified in normal coordinates. Combined with (2.3.3) and the transport equation
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(2.3.6), we obtain the fundamental conservation laws

∇µN
µ = 0, (2.3.8)

∇µTµν = eNαFνα. (2.3.9)

We now see that the Einstein–Maxwell–Vlasov system is consistent: (2.3.8) implies that Maxwell’s

equation (2.3.5) is consistent with antisymmetry of F and (2.3.9) implies (using also (2.1.18)) the

contracted Bianchi identity

∇µ
(
TEM
µν + Tµν

)
= 0. (2.3.10)

for the total energy-momentum tensor of the system.

2.3.1.3 Relation to the relativistic Maxwell–Vlasov system

The system (1.2.1)–(1.2.3) includes gravity and thus generalizes the special relativistic Maxwell–

Vlasov system which is typically written in the form1 (cf. [Gla96])

∂tfK + v̂ · ∂xfK + e(E + v̂ ×B) · ∂vfK = 0,

∂tE −∇×B = −jK, ∂tB +∇× E = 0,

∇ · E = ρK, ∇ ·B = 0,

where fK(t, x, v) ≥ 0 is the distribution function, (t, x, v) ∈ R×R3 ×R3, E is the electric field, B is

the magnetic field, v̂
.
= (m2 + |v|2)−1/2v is the “relativistic velocity” and has modulus smaller than

unity, and

ρK(t, x)
.
= e

∫
R3

f(t, x, v) dv, jK(t, x)
.
= e

∫
R3

v̂f(t, x, v) dv.

This system is equivalent to the covariant equations (2.3.5) and (2.3.6) in Minkowski space under

the identifications (
√
m2 + |v|2, v) = p, fK(t, x, v) = f(t, x,

√
m2 + |v|2, v), Ei = Fi0, Bi =

1
2εi

jkFjk,

ρK = eN0, and (jK)
i = eN i.

1The subscript K stands for “kinetic theory literature.”
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2.3.2 Spherically symmetric definitions and equations

Let (Q, r,Ω2) be the (1 + 1)-dimensional reduced spacetime associated to a spherically symmetric

spacetime. For m ≥ 0, we define the reduced mass shell by

Pm
red

.
=
{
(u, v, pu, pv) ∈ TQ : Ω2(u, v)pupv ≥ m2, pτ > 0

}
, (2.3.11)

where the second condition in the definition forbids Ω2pupv = 0 in the m = 0 case. The angular

momentum function from Section 2.1.2 can be defined on the reduced mass shell by

ℓ : Pm
red → R≥0

(u, v, pu, pv) 7→ r
√
Ω2pupv −m2.

Note that ℓ > 0 on P 0
red. The definition of ℓ can be rewritten as the fundamental mass shell relation

Ω2pupv =
ℓ2

r2
+m2. (2.3.12)

Definition 2.3.4. A spherically symmetric distribution function of massive (if m > 0) or massless

(if m = 0) particles is a smooth function

f : Pm
red → R≥0.

We say that f has locally compact support in p if for every compact set K ⊂ Q there exists a

compact set K ′ ⊂ R2 such that spt(f) ∩ Pm
red|K ⊂ K × K ′. We say that f has locally positive

angular momentum if for every K ⊂ Q compact there exists a constant cK > 0 such that ℓ ≥ cK on

spt(f) ∩ Pm
red|K .

In order to define appropriate moments of a distribution function f on a spherically symmetric

spacetime (Q, r,Ω2), we require that f decays in the momentum variables pu and pv. For σ > 0,

k ≥ 0 an integer, and K ⊂ Q compact, we define the norm

∥f∥Ck
σ(P

m
red|K)

.
=

∑
0≤i1+i2≤k

sup
Pm

red|K
⟨pτ ⟩σ+i2 |∂i1x ∂i2p f |, (2.3.13)

where ∂i1x ∂
i2
p f ranges over all expressions involving i1 derivatives in the (u, v)-variables and i2 deriva-

tives in the (pu, pv)-variables. If the norm (2.3.13) is finite for all compact sets K ⊂ Q, we say that
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f ∈ C∞
σ,loc(P

m
red). If f has locally compact support in p, then it lies in C∞

σ,loc(P
m
red).

Remark 2.3.5. Our well posedness theory for the Einstein–Maxwell–Vlasov system requires that

p-derivatives of f decay faster, which is the reason for the i2 weight in (2.3.13).

Given a spherically symmetric spacetime (Q, r,Ω2) with distribution function f , we define the

Vlasov number current by

Nu(u, v)
.
= πΩ2

∫
Ω2pupv≥m2

puf(u, v, pu, pv) dpudpv, (2.3.14)

Nv(u, v)
.
= πΩ2

∫
Ω2pupv≥m2

pvf(u, v, pu, pv) dpudpv (2.3.15)

and the Vlasov energy momentum tensor by

Tuu(u, v)
.
= πΩ2

∫
Ω2pupv≥m2

(pu)2f(u, v, pu, pv) dpudpv, (2.3.16)

Tuv(u, v)
.
= πΩ2

∫
Ω2pupv≥m2

pupvf(u, v, pu, pv) dpudpv, (2.3.17)

T vv(u, v)
.
= πΩ2

∫
Ω2pupv≥m2

(pv)2f(u, v, pu, pv) dpudpv, (2.3.18)

S(u, v)
.
=
π

2
Ω2

∫
Ω2pupv≥m2

(Ω2pupv −m2)f(u, v, pu, pv) dpudpv ≤ Ω2

2
Tuv(u, v). (2.3.19)

If f ∈ C∞
σ,loc(P

m
red) with σ > 4, then these moments are well defined smooth functions of u and v.

Definition 2.3.6. The spherically symmetric Einstein–Maxwell–Vlasov model for particles of mass

m ∈ R≥0 and fundamental charge e ∈ R \ {0} consists of a smooth spherically symmetric charged

spacetime (Q, r,Ω2, Q) and a smooth distribution function f ∈ C∞
σ,loc(P

m
red) for a decay rate σ > 4

fixed. When m = 0, we require that f also has locally positive angular momentum. To emphasize

that the distribution functions we consider have these regularity properties in p, we say that such a

solution has admissible momentum.

The system satisfies the wave equations

∂u∂vr = − Ω2

2r2

(
m− Q2

2r

)
+ 1

4rΩ
4Tuv, (2.3.20)

∂u∂vlog Ω
2 =

Ω2m

r3
− Ω2Q2

r4
− 1

2Ω
4Tuv − Ω2S, (2.3.21)
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the Raychaudhuri equations

∂u

(
∂ur

Ω2

)
= − 1

4rΩ
2T vv, (2.3.22)

∂v

(
∂vr

Ω2

)
= − 1

4rΩ
2Tuu, (2.3.23)

and the Maxwell equations

∂uQ = − 1
2er

2Ω2Nv, (2.3.24)

∂vQ = + 1
2er

2Ω2Nu, (2.3.25)

where Nu, Nv, Tuu, Tuv, T vv, and S are defined by equations (2.3.14)–(2.3.19). Finally, f satisfies

the spherically symmetric Vlasov equation

Xf = 0, (2.3.26)

where X ∈ Γ(TPm
red) is the reduced electromagnetic geodesic spray

X
.
= pu∂u + pv∂v −

(
∂ulog Ω

2(pu)2 +
2∂vr

rΩ2
(Ω2pupv −m2) + e

Q

r2
pu
)
∂pu

−
(
∂vlog Ω

2(pv)2 +
2∂ur

rΩ2
(Ω2pupv −m2)− e

Q

r2
pv
)
∂pv . (2.3.27)

Remark 2.3.7. Since f ≥ 0 for a solution of the Einstein–Maxwell–Vlasov system, the components

Nu and Nv of the number current are nonnegative. It follows from the Maxwell equations (2.3.24)

and (2.3.25) that eQ is decreasing in u and increasing in v, unconditionally. This monotonicity

property is a fundamental feature of the spherically symmetric Einstein–Maxwell–Vlasov system

and will be exploited several times in this work.

Remark 2.3.8. Both the electromagnetic energy-momentum tensor TEM and the Vlasov energy-

momentum tensor T of the Einstein–Maxwell–Vlasov system satisfy the dominant energy condition.

Remark 2.3.9. As an abuse of notation, we have denoted the spray (2.3.7) on TM and the spray

(2.3.27) on TQ by the same letter X. It will always be clear from the context which vector field we

are referring to. They are related by the pushforward along the natural projection map Pm → Pm
red.

For a solution of the Einstein–Maxwell–Vlasov system, the Hawking mass m satisfies the equa-

57



tions

∂um = 1
2r

2Ω2(Tuv∂ur − T vv∂vr) +
Q2

2r2
∂ur, (2.3.28)

∂vm = 1
2r

2Ω2(Tuv∂vr − Tuu∂ur) +
Q2

2r2
∂vr, (2.3.29)

which can be derived from (2.1.9) and (2.1.10). The modified Hawking mass ϖ can then be seen to

satisfy

∂uϖ = 1
2r

2Ω2(Tuv∂ur − T vv∂vr)− 1
2erΩ

2QNv, (2.3.30)

∂vϖ = 1
2r

2Ω2(Tuv∂vr − Tuu∂ur) +
1
2erΩ

2QNu. (2.3.31)

The particle current N satisfies the conservation law

∂u(r
2Ω2Nu) + ∂v(r

2Ω2Nv) = 0 (2.3.32)

by (2.1.11) and (2.3.8). Alternatively, it can be directly derived from the spherically symmetric

Vlasov equation, which we will do the proof of Proposition 3.2.3 in Section 3.3. Finally, for the

Einstein–Maxwell–Vlasov system, the Bianchi identities (2.1.12) and (2.1.13) read

∂u(r
2Ω4Tuu) + ∂v(r

2Ω4Tuv) = ∂vlog Ω
2 r2Ω4Tuv − 4r∂vrΩ

2S − eΩ4QNu, (2.3.33)

∂v(r
2Ω4T vv) + ∂u(r

2Ω4Tuv) = ∂ulog Ω
2 r2Ω4Tuv − 4r∂urΩ

2S + eΩ4QNv. (2.3.34)

Again, this follows either from (2.3.10) or directly from the spherically symmetric equations.

2.3.2.1 The spherically symmetric reduction

Proposition 2.3.10. Let (Q, r,Ω2, Q, fsph) be a solution of the spherically symmetric Einstein–

Maxwell–Vlasov system as defined by Definition 2.3.6. Then (M, g, F, f) solves the Einstein–
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Maxwell–Vlasov system if we lift the solution according to

M .
= Q× S2,

g
.
= −Ω2

2
(du⊗ dv + dv ⊗ du) + r2γ, (2.3.35)

F
.
= − Q

2r2
du ∧ dv, (2.3.36)

f(u, v, ϑ1, ϑ2, pu, pv, p1, p2)
.
= fsph(u, v, p

u, pv), (2.3.37)

where (ϑ1, ϑ2) is a local coordinate system on S2.

Note that f in (2.3.37) is SO(3)-invariant as a function on TM as defined in Section 2.1.1.

Proof. As the equations (2.3.20)–(2.3.25) are equivalent to the Einstein equations and Maxwell

equations, we must only check that f , defined by (2.3.37), satisfies Xf = 0, where X is given by

(2.3.7), and that the spherically symmetric formulas (2.3.14)–(2.3.19) appropriately reconstruct the

(3 + 1)-dimensional number current and energy-momentum tensor.

Let γ(s) be an electromagnetic geodesic. Then Xf = 0 at (γ(s0), γ̇(s0)) ∈ Pm is equivalent to

d

ds

∣∣∣∣
s=s0

f(γ(s), γ̇(s)) = 0. (2.3.38)

Using the chain rule

d

ds

∣∣∣∣
s=s0

fsph(γ
u(s), γv(s), pu(s), pv(s)) = pu∂ufsph + pv∂vfsph +

dpu

ds
∂pufsph +

dpv

ds
∂pvfsph,

the spherically symmetric Lorentz force equations (2.1.21) and (2.1.22), the mass shell relation

(2.1.23), and the spherically symmetric Vlasov equation (2.3.26), we see that (2.3.38) holds.

To compute the energy-momentum tensor in spherical symmetry, we use Lemma 2.3.2. Let

x ∈ M and take (ϑ1, ϑ2) to be local coordinates on S2 which are normal at the spherical component

of x, so that γAB = δAB . We have

dH = −Ω2

2
pvdpu − Ω2

2
pudpv + r2p1dp1 + r2p2dp2.

Therefore, if we define

α
.
= −r2(pv)−1dpv ∧ dp1 ∧ dp2,
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then

dH ∧ α = 1
2Ω

2r2 dpu ∧ dpv ∧ dp1 ∧ dp2.

Therefore, by Lemma 2.3.2,

dµm
x = r2(pv)−1 dpvdp1dp2

as measures on (0,∞)×R2
(p1,p2). The remaining momentum variable pu is obtained from pv, p1, and

p2 via the mass shell relation (2.3.12). If we set tanβ = p2/p1 and use that ℓ2 = r4((p1)2 + (p2)2),

then

dµm
x = r−2(pv)−1dpv ℓ dℓ dβ.

For any weight function w = w(pu, pv), we therefore have

∫
(0,∞)×R2

wf dµm
x = r−2

∫ 2π

0

∫ ∞

0

∫ ∞

0

w

(
ℓ2 +m2r2

r2Ω2pv
, pv
)
fsph

(
u, v,

ℓ2 +m2r2

r2Ω2pv
, pv
)
dpv

pv
ℓ dℓ dβ.

(2.3.39)

Integrating out β and applying the coordinate transformation (pv, ℓ) 7→ (pu, pv) reproduces the

formulas (2.3.14)–(2.3.19) for N and T .

Remark 2.3.11. Other works on the spherically symmetric Einstein–Vlasov system in double null

gauge, such as [DR16; Mos18; Mos23], represent the distribution function f differently, opting to (at

least implicitly) eliminate either pu or pv in terms of ℓ using the mass shell relation (2.3.12). This

leads to different formulas for Nµ and Tµν , as these will then involve an integral over ℓ, as in (2.3.39).

To make this precise, we can define the outgoing representation2 of the spherically symmetric f by

f↗(u, v, pv, ℓ)
.
= f

(
u, v,

ℓ2 + r2m2

r2Ω2pv
, pv
)
, (2.3.40)

and (2.3.39) implies, for instance,

Tuv =
2π

r4Ω2

∫ ∞

0

∫ ∞

0

ℓ2 + r2m2

pv
f↗(u, v, pv, ℓ) dpv ℓ dℓ.

The outgoing representation may be taken as an alternative definition of the spherically symmetric

Vlasov system. We have chosen the formulation here in terms of pu and pv because of its explicit

symmetry, which is key for constructing time-symmetric initial data in the proof of Theorem 1.2.1.

We have also chosen to always write Nµ and Tµν in contravariant form, so that Nu is associated

with pu, etc. This causes extra factors of guv = − 1
2Ω

2 to appear in various formulas, compared to

2Of course, we may also define an ingoing representation f↖(u, v, pu, ℓ) by interchanging pu and pv .
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[DR16; Mos18; Mos23].

2.3.2.2 Previous work on the Einstein–Maxwell–Vlasov system

Besides the general local existence result of [BC73], the Einstein–Maxwell–Vlasov model does not

seem to have been extensively studied. Dispersion for small data solutions of the Einstein–Maxwell–

massive Vlasov model (stability of Minkowski space) in spherical symmetry was proved by Noundjeu

[Nou05]. See also [NN04] for local well-posedness in Schwarzschild coordinates and [NNR04] for the

existence of nontrivial solutions of the constraints. Many static solutions are known to exist for

the massive system, first studied numerically by Andréasson–Eklund–Rein [AER09] and proved

rigorously by Thaller [Tha19] in spherical symmetry. Thaller has also shown that stationary and

axisymmetric (but not spherically symmetric) solutions exist [Tha20].

2.4 Maximal future developments of asymptotically flat data

and the a priori characterization of the boundary

The theorems and corollaries in this dissertation are stated in the framework of the Cauchy problem

for the Einstein–Maxwell-charged scalar field and Einstein–Maxwell–Vlasov systems. Cauchy data

for these systems consist of the usual Cauchy data (Σ, g0, k0) for the Einstein equations, where Σ

is a 3-manifold, g0 a Riemannian metric on Σ, and k0 a symmetric 2-tensor field, together with

initial data for the matter fields, namely initial electric and magnetic fields, E0 and B0, and finally

the scalar field ϕ0 and its “time derivative” ϕ1 or the distribution function f0. (See e.g. [Cho09,

Section VI.10] for a treatment of the Einstein–Maxwell Cauchy problem or [Rin13] for the Einstein–

Vlasov Cauchy problem.) Associated to a Cauchy data set is a unique maximal future globally

hyperbolic development (M4, g, F,A, ϕ) or (M4, g, F, f) [Fou52; CG69]. If the Cauchy data are

moreover spherically symmetric, then the maximal development will be spherically symmetric by

uniqueness.

In the context of gluing constructions, we will not, however, actually construct our spacetimes

by directly evolving Cauchy data. Rather, we construct the spacetimes teleologically by gluing

together explicit spacetimes with the help of our characteristic gluing results and Proposition 5.2.4.

In each case, a Cauchy hypersurface Σ is then found, within the spacetime, whose future domain

of dependence contains the physically relevant region, and contains no antitrapped spheres. At this

point, all attention is restricted to this future domain of dependence. A posteriori, by the existence
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and uniqueness theory for the maximal globally hyperbolic development, the spacetime will then be

contained in the maximal development of the induced data on the Cauchy hypersurface Σ.

I +

H
+

Σ

r
=

0 i0

i+

BH

CH +

A′

N

S

Figure 2.1: General structure of the MFGHD of asymptotically flat Cauchy data Σ in the EMCSF
system in spherical symmetry [Kom13]. What is depicted is the quotient manifold Q as a bounded
subset of R1+1

u,v with boundary suitably labeled. Note that various components of the diagram can
be empty.

Since all of the examples constructed in this dissertation are maximal globally hyperbolic devel-

opments of asymptotically flat, spherically symmetric Cauchy data with no antitrapped spheres of

symmetry for Einstein-matter system satisfying the generalized extension principle, we can make use

of a general characterization of the boundary of spacetime in this context appearing in [Kom13].3

In particular one can rigorously associate a global Penrose diagram, and unambiguously identify

a nonempty null boundary component future null infinity I+, domain of outer communication

J−(I+), (possibly empty) black hole region BH .
= M \ J−(I+), (possibly empty) event horizon

H+ .
= ∂(BH), (possibly empty) Cauchy horizon CH+, (possibly empty) r = 0 singularity S, and

(possibly empty) null boundary component N emanating from a (possibly absent) “locally naked”

singularity at the center. The Penrose diagram Q ⊂ R1+1
u,v can be viewed as a global double null

chart for the spacetime, with v the “outgoing” null coordinate and u the “ingoing” coordinate. See

Fig. 2.1.4

For use in the statement and proofs of many of the results in this dissertation, we recall that the

apparent horizon is defined by

A .
= {∂vr = 0} ⊂ BH.

3The generalized extension principle is proved for EMCSF in [Kom13] and for Einstein–Maxwell–Vlasov in Sec-
tion 3.2.2 below.

4Note that the above general boundary decomposition in particular proves that one cannot form a globally naked
singularity once a marginally trapped surface has developed in the spacetime, which already rules out naked singularity
formation by supercharging a black hole in spherical symmetry, see [Kom13, Section 1.9]. It is thus not at all surprising
that ongoing numerical searches for these continue to be futile.
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Since A might have a complicated structure (in particular, it might have nonempty interior), we

define an appropriate notion of boundary as follows. The outermost apparent horizon A′ consists

of those points p ∈ A whose past-directed ingoing null segment lies in the strictly untrapped region

{∂vr > 0} and eventually exits the black hole region, i.e., enters J−(I+). A′ is a possibly discon-

nected achronal curve in the (1 + 1)-dimensional reduction Q of M. Note, as depicted in Fig. 2.1,

that A′ does not necessarily asymptote to future timelike infinity i+.

For definiteness, we will make extensive use of these notions in our theorems and corollaries.

However, our notation and usage should be sufficiently familiar to readers acquainted with standard

concepts in general relativity so that they may read our diagrams and understand our theorems

without specific reference to [Kom13].

We also note that when referring to spherically symmetric subsets of (M, g), such as the event

horizon H+, we may view them as objects in M or in the reduced space Q. The context will make

it clear which point of view we are taking.

Remark 2.4.1. In the following section, we show by a barrier argument that since ∂ur < 0 in a space-

time satisfying the hypotheses of [Kom13], there are also no nonspherically symmetric antitrapped

surfaces.

2.5 General trapped and antitrapped surfaces in spherically

symmetric spacetimes

In this section we infer the absence of nonspherically symmetric trapped or antitrapped surfaces

from the absence of spherically symmetric trapped or antitrapped surfaces. This technical result

will be used later in Chapter 5.

Our definition of trapped surface is completely standard, see Definition 2.5.6 below. (Note that

we assume trapped surfaces to be closed and strictly trapped.) Our definition of antitrapped is

as in [Chr93; Kom13], i.e., an antitrapped surface is closed and past weakly outer trapped, see

Definition 2.5.7 below.

Proposition 2.5.1. Let (M4, g) be a spherically symmetric spacetime as defined in Section 2.1.1.

Then there are no trapped surfaces contained in the sets

A
.
= {p ∈ M : ∂ur ≥ 0}, (2.5.1)

B
.
= {p ∈ M : ∂vr ≥ 0}. (2.5.2)
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Remark 2.5.2. Note that there could be trapped surfaces contained in A ∪B. There might also be

trapped surfaces which merely intersect A or B.

Proposition 2.5.3. Let (M4, g, F,A, ϕ) be a spherically symmetric spacetime arising as the max-

imal future globally hyperbolic development from one-ended asymptotically flat Cauchy data for the

EMCSF system with no antitrapped spheres of symmetry as in [Kom13]. Then:

1. If S is a trapped surface in M, then S ∩ J−(I+) = ∅.

2. M does not contain any antitrapped surfaces.

Remark 2.5.4. Under stronger assumptions on I+, the first part of the previous proposition would

follow from a classical result of Hawking [Haw72b; HE73, Proposition 9.2.1].

For the proofs, we recall some facts from Lorentzian geometry [Gal00]. Let H be a null hyper-

surface in a spacetime (M4, g), i.e., H is a 3-dimensional submanifold of M and admits a future-

directed normal vector field L which is null and whose integral curves can be reparametrized to be

null geodesics. We say that L is a (future-directed) null generator of H.

The second fundamental form of H with respect to L is given by

BL(X,Y ) = g(∇XL, Y ) (2.5.3)

for X,Y ∈ TH. If e1 and e2 are an orthonormal pair of spacelike vectors at p ∈ H, we define the

null expansion of H with respect to L by

θL = BL(e1, e1) +BL(e2, e2) (2.5.4)

at p, and this definition is independent of the pair e1 and e2. If L̃ is another future-directed null

generator of H, then there is a positive function f on H such that L̃ = fL. In this case, we have

θL̃ = fθL. (2.5.5)

Lemma 2.5.5 (Comparison principle for null hypersurfaces). Let H1 and H2 be null hypersurfaces

in (M4, g), with H1 to the future of H2 and generated by L1 and L2, respectively. If H1 and H2 are

tangent at a point p, and L1(p) = L2(p), then

θL1

H1
(p) ≥ θL2

H2
(p). (2.5.6)
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Proof. By (2.5.5), it suffices to prove (2.5.6) with respect to some choice of null generators of H1

and H2 which agree at p. Let (t, x, y, z) be normal coordinates for g based at p so that ∂t is future-

directed and { 1
2 (∂t + ∂x), ∂y, ∂z} spans TpH1 = TpH2. We introduce approximate null coordinates

u = t− x and v = t+ x, so that

∂u = 1
2 (∂t − ∂x), ∂v =

1
2 (∂t + ∂x).

Note that ∂u and ∂v are only guaranteed to be null at p.

By the implicit function theorem, there exist functions f1(v, y, z) and f2(v, y, z) defined near p,

so that, upon defining

ζ1(u, v, y, z)
.
= f1(v, y, z)− u, ζ2(u, v, y, z)

.
= f2(v, y, z)− u,

we have Hi = {ζi = 0} for i = 1, 2. Note that f1(p) = f2(p) = 0 and that p is a critical point

for f1 and f2. The vector fields Zi = grad ζi are null on Hi and define there future-directed null

generators. In particular, we have Z1(p) = Z2(p) = ∂v|p.

We first show that f1 ≥ f2 near p. If a point q = (u, v, y, z) lies to the past of H1, then ζ1(q) ≥ 0.

If q ∈ H2, then ζ2(q) = 0, so combining these inequalities yields

f1(v, y, z) = ζ1(q) + u ≥ ζ2(q) + u = f2(v, y, z),

as claimed.

We now show that

BZ1

H1
(∂y, ∂y)(p) ≥ BZ2

H2
(∂y, ∂y)(p), (2.5.7)

the corresponding statement and proof for ∂z being the same. By (2.5.4) this will complete the

proof. Since f1 ≥ f2 near p, p is a local minimum for f1 − f2. It follows that

∂2y(f1 − f2)(p) ≥ 0 (2.5.8)

by the second derivative test. Since we are working in a normal coordinate system,

BZi

Hi
(∂y, ∂y)(p) = g(∇∂y∇ζi, ∂y)(p) = ∂2yfi(p),

whence (2.5.8) proves (2.5.7), which completes the proof.
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Definition 2.5.6. A closed spacelike 2-surface S in a spacetime (M4, g) is always the intersection

of two locally defined null hypersurfaces. We say that S is trapped if both of these hypersurfaces

have negative future null expansion along S.

Proof of Proposition 2.5.1. We show that there is no trapped surface S ⊂ B. The argument for

S ⊂ A is analogous after noting that A ∩ Γ = ∅ by our definition of spherical symmetry and

convention for u.

Let S ⊂ {∂vr ≥ 0} be a closed 2-surface. Let π : M → Q be the projection of the spherically

symmetric spacetime to its Penrose diagram. Then π(S) is a compact subset of Q and hence u

attains a minimum u0 on π(S).

Therefore, there exists a symmetry sphere Su0,v0 on which ∂vr ≥ 0 such that S lies to the future

of Cu0
and is tangent to this cone at a point p ∈ Su0,v0 . Note that p /∈ Γ because Cu0

is not regular

there. The condition ∂vr ≥ 0 means Cu0
has nonnegative future expansion. By Lemma 2.5.5, one

of the two null hypersurfaces emanating from S also has nonnegative future expansion, so S is not

trapped.

Definition 2.5.7. Let (M4, g) be a spacetime satisfying the hypotheses of Proposition 2.5.3. A

closed spacelike 2-surface S which bounds a compact spacelike hypersurface Ω is said to be an-

titrapped if its future-directed inward null expansion is nonnegative. Here the (locally defined)

inward null hypersurface Hin emanating from S is chosen to be the one which smoothly extends the

boundary of the causal past of Ω.

Proof of Proposition 2.5.3. 1. Since r → ∞ at I+ [Kom13], Raychaudhuri’s equation (2.2.7) implies

∂vr > 0 in J−(I+). Let S be a closed 2-surface such that S ∩ J−(I+) ̸= ∅. Let π : M → Q be the

projection to the Penrose diagram. Then u attains a minimum u0 on π(S). By the causal properties

of J−(I+), there exists a symmetry sphere Su0,v0 ⊂ J−(I+) such that S lies to the future of Cu0

and is tangent to the cone at p ∈ Su0,v0 . Arguing as in the proof of Proposition 2.5.1, we see that

one of the null hypersurfaces emanating from S has positive future expansion, so S is not trapped.

2. Let π : M → Q be again the projection. Then v attains a maximum v0 on π(S) and again

there exists a non-central symmetry sphere Su0,v0 such that ∂ur(u0, v0) < 0, S lies to the past of

Cv0 , and is tangent to the cone at a point p ∈ Su0,v0 . Now Cv0 is tangent to Hin at p and lies to the

future, so by Lemma 2.5.5, Hin has negative null expansion at p. Therefore, S is not antitrapped.
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Chapter 3

The characteristic initial value

problem in spherical symmetry

3.1 The Einstein–Maxwell-charged scalar field system

In this section, we give a detailed explanation of the setup and characteristic initial value problem

for the Einstein equations with charged scalar fields in spherical symmetry, with a view towards the

characteristic gluing problem. See [Kom13] for more details on the EMCSF system.

3.1.1 Bifurcate characteristic data

We first define precisely what we mean by a Ck solution. For now, we may restrict attention to

solutions away from the center.

Definition 3.1.1. Let k ∈ N. A Ck solution for the Einstein–Maxwell-charged scalar field system in

the EM gauge (2.2.2) consists of a domain Q ⊂ R1+1
u,v and functions r ∈ Ck+1(Q) and Ω2, ϕ,Q,Au ∈

Ck(Q), such that r > 0, Ω2 > 0, ϕ is complex-valued, ∂k+1
v Au ∈ C0(Q), and the functions satisfy1

equations (2.2.3)–(2.2.7).

Next, we formulate the characteristic initial value problem for this class of solutions. Let R1+1
u,v de-

note the standard (1+1)-dimensional Minkowski space. We introduce the bifurcate null hypersurface

1Note that the wave equations (2.2.3) and (2.2.5) can readily be interpreted for k = 1.
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C ∪ C ⊂ R1+1
u,v , where

C
.
= C−1

.
= {u = −1} ∩ {v ≥ 0}

C
.
= C0

.
= {v = 0} ∩ {u ≥ −1}.

The special point (−1, 0) is called the bifurcation sphere. We pose data for ϕ, Q, r, Ω2 and Au for

the Einstein–Maxwell-charged-scalar field system on C ∪ C.

Definition 3.1.2. Let k ∈ N. A Ck bifurcate characteristic initial data set on C∪C for the Einstein–

Maxwell-charged scalar field system in the EM gauge (2.2.2) consists of continuous functions r > 0,

Ω2 > 0, ϕ (complex-valued), Q, and Au on C ∪ C. It is required that r ∈ Ck+1, Ω2 ∈ Ck, ϕ ∈ Ck,

Q ∈ Ck, and Au ∈ Ck on C ∪C.2 Finally, the data are required to satisfy equations (2.2.8)–(2.2.7),

which implies also ∂k+1
v Au ∈ C0(C).

Given characteristic initial data on a portion of C ∪C containing the bifurcation sphere, we can

solve in a full double null neighborhood to the future. The proof is a standard iteration argument.

Proposition 3.1.3. Given a Ck bifurcate characteristic initial data set for the EMCSF system on

({u = −1} × {0 ≤ v ≤ v0}) ∪ ({−1 ≤ u ≤ u0} × {v = 0}) ⊂ C ∪ C,

where u0 > −1 and v0 > 0, there exists a number δ > 0 and a unique spherically symmetric Ck

solution of the EMCSF system on

({−1 ≤ u ≤ −1 + δ} × {0 ≤ v ≤ v0}) ∪ ({−1 ≤ u ≤ u0} × {0 ≤ v ≤ δ})

which extends the initial data on C ∪ C.

3.2 Einstein–Maxwell–Vlasov

3.2.1 Local well-posedness in spherical symmetry

Electromagnetic geodesics, in contrast to ordinary geodesics, can have limit points in M. By stan-

dard ODE theory, this can only occur if p(s) → 0 as s → ±∞.3 On a fixed spherically symmetric

2By “Ck on C ∪ C” is meant that v derivatives are continuous on C and u derivatives are continuous on C.
3This does not occur for ordinary geodesics because of the following homogeneity property: If s 7→ γ(s) is a

geodesic, then so is s 7→ γ(as) for any a > 0. See [ONe83, Lemma 5.8], where homogeneity is used to identify radial
geodesics emanating from the same point with parallel velocity.
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background, one can show that an electromagnetic geodesic γ cannot have a limit point if either

m[γ] > 0 or ℓ[γ] > 0. However, even in the massless case, an electromagnetic geodesic with initially

positive momentum will still have positive momentum for a short (coordinate) time. Therefore, one

can show that local well-posedness in double null gauge holds in the case of massive particles or

massless particles with momentum initially supported away from zero.

Remark 3.2.1. Bigorgne has shown that the relativistic Maxwell–massless Vlasov system is classically

ill-posed if the initial data are allowed to be supported near zero momentum [Big22]. We expect a

similar result to hold for the Einstein–Maxwell–massless Vlasov system.

We now state our fundamental local well-posedness result for the spherically symmetric Einstein–

Maxwell–Vlasov system. We formulate this in terms of the characteristic initial value problem,

though the techniques used apply to the Cauchy problem as well. Note that we work in function

spaces that allow for noncompact support in the momentum variables, although this is not needed

for the applications in this dissertation (but is useful in the context of cosmic censorship [DR16]).

The proof of local existence is deferred to Section 3.3.

Given U0 < U1 and V0 < V1, let

C(U0, U1, V0, V1)
.
= ({U0} × [V0, V1]) ∪ ([U0, U1]× {V0}),

R(U0, U1, V0, V1)
.
= [U0, U1]× [V0, V1].

We will consistently omit (U0, U1, V0, V1) from the notation for these sets when the meaning is clear.

A function ϕ : C → R is said to be smooth if it is continuous and ϕ|{U0}×[V0,V1] and ϕ|[U0,U1]×{V0}

are C∞ single-variable functions. This definition extends naturally to functions f : Pm
red|C → R≥0.

Definition 3.2.2. A smooth (bifurcate) characteristic initial data set for the spherically symmetric

Einstein–Maxwell–Vlasov system with parameters m, e, and σ consists of smooth functions r̊, Ω̊2, Q̊ :

C → R with r̊ and Ω̊2 positive, and a smooth function f̊ : Pm
red|C → R≥0, where P

m
red|C is defined

using Ω̊2. Moreover, we assume that the norms

∥f̊∥Ck
σ(P |C)

.
=

∑
0≤i1+i2≤k

(
sup

Pκ|{U0}×[V0,V1]

⟨pτ ⟩σ+i2 |∂i1v ∂i2p f̊ |+ sup
Pκ|[U0,U1]×{V0}

⟨pτ ⟩σ+i2 |∂i1u ∂i2p f̊ |

)

are finite for every k ≥ 0. In the case m = 0, we also assume that f̊ has locally positive angular

momentum. Finally, we assume that Raychaudhuri’s equations (2.3.22) and (2.3.23), together with

Maxwell’s equations (2.3.24) and (2.3.25) are satisfied to all orders in directions tangent to C.
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Proposition 3.2.3. For any m ≥ 0, e ∈ R, σ > 4, B > 0, and cℓ > 0, there exists a constant εloc > 0

with the following property. Let (̊r, Ω̊2, Q̊, f̊) be a characteristic initial data set for the spherically

symmetric Einstein–Maxwell–Vlasov system on C(U0, U1, V0, V1). If U1 − U0 < εloc, V1 − V0 < εloc,

∥log r̊∥C2(C) + ∥log Ω̊2∥C2(C) + ∥Q̊∥C1(C) + ∥f̊∥C1
σ(P

m
red|C) ≤ B,

and in the case m = 0, ℓ ≥ cℓ on spt(f̊), then there exists a unique smooth solution (r,Ω2, Q, f) of

the spherically symmetric Einstein–Maxwell–Vlasov system on R(U0, U1, V0, V1) which extends the

initial data. If f̊ has locally compact support in p, then so does f . Moreover, the norms

∥log r∥Ck(R), ∥log Ω2∥Ck(R), ∥Q∥Ck(R), ∥f∥Ck
σ(P

m
red|R)

are finite for any k and can be bounded in terms of appropriate higher order initial data norms.

The proof of the proposition is given in Section 3.3.2.

3.2.2 The generalized extension principle

Recall that a spherically symmetric Einstein-matter model is said to satisfy the generalized extension

principle if any “first singularity” either emanates from a point on the spacetime boundary with

r = 0, or its causal past has infinite spacetime volume. This property has been shown to hold for

the Einstein-massless scalar field system by Christodoulou [Chr93], for the Einstein–massive Vlasov

system by Dafermos and Rendall [DR16], and for the Einstein–Maxwell–charged Klein–Gordon

system by Kommemi [Kom13]. We now extend the generalized extension principle of Dafermos–

Rendall to the Einstein–Maxwell–Vlasov system:

Proposition 3.2.4 (The generalized extension principle). Let (Q, r,Ω2, Q, f) be a smooth solution

of the spherically symmetric Einstein–Maxwell–Vlasov system with admissible momentum, which is

defined on an open set Q ⊂ R2
u,v. If Q contains the set R′ .= R(U0, U1, V0, V1) \ {(U1, V1)} and the

following two conditions are satisfied:

1. R′ has finite Lorentzian volume, i.e.,

∫∫
R′

Ω2 dudv <∞, (3.2.1)
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2. the area-radius is bounded above and below, i.e.,

sup
R′

|log r| <∞, (3.2.2)

then the solution extends smoothly, with admissible momentum, to a neighborhood of (U1, V1).

Therefore, since this system satisfies the dominant energy condition (Remark 2.3.8), the Einstein–

Maxwell–Vlasov system is strongly tame in Kommemi’s terminology [Kom13], under the admissible

momentum assumption. This is an important “validation” of the Einstein–Maxwell–Vlasov model

over the charged null dust model and means the model enjoys Kommemi’s a priori boundary char-

acterization [Kom13], which will be used in Section 8.11.2.1 below.

Proposition 3.2.4 is also used crucially in the proof of Theorem 1.2.1 because it provides a

continuation criterion at zeroth order. This allows us to avoid commutation when treating the

singular “main beam” in the construction of bouncing charged Vlasov beams.

We now give the proof of Proposition 3.2.4, assuming the “fundamental local spacetime estimate”

to be stated and proved in Section 3.2.2.2 below. The proof of the local estimate is based on

a streamlining of the ideas already present in [DR16] together with the monotonicity of charge

inherent to the Einstein–Maxwell–Vlasov system and a quantitative lower bound on the “coordinate

time momentum” pu + pv obtained from the mass shell relation.

Proof of Proposition 3.2.4. By Lemma 3.2.5 below, (3.2.1) and (3.2.2) imply that

B
.
= ∥log r∥C2(R′) + ∥log Ω2∥C2(R′) + ∥Q∥C1(R′) + ∥f∥C1

σ(P
m
red|R′ ) <∞.

Let U ′
1 > U1 and V ′

1 > V1 be such that the segments [U1, U
′
1]×{V0} and {U0}× [V1, V

′
1 ] lie inside of

Q and let cℓ > 0 be a lower bound for ℓ on spt(f) ∩ Pm
red|C(U0,U ′

1,V0,V ′
1 )

if m = 0. Let εloc > 0 be the

local existence time for the spherically symmetric Einstein–Maxwell–Vlasov system with parameters

(m, e, σ, 2B, cℓ) given by Proposition 3.2.3. Fix (Ũ , Ṽ ) ∈ R′ with U1 − Ũ < εloc and V1 − Ṽ < εloc.

Observe that if U2 > U1 is sufficiently close to U1 and V2 > V1 is sufficiently close to V1, then

B
.
= ∥log r∥C2(C̃) + ∥log Ω2∥C2(C̃) + ∥Q∥C1(C̃) + ∥f∥C1

σ(P
m
red|C̃) ≤ 2B

and ℓ ≥ cℓ on spt(f) ∩ Pm
red|C̃ if m = 0, where C̃ .

= C(Ũ , U2, Ṽ , V2). Indeed, this is clear for log r,

log Ω2, and Q by smoothness of these functions on Q. For f , we can also easily show this using the

mean value theorem and the finiteness of ∥f∥C2
σ(P

m
red|K) on compact sets K ⊂ Q. For ℓ, this follows
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immediately from conservation of angular momentum and the domain of dependence property if

U2 ≤ U ′
1 and V2 ≤ V ′

1 .

Therefore, by Proposition 3.2.3, the solution extends smoothly, with admissible momentum, to

the rectangle R(Ũ , U2, Ṽ , V2), which contains (U1, V1). This completes the proof.

3.2.2.1 Horizontal lifts and the commuted Vlasov equation

Local well-posedness for (r,Ω2, Q, f) takes place in the space C2×C2×C1×C1, since the Christoffel

symbols and electromagnetic field need to be Lipschitz regular to obtain a unique classical solution

of the Vlasov equation (2.3.26). In order to estimate ∂2uΩ
2 and ∂2vΩ

2, one has to commute the

wave equation for Ω2, (2.3.21), with ∂u and ∂v. This commuted equation contains terms such as

∂uT
uv, which can only be estimated by first estimating ∂uf and ∂vf . On the other hand, naively

commuting the spherically symmetric Vlasov equation, (2.3.26), with spatial derivatives introduces

highest order nonlinear error terms such as ∂2uΩ
2 ∂puf .

4 Therefore, it would appear that the system

does not close at this level of regularity.

However, as was observed by Dafermos and Rendall in [DR05a] in the case of Einstein–Vlasov

(see also the erratum of [RR92]), the horizontal lifts

∂̂uf
.
= ∂uf − pu∂ulog Ω

2∂puf,

∂̂vf
.
= ∂vf − pv∂vlog Ω

2∂pvf

of ∂uf and ∂vf with respect to the Levi–Civita connection satisfy a better system of equations

without these highest order errors. In the case of Einstein–Maxwell–Vlasov, we directly commute

(2.3.26) with {∂̂u, ∂̂v, ∂pu , ∂pv} to obtain

X(∂̂uf) = pu∂ulog Ω
2∂̂uf +

(
pu∂ulog Ω

2∂puζ
u − ∂uζ

u − ∂ulog Ω
2ζu
)
∂puf

+
(
∂u∂vlog Ω

2(pu)2 − ∂uζ
v + pu∂ulog Ω

2∂puζ
v
)
∂pvf, (3.2.3)

X(∂̂vf) = pv∂vlog Ω
2∂̂vf +

(
∂u∂vlog Ω

2(pv)2 − ∂vζ
u + pv∂vlog Ω

2∂pvζ
u
)
∂puf

+
(
pv∂vlog Ω

2∂pvζ
v − ∂vζ

v − ∂vlog Ω
2ζv
)
∂pvf, (3.2.4)

X(∂puf) = −∂̂uf + (3pu∂ulog Ω
2 − ∂puζ

u)∂puf − ∂puζ
v∂pvf, (3.2.5)

X(∂pvf) = −∂̂vf − ∂pvζ
u∂puf + (3pv∂vlog Ω

2 − ∂pvζ
v)∂pvf, (3.2.6)

4This is clearly not an issue for local well-posedness since the “time interval” of the solution can be taken sufficiently
small to absorb (the time integral of) this term.
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where

ζu
.
=

2∂vr

rΩ2
(Ω2pupv −m2) + e

Q

r2
pu, ζv

.
=

2∂ur

rΩ2
(Ω2pupv −m2)− e

Q

r2
pv.

Upon using the wave equation (2.3.21), we see that the right-hand sides of (3.2.3)–(3.2.6) do not

contain second derivatives of Ω2.

3.2.2.2 The fundamental local spacetime estimate

Lemma 3.2.5. For any m ≥ 0, e ∈ R, σ > 4, and C0 > 0, there exists a constant C∗ <∞ with the

following property. Let (r,Ω2, Q, f) be a solution of the spherically symmetric Einstein–Maxwell–

Vlasov system with admissible momentum for particles of charge e, mass m, and momentum decay

rate σ defined on R′ .= R(U0, U1, V0, V1) \ {(U, V )}. Assume U1−U0 ≤ C0, V1−V0 ≤ C0, the initial

data estimates

∥log r∥C2(C) + ∥log Ω2∥C2(C) + ∥Q∥C1(C) + ∥f∥C1
σ(P

m
red|C) ≤ C0, (3.2.7)

the global estimates ∫∫
R′

Ω2 dudv ≤ C0, (3.2.8)

sup
R′

|log r| ≤ C0, (3.2.9)

and in the case m = 0, assume also that

inf
spt(f)∩Pm

red|C
ℓ ≥ C−1

0 . (3.2.10)

Then we have the estimate

∥log r∥C2(R′) + ∥log Ω2∥C2(R′) + ∥Q∥C1(R′) + ∥f∥C1
σ(P

m
red|R′ ) ≤ C∗.

Proof. In this proof, we use the notation A ≲ 1 to mean that A ≤ C, where C is a constant depending

only on m, e, and σ, and C0. When writing area integrals, we will also make no distinction between

R and R′, though the integrands are strictly speaking only assumed to be defined on R′.

From (3.2.7) and the monotonicity properties of Maxwell’s equations (2.3.24) and (2.3.25), it

follows that

sup
R′

|Q| ≲ 1. (3.2.11)
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Rewriting (2.3.20), we obtain

r2Ω4Tuv = 2∂u∂vr
2 +Ω2

(
1− Q2

r2

)
. (3.2.12)

Integrating over R′ and using (3.2.7), (3.2.8), and (3.2.9) yields

∫∫
R
Ω4Tuv dudv ≲

∫∫
R
r2Ω4Tuv dudv ≲

∫∫
R
∂u∂vr

2 dudv +

∫∫
R
Ω2 dudv ≲ 1. (3.2.13)

Rewriting (3.2.12) slightly, we obtain

∂u(r∂vr) = −Ω2

4

(
1− Q2

r2

)
+ 1

4r
2Ω4Tuv. (3.2.14)

Integrating this in u and using (3.2.7), (3.2.9), and (3.2.11), we have

sup
[U0,U1]×{v}

|r∂vr| ≲ 1 +

∫ U1

U0

Ω2(u, v) du+

∫ U1

U0

Ω4Tuv(u, v) du

for any v ∈ [0, V ]. Integrating this estimate in v and using (3.2.9), (3.2.8), and (3.2.13) yields

∫ V1

V0

sup
[U0,U1]×{v}

|∂vr| dv ≲
∫ V1

V0

sup
[U0,U1]×{v}

|r∂vr| dv ≲ 1. (3.2.15)

By Raychaudhuri’s equation (2.3.22), ∂ur changes signs at most once on each ingoing null cone.

Therefore, by the fundamental theorem of calculus and (3.2.9),

sup
v∈[V0,V1]

∫ U1

U0

|∂ur|(u, v) du ≤ 2

(
sup
R′

r − inf
R′
r

)
≲ 1. (3.2.16)

Combining (3.2.15) and (3.2.16) yields

∫∫
R
|∂ur∂vr| dudv ≤

(∫ V1

V0

sup
[U0,U1]×{v}

|∂vr| dv

)(
sup

v∈[V0,V1]

∫ U1

U0

|∂ur|(u, v) du

)
≲ 1. (3.2.17)

Using the definition of the Hawking mass (2.1.2), (3.2.9), and (3.2.8), we readily infer

∫∫
R
Ω2|m| dudv ≲ 1 (3.2.18)

By the wave equation (2.3.21), the fundamental theorem of calculus, and the estimates (2.3.19),
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(3.2.8), (3.2.9), (3.2.11), (3.2.13), and (3.2.18), we have

sup
R′

|log Ω2| ≲ 1 +

∣∣∣∣∫∫
R
∂u∂vlog Ω

2 dudv

∣∣∣∣
≲ 1 +

∫∫
R

(
Ω2 +Ω2|m|+Ω4Tuv

)
dudv

≲ 1.

We now prove estimates for the electromagnetic geodesic flow. Let γ : [0, S] → R′ be an

electromagnetic geodesic such that (γ(0), p(0)) ∈ spt(f) ∩ Pm
red|C . We aim to prove that

∣∣∣∣log(Ω2pu(s)

Ω2pu(0)

)∣∣∣∣+ ∣∣∣∣log(Ω2pv(s)

Ω2pv(0)

)∣∣∣∣ ≲ 1 (3.2.19)

for s ∈ [0, S], where the implied constant does not depend on γ.

It suffices to prove this estimate for pu, as the proof of the estimate for pv differs only in notation.

Following [Mos18] (see also [Daf06]), we write an integral formula for log(Ω2pu), which can then be

estimated using our previous area estimates. Rewriting the mass shell relation (2.3.12) as

ℓ2

r2
=

(
ℓ2

ℓ2 +m2r2

)
Ω2pupv,

we deduce from the Lorentz force equation (2.1.24) that

d

ds
log(Ω2pu) =

(
∂vlog Ω

2 − 2∂vr

r

)(
ℓ2

ℓ2 +m2r2

)
pv − e

Q

r2
.

Integrating in s and changing variables yields

log

(
Ω2pu(s)

Ω2pu(0)

)
=

∫
γ([0,s])

(
∂vlog Ω

2 − 2∂vr

r

)(
ℓ2

ℓ2 +m2r2

)
dv −

∫ s

0

e
Q

r2

∣∣∣∣
γ(s′)

ds′.

We use the fundamental theorem of calculus on the first integral to obtain

∫
γ([0,s])

(
∂vlog Ω

2 − 2∂vr

r

)(
ℓ2

ℓ2 +m2r2

)
dv

=

∫ γv(s)

γv(0)

∫ γu(sv)

0

∂u

[(
∂vlog Ω

2 − 2∂vr

r

)(
ℓ2

ℓ2 +m2r2

)]
dudv

+

∫
{0}×[0,γv(s)]

(
∂vlog Ω

2 − 2∂vr

r

)(
ℓ2

ℓ2 +m2r2

)
dv,

where sv ∈ [0, S] is defined by γv(sv) = v. Using now the wave equations (2.3.20) and (2.3.21), we
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arrive at

log

(
Ω2pu(s)

Ω2pu(0)

)
=

∫ γv(s)

γv(0)

∫ γu(sv)

0

(
3Ω2m

r3
− 3Ω2Q2

2r4
− Ω2

2r2
− Ω4Tuv − Ω2S

)(
ℓ2

ℓ2 +m2r2

)
dudv

+

∫ γv(s)

γv(0)

∫ γu(sv)

0

(
2∂ur∂vr − ∂ur∂vlog Ω

2
) 2m2ℓ2

(ℓ2 +m2r2)2
dudv

+

∫
{0}×[0,γv(s)]

(
∂vlog Ω

2 − 2∂vr

r

)
dv −

∫ s

0

e
Q

r2

∣∣∣∣
γ(s′)

ds′. (3.2.20)

We now bound each of the four terms in (3.2.20). Using (3.2.8), (3.2.9), (3.2.11), (3.2.13), and

(3.2.18), the first double integral in (3.2.20) is readily seen to be uniformly bounded. To estimate

the second double integral, we integrate the wave equation (2.3.21) in u to obtain

sup
[0,U ]×{v}

|∂vlog Ω2| ≲ 1 +

∫ U

0

(
Ω2|m|+Ω2 +Ω4Tuv

)
(u, v) du

for any v ∈ [0, V ]. Integrating this estimate in v and using the previous area estimates yields

∫ V

0

sup
[0,U ]×{v}

|∂vlog Ω2| dv ≲ 1

which when combined with (3.2.16) gives

∫∫
R
|∂ur||∂vlog Ω2| dudv ≲ 1. (3.2.21)

Combined with (3.2.17), we now readily see that the second double integral in (3.2.20) is uniformly

bounded. The integral along initial data is clearly also bounded by assumption.

Using (3.2.9) and (3.2.11), we estimate

∫ s

0

e
|Q|
r2

ds ≲ S. (3.2.22)

To estimate S, define the function τ(s)
.
= τ |γ(s), which is strictly increasing and satisfies 0 ≤ τ(s) ≲ 1

for every s ∈ [0, S]. Using the mass shell relation (2.3.12), we have

√
4

Ω2

(
ℓ2

r2
+m2

)
≤ pτ =

dτ

ds
. (3.2.23)

Since either m > 0 or (3.2.10) holds, it follows that dτ/ds is uniformly bounded away from zero,

which implies S ≲ 1 for any electromagnetic geodesic in the support of f . Combined with (3.2.22),
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this uniformly bounds the final term in (3.2.20) and completes the proof of (3.2.19).

Since f is constant along (γ(s), p(s)), we therefore have

⟨pτ (s)⟩σf(γ(s), p(s)) ≲ ⟨pτ (0)⟩σf(γ(0), p(0)),

which implies

∥f∥C0
σ(P

m
red|R′ ) + sup

R′
(Nu +Nv + Tuu + Tuv + T vv + S) ≲ 1.

By (2.3.24) and (2.3.25),

sup
R′

(|∂uQ|+ |∂vQ|) ≲ 1.

By integrating (3.2.14) and also using that ∂u(r∂vr) = ∂v(r∂ur), we now readily estimate

sup
R′

(|∂ur|+ |∂vr|) ≲ 1.

As this bounds the Hawking mass pointwise, we can now estimate

sup
R′

(
|∂ulog Ω2|+ |∂vlog Ω2|+ |∂u∂vlog Ω2|

)
≲ 1

using (2.3.21). It then follows immediately from (2.3.20), (2.3.22), and (2.3.23) that

sup
R′

(
|∂2ur|+ |∂u∂vr|+ |∂2vr|

)
≲ 1.

Along an electromagnetic geodesic γ lying in the support of f , we have that

|X(∂̂uf)| ≲ pτ |∂̂uf |+ (pτ )2|X(∂puf)|+ (pτ )2|X(∂pvf)|,

|X(∂̂vf)| ≲ pτ |∂̂vf |+ (pτ )2|X(∂puf)|+ (pτ )2|X(∂pvf)|,

|X(∂puf)| ≲ |∂̂uf |+ pτ |X(∂puf)|+ pτ |X(∂pvf)|,

|X(∂pvf)| ≲ |∂̂vf |+ pτ |X(∂puf)|+ pτ |X(∂pvf)|

by (3.2.3)–(3.2.6) and all of the estimates obtained so far. It follows that, defining

F(s)
.
=
(
(pτ )σ∂̂uf, (p

τ )σ∂̂vf, (p
τ )σ+1∂puf, (p

τ )σ+1∂pvf
)
(s)
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along γ(s), we have ∣∣∣∣ ddsF
∣∣∣∣ ≲ pτ |F|.

By Grönwall’s inequality and (3.2.23), it follows that |F| ≲ 1 along γ. Recovering ∂uf and ∂vf from

∂̂uf and ∂̂vf , we now readily bound

∥f∥C1
σ(P

m
red|R′ ) + sup

R′
(|∂uTuv|+ |∂vTuv|+ |∂uS|+ |∂vS|) ≲ 1.

Commuting the wave equation (2.3.21) with ∂u and ∂v, we obtain the final estimates

sup
R′

(
|∂2ulog Ω2|+ |∂2v log Ω2|

)
≲ 1,

which completes the proof.

3.2.2.3 Local existence in characteristic slabs

The spacetime estimate Lemma 3.2.5 can also be used to improve Proposition 3.2.3 to local existence

in a full double null neighborhood of a bifurcate characteristic hypersurface of arbitrary length:

Proposition 3.2.6. For any m ≥ 0, e ∈ R, σ > 4, B > 0, and cℓ > 0, there exists a constant εslab >

0 with the following property. Let (̊r, Ω̊2, Q̊, f̊) be a characteristic initial data set for the spherically

symmetric Einstein–Maxwell–Vlasov system on C(U0, U1, V0, V1) with admissible momentum. If

∥log r̊∥C2(C) + ∥log Ω̊2∥C2(C) + ∥Q̊∥C1(C) + ∥f̊∥C1
σ(P

m
red|C) ≤ B

and either m > 0 or m = 0 and ℓ ≥ cℓ on spt(f̊), then there exists a unique smooth solution

(r,Ω2, Q, f) of the spherically symmetric Einstein–Maxwell–Vlasov system with admissible momen-

tum on

R(U0, U0 +min{εslab, U1 − U0}, V0, V1) ∪R(U0, U1, V0, V0 +min{εslab, V1 − V0})

which extends the initial data.

Proof. We prove existence in the slab which is thin in the u-direction, the proof in the other slab

being identical. Let C0 = 10B and let C∗ be the constant obtained from the fundamental local

spacetime estimate Lemma 3.2.5 with this choice. Let A ⊂ [V0, V1] denote the set of Ṽ such that the
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solution exists on R(U0, U
′
1, V0, Ṽ ), where U ′

1
.
= U0 +min{εslab, U1 −U0} and satisfies the estimates

sup
R(U0,U ′

1,V0,Ṽ )

|log r|+ sup
R(U0,U ′

1,V0,Ṽ )

|log Ω2| ≤ C0. (3.2.24)

We will show that if εslab = min{εloc(C∗), B(U1−U0)
−1C−1

∗ }, then A is nonempty, closed, and open.

Nonemptyness follows from Proposition 3.2.3 and closedness by continuity of the bootstrap as-

sumptions. Let now Ṽ ∈ A. To improve the bootstrap assumptions, we note that |∂u∂vlog r| ≤ C∗ on

R(U0, U
′
1, V0, Ṽ ) by Lemma 3.2.5, whence |log r| ≤ εslab(U1−U0)C∗+3B ≤ 1

2C0 by the fundamental

theorem of calculus. A similar argument applies for log Ω2. Therefore, by applying Proposition 3.2.3

again, a simple continuity argument shows that Ṽ + η ∈ A for η > 0 sufficiently small.

3.2.3 Time-symmetric seed data and their normalized developments

In the proof of Theorem 1.2.1, we will pose data for the Einstein–Maxwell–Vlasov system on a mixed

spacelike-null hypersurface, with the Vlasov field f supported initially on the spacelike hypersurface

and away from the center. The initial data is given by a compactly supported distribution function

f̊ on the spacelike hypersurface, a numerical parameter that fixes the location of the initial outgoing

null cone, together with the mass and charge of the particles. As we will only consider time-symmetric

initial configurations, these data are sufficient to uniquely determine the solution.

Definition 3.2.7. A time-symmetric seed data set S .
= (f̊ , r2,m, e) for the spherically symmetric

Einstein–Maxwell–Vlasov system consists of a real numbers r2 ∈ R>0, m ∈ R≥0, and e ∈ R, to-

gether with a compactly supported nonnegative function f̊ ∈ C∞((0,∞)r × (0,∞)pu × (0,∞)pv
)

which is symmetric in the second and third variables, f̊( · , pu, pv) = f̊( · , pv, pu), and satisfies

spt
(
f̊( · , pu, pv)

)
⊂ (0, r2] for every p

u, pv ∈ (0,∞).

Given a seed data set S = (f̊ , r2,m, e) and r ∈ [0, r2], we define

ϱ̊(r)
.
= π

∫ ∞

0

∫ ∞

0

f̊(v, pu, pv) dpudpv, (3.2.25)

N̊ u(r)
.
= N̊ v(r)

.
= π

∫ ∞

0

∫ ∞

0

puf̊(r, pu, pv) dpudpv, (3.2.26)

T̊ uu(r)
.
= T̊ vv(r)

.
= π

∫ ∞

0

∫ ∞

0

(pu)2f̊(r, pu, pv) dpudpv, (3.2.27)

T̊ uv(r)
.
= π

∫ ∞

0

∫ ∞

0

pupv f̊(r, pu, pv) dpudpv. (3.2.28)

Remark 3.2.8. These formulas are missing a factor of Ω2 compared to (2.3.14)–(2.3.19). This is
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Figure 3.1: Penrose diagram of a normalized development U of a time symmetric seed S. The
spacelike hypersurface {τ = 0} is totally geodesic, i.e., time symmetric, and the outgoing cone
{u = −r2} has f = 0. To the left of the support of f , the spacetime is vacuum: both the Hawking
mass m and charge Q vanish identically. For the significance of the cone {v = r0}, see already
Remark 3.2.13.

because Ω2 is not explicitly known on the initial data hypersurface and is accounted for by extra

factors of Ω2 in the constraint system (3.2.29)–(3.2.30) below.

Let the functions m̊ = m̊(r) and Q̊ = Q̊(r) be the unique solutions of the first order system

d

dr
m̊ =

r2

4

(
1− 2m̊

r

)−2 (
T̊ uu + 2T̊ uv + T̊ vv

)
+
Q̊2

2r2
, (3.2.29)

d

dr
Q̊ =

1

2
er2
(
1− 2m̊

r

)−2 (
N̊ u + N̊ v

)
(3.2.30)

with initial conditions m̊(0) = 0 and Q̊(0) = 0. If

sup
r∈[0,r2]

2m̊

r
< 1,

then m̊ and Q̊ exist on the entire interval [0, r2] and we say that S is untrapped. We also define

Ω̊2 .
=

(
1− 2m̊

r

)−1

, ϖ̊
.
= m̊+

Q̊2

2r
.

Finally, we say that S is consistent with particles of mass m if Ω̊2(r)pupv ≥ m2 for every (r, pu, pv) ∈

spt f̊ .

Remark 3.2.9. We have not attempted to formulate the most general notion of seed data for the

spherically symmetric Einstein–Maxwell–Vlasov Cauchy problem here as it is not needed for our

purposes.

Associated with time-symmetric seed data as in Definition 3.2.7, we will introduce normalized
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developments of such data in the following. For r2 > 0, let

Cr2
.
= {τ ≥ 0} ∩ {v ≥ u} ∩ {u ≥ −r2} ⊂ R2

u,v

and let Ur2 denote the collection of connected relatively open subsets U ⊂ {v ≥ u} ⊂ R2
u,v for which

there exists a (possibly empty) achronal curve ζ ⊂ Cr2 , extending from the center {u = v} and

reaching the cone {u = −r2}, such that U = Cr2 ∩{u+v < ζu+ζv} and {τ = 0}∩{0 ≤ v ≤ r2} ⊂ U .

See Fig. 3.1.

We also define the cones

Cu0

.
= U ∩ {u = u0}, Cv0

.
= U ∩ {v = v0}.

Definition 3.2.10. Let S = (f̊ , r2,m, e) be an untrapped time-symmetric seed data set which is

consistent with particles of mass m. A normalized development of S consists of a domain U ∈ Ur2 and

a spherically symmetric solution (r,Ω2, Q, f) of the Einstein–Maxwell–Vlasov system for particles

of mass m and fundamental charge e defined over U \ {u = v} such that the following holds.

1. For every (v, pu, pv) ∈ (0, r2]× (0,∞)× (0,∞),

r(−v, v) = v, (3.2.31)

∂vr(−v, v) = 1
2 , (3.2.32)

∂ur(−v, v) = −∂vr(−v, v), (3.2.33)

Ω2(−v, v) = Ω̊2(v), (3.2.34)

∂vΩ
2(−v, v) = 1

2

(
d

dr
Ω̊2

)
(v), (3.2.35)

∂ulog Ω
2(−v, v) = −∂vlog Ω2(−v, v), (3.2.36)

f(−v, v, pu, pv) = f̊(v, pu, pv). (3.2.37)
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2. Along the initial outgoing null cone C−r2 ,

r(−r2, v) = 1
2r2 +

1
2v, (3.2.38)

Ω2 = Ω̊2(r2), (3.2.39)

Q = Q̊(r2), (3.2.40)

f = 0. (3.2.41)

3. The functions r, Ω2, Q, and m extend smoothly to the center Γ
.
= U ∩ {u = v} and satisfy

there the boundary conditions

r = m = Q = 0, (3.2.42)

∂ur < 0, ∂vr > 0. (3.2.43)

4. Let γ : [0, S) → U \ Γ be a future-directed electromagnetic geodesic such that r(γ(s)) → 0 as

s → S.5 Then (γu(s), γv(s), pu(s), pv(s)) attains a limit on Γ, say (u∗, v∗, p
u
∗ , p

v
∗), and there

exists a unique electromagnetic geodesic γ′ : (S, S + ε) → U \ Γ for some ε > 0 such that

(γ′u(s), γ′v(s), p′u(s), p′v(s)) → (u∗, v∗, p
u
∗ , p

v
∗) as s→ S. We then require that

lim
s↗S

f(γu(s), γv(s), pu(s), pv(s)) = lim
s↘S

f(γ′u(s), γ′v(s), p′u(s), p′v(s)).

We use the adjective “normalized” to emphasize the choice of a development with double null gauge

anchored to the data as in points 1. and 2. above.

Remark 3.2.11. The “time-symmetric” aspect of the development is captured by the first equalities

in (3.2.27) and (3.2.28), and the equations (3.2.33) and (3.2.36). One can moreover easily verify,

using (3.2.33), (3.2.36), and the formulas for the Christoffel symbols in Section 2.1.3, that {τ = 0}∩U

is a totally geodesic spacelike hypersurface with respect to the (3 + 1)-dimensional metric (2.1.1).

5Such a curve necessarily has ℓ = 0.
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For a normalized development of seed data, we clearly have

Nu = Ω̊2N̊ u, Nv = Ω̊2N̊ v,

Tuu = Ω̊2T̊ uu, T vv = Ω̊2T̊ vv,

Tuv = Ω̊2T̊ uv, S =
Ω̊4

2
T̊ uv − Ω̊2m2ϱ̊,

Q = Q̊, ϖ = ϖ̊

along {τ = 0} ∩ U .

Proposition 3.2.12. Let S be an untrapped time-symmetric seed data set which is consistent with

particles of mass m. Then there exists a δ > 0 and a unique normalized development (r,Ω2, Q, f) of

S defined on {0 ≤ τ < δ} ∩ Cr2 .

Proof. Using essentially the same methods as the proof of Proposition 3.2.3 in Section 3.3, we obtain

a unique local smooth solution (r,Ω2, Q, f) to the system of equations (2.3.20), (2.3.21), (2.3.24),

and (2.3.26), with initial data given by (3.2.31)–(3.2.41). It remains to show that the constraints

(2.3.22), (2.3.23), and (2.3.25) hold.

By the same calculation as in the proof of Proposition 3.2.3, equation (2.3.26) implies the con-

servation law (2.3.32) for N . Let v ∈ (0, r2). By integration of (2.3.24),

Q(u, v) = Q̊(v)−
∫ u

−v

1
2er

2Ω2Nv du′

for u ≥ −v. Differentiating in v, using (3.2.30), (2.3.32), and the fundamental theorem of calculus

yields (2.3.25) at (u, v).

To prove that (2.3.22) and (2.3.23) hold, we argue as in the proof of Proposition 3.2.3. Therefore,

it suffices to show that (2.3.23) holds on initial data (the corresponding argument for (2.3.22) being

the same). By (3.2.38) and (3.2.41), (2.3.23) clearly holds on the initial outgoing cone. By taking

the absolute v-derivative of ∂vr(−v, v) = 1
2 , we obtain ∂2vr(−v, v) = ∂u∂vr(−v, v). Therefore, using
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(2.3.20), (3.2.29), and (3.2.35), we readily compute

∂2vr − ∂vr∂vlog Ω
2 +

1

4
rΩ4T vv = ∂u∂vr −

1

4Ω2

d

dr

(
1− 2m̊

r

)−1

+
1

4
rΩ4T vv

= −Ω2m

2r2
+

Ω2Q2

4r3
+

1

4
rΩ4Tuv

− 1

4Ω2

(
−2Ω4m̊

r2
+
rΩ6

2
(Tuu + 2Tuv + T vv) +

Ω4Q2

r3

)
+

1

4
rΩ4T vv

= 0,

where every function is being evaluated at (−v, v). This is equivalent to (2.3.23) and completes the

proof.

Remark 3.2.13. Let r0 ∈ (0, r2) be such that f̊(r, pu, pv) = 0 if r ∈ (0, r0]. Since f̊ is assumed

to be compactly supported, such an r0 necessarily exists. Then if (U , r,Ω2, Q, f) is a normalized

development of S, the portion of the triangle {v ≤ r0} inside of U is identically Minkowskian in the

sense that

r = 1
2 (v − u),

Ω2 = 1,

Q = f = 0

on U ∩ {v ≤ r0}. In fact, we may therefore assume that any normalized development of S contains

the full corner Cr2 ∩ {v ≤ r0}.

Remark 3.2.14. One can verify that a normalized development as in Definition 3.2.10 defines a

solution of the constraint equations associated to the (3 + 1)-dimensional Einstein–Maxwell–Vlasov

system after applying the correspondence of Proposition 2.3.10. In particular, the lift of τ = 0 will

be totally geodesic in the (3 + 1)-dimensional spacetime.

Remark 3.2.15. One can “maximalize” Proposition 3.2.12 to show the existence of a maximal globally

hyperbolic development of S, but this requires treating the local existence and uniqueness problem

for the spherically symmetric Einstein–Maxwell–Vlasov system at the center of symmetry, which we

do not address here.6 Indeed, since our charged Vlasov beams spacetimes will always be vacuum near

r = 0, existence and uniqueness near the center will be completely trivial in our specific construction

and is established in the following lemma.

6In the case m > 0 one could directly appeal to [BC73] to get local well-posedness near r = 0.
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Lemma 3.2.16. Let u0 ≤ v0 < v1, r0 ≥ 0, λ0 > 0, and α : [u0, v0] → R>0 and β : [v0, v1] : R>0 be

smooth functions satisfying the relations

α(u0) = β(v0), α(v0) = 4λ20, r0 =
1

4λ0

∫ v0

u0

α(u′) du′.

Then there exists a unique smooth solution (r,Ω2, Q, f) of the spherically symmetric Einstein–

Maxwell–Vlasov system on

[u0, v0]× [v0, v1] ∪ ({v ≥ u} ∩ {u ≥ v0} ∩ {v ≤ v1})

with Q and f identically vanishing, satisfying the boundary conditions of Definition 3.2.10 along

{u = v}, together with

r(u0, v0) = r0, ∂vr(u0, v0) = λ0, Ω2|[u0,v0]×{v0} = α, Ω2|{u0}×[v0,v1] = β.

The solution is given by the explicit formulas

r(u, v) = r0 +
λ0
β(v0)

∫ v

v0

β(v′) dv′ − 1

4λ0

∫ u

u0

α(u′) du′, Ω2(u, v) =
α(u)β(v)

β(v0)

for (u, v) ∈ [u0, v0]× [v0, v1] and

r(u, v) =
λ0
β(v0)

∫ v

u

β(v′) dv′, Ω2(u, v) =
4λ0
β(v0)2

β(u)β(v)

for (u, v) ∈ {v ≥ u} ∩ {u ≥ v0} ∩ {v ≤ v1}.

Remark 3.2.17. From the last formula, it follows that

∂uΩ
2(u, u) = ∂vΩ

2(u, u). (3.2.44)

3.3 The characteristic initial value problem for spherically

symmetric nonlinear wave-transport systems

In this section, we prove local well-posedness for the spherically symmetric Einstein–Maxwell–Vlasov

system in small characteristic rectangles away from the center. In fact, we consider the general system
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of equations

∂u∂vΨ = F (Ψ, ∂Ψ, Q,M [f ],Muv[f ]), (3.3.1)

∂uQ = K(Ψ,Mv[f ]), (3.3.2)

X(pu, pv,Ψ, ∂Ψ, Q)f = 0, (3.3.3)

where Ψ : R2
u,v → RN is a vector-valued function taking the role of the “wave-type” variables r and

Ω2, Q : R2
u,v → R is the charge, f : TR2

u,v → R≥0 is the distribution function,

M [f ]
.
=

∫ ∞

0

∫ ∞

0

f dpudpv, Mv[f ]
.
=

∫ ∞

0

∫ ∞

0

pvf dpudpv, Muv[f ]
.
=

∫ ∞

0

∫ ∞

0

pupvf dpudpv

are moments of f , F = (F1, . . . , FN ) and K are smooth functions of their variables, and X is a

vector field on R2
u,v of the form

X(pu, pv,Ψ, ∂Ψ, Q) = pu∂u + pv∂v + ξu(pu, pv,Ψ, ∂Ψ, Q)∂pu + ξv(pu, pv,Ψ, ∂Ψ, Q)∂pv ,

where ξu and ξv are smooth functions of their variables. Letting a ∈ {u, v}, we can write X using

Einstein notation as

X = pa∂a + ξa∂pa .

We assume that there exist functions Gk : R≥0 → R≥0 for k ≥ 0 such that

|Di1
Ψ,∂Ψ,Q∂

i2
p ξ

u(pu, pv,Ψ, ∂Ψ, Q)|+ |Di1
Ψ,∂Ψ,Q∂

i2
p ξ

v(pu, pv,Ψ, ∂Ψ, Q)| ≤ Gk(M)⟨pτ ⟩2−i2 (3.3.4)

if |Ψ|+ |∂Ψ|+ |Q| ≤M and i1+ i2 = k, where ⟨s⟩ .=
√
1 + s2 and pτ

.
= 1

2 (p
u+pv). Here Di1

Ψ,∂Ψ,Q∂
i2
p

denotes any expression involving i1 derivatives in the (Ψ, ∂Ψ, Q)-variables and i2 derivatives in the

(pu, pv)-variables. We also assume that there exists a constant m ≥ 0 such that

ξupv + ξvpu = 0 (3.3.5)

whenever pupv = m2. These structural assumptions are verified for a renormalized version of the

spherically symmetric Einstein–Maxwell–Vlasov system.
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Given U0 < U1 and V0 < V1, let

C(U0, U1, V0, V1)
.
= ({U0} × [V0, V1]) ∪ ([U0, U1]× {V0}),

R(U0, U1, V0, V1)
.
= [U0, U1]× [V0, V1].

We will consistently omit (U0, U1, V0, V1) from the notation for these sets. We also define

Pm .
= {(u, v, pu, pv) ∈ TR2 : pu ≥ 0, pv ≥ 0, pτ > 0, pupv ≥ m2},

Hκ .
= {(u, v, pu, pv) ∈ TR2 : pu ≥ 0, pv ≥ 0, pτ > κ}

and set P
.
= P 0. A function ϕ : C → R is said to be smooth if it is continuous and ϕ|{U0}×[V0,V1]

and ϕ|[U0,U1]×{V0} are C∞ single-variable functions. This definition extends naturally to functions

f : Pm|C → R. A smooth characteristic initial data set for the system (3.3.1)–(3.3.3) consists of

a triple (Ψ̊, Q̊, f̊) and numbers κ > 0, σ > 4, where Ψ̊ : C → RN , Q̊ : {U0} × [V0, V1] → R, and

f̊ : Pm|C → R≥0 are smooth. We additionally assume that spt(f̊) ⊂ Hκ|C for some κ > 0 (which is

only an extra assumption when m = 0) and that

∥f̊∥Ck
σ(P |C)

.
=

∑
0≤i1+i2≤k

(
sup

Pm|{U0}×[V0,V1]

⟨pτ ⟩σ+i2 |∂i1v ∂i2p f̊ |+ sup
Pm|[U0,U1]×{V0}

⟨pτ ⟩σ+i2 |∂i1u ∂i2p f̊ |

)
(3.3.6)

is finite for every k ≥ 0. For f : Pm|R → R≥0 and k ≥ 0, we define the norms

∥f∥Ck
σ(P |R)

.
=

∑
0≤i1+i2≤k

sup
Pm|R

⟨pτ ⟩σ+i2 |∂i1x ∂i2p f |,

where ∂i1x denotes i1 derivatives in the (u, v)-variables.

Proposition 3.3.1. For any B > 0, κ > 0, and σ > 4 there exists a constant ε > 0 (depending also

on F , K, and X) with the following property. Let (Ψ̊, Q̊, f̊) be a smooth characteristic initial data

set for the system (3.3.1)–(3.3.3) on C(U0, U1, V0, V1). If U1 − U0 < ε, V1 − V0 < ε, and

∥Ψ̊∥C2(C) + ∥Q̊∥C1(C) + ∥f̊∥C1
σ(P |C) ≤ B, (3.3.7)

then there exists a unique smooth solution (Ψ, Q, f) of (3.3.1)–(3.3.3) on R(U0, U1, V0, V1) which

extends the initial data. Moreover, the distribution function f is supported in Hκ/2 and for any
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k ≥ 0, the norm

∥Ψ∥Ck(R) + ∥Q∥Ck(R) + ∥f∥Ck
σ(P |R)

is finite and can be bounded in terms of initial data norms.

Remark 3.3.2. While we assume that the initial data (Ψ̊, Q̊, f̊) are smooth (and that f̊ satisfies the

nontrivial bound (3.3.6) at any order), the existence time ε in the proposition depends only on the

estimate (3.3.7).

Remark 3.3.3. If we assume that f̊ has compact support in the momentum variables, then (3.3.6)

is automatic by smoothness.

3.3.1 Proof of Proposition 3.3.1

In this section, we assume the hypotheses and setup of Proposition 3.3.1. We also set U0 = V0 = 0

and define τ
.
= 1

2 (v + u). Therefore, 0 ≤ τ ≤ ε on R.

We will construct the solution (Ψ, Q, f) as the limit of an iteration scheme.

Lemma 3.3.4. There exist sequences of constants {C̃k} and {Ck} such that the following holds. For

any ε sufficiently small and every n ≥ 1, there exist functions (Ψn, Qn, fn) ∈ C∞(R) × C∞(R) ×

C∞(Pm|R) solving the iterative system

∂u∂vΨn = F (Ψn−1, ∂Ψn−1, Qn−1,M [fn−1],M
uv[fn−1]), (3.3.8)

∂uQn = K(Ψn−1,M
v[fn−1]), (3.3.9)

X(pu, pv,Ψn−1, ∂Ψn−1, Qn−1)fn = 0, (3.3.10)

where we set (Ψ0, Q0, f0) to be identically zero, with initial conditions

Ψn|C = Ψ̊, Qn|C = Q̊, fn|P |C = f̊ . (3.3.11)

Moreover, spt(fn) ⊂ Hκ/2 and these functions satisfy the bounds

∥Ψ∥Ck(R) ≤ C̃ke
Ckτ , (3.3.12)

∥Qn∥Ck(R) ≤ C̃k+1e
Ck+1τ , (3.3.13)

∥fn∥Ck
σ(P |R) ≤ C̃k+1e

Ck+1τ . (3.3.14)
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It is convenient to set

Fn
.
= F (Ψn, ∂Ψn, Qn,M [fn],M

uv[fn]),

Kn
.
= K(Ψn,M

v[fn]),

Xn
.
= X(pu, pv,Ψn, ∂Ψn, Qn)

for n ≥ 0. We first require a preliminary lemma about integral curves of the vector field Xn.

Lemma 3.3.5. For n ≥ 0, let Γm,κ
n denote the set of maximal integral curves γ̃ = (γ, p) : I → TR

(where I is a closed interval containing 0) of the vector field Xn subject to the condition that γ̃(0) ∈

Hκ ∩ Pm. Assume that Ψn satisfies (3.3.12) for k = 1 and Qn satisfies (3.3.13) for k = 0. Then

for ε sufficiently small (depending in particular on κ) and any γ̃ ∈ Γn, γ is a future-directed causal

curve in R connecting C with the future boundary of R, γ̃(s) ∈ Pm ∩Hκ/2 for every s ∈ I, and

1

2
pτ (0) ≤ pτ (s) ≤ 2pτ (0) (3.3.15)

for every s ∈ I.

Proof. Let γ̃ = (γ, p) ∈ Γn and set τ0
.
= γτ (0). By definition,

dγa

ds
= pa,

dpa

ds
= ξan

for a ∈ {u, v}, where ξan
.
= ξa(pu, pv,Ψn, ∂Ψn, Qn). Observe that Xn is tangent to the the boundary

of Pm, {(u, v, pu, pv) ∈ TR : pupv = m2}, by (3.3.5), so γ̃ remains within Pm. Reparametrizing γ̃

by τ gives

d

dτ
(pτ )2 = 2(ξun + ξvn).

Using (3.3.4), the assumptions on Ψn and Qn, and Grönwall’s inequality, we have

pτ (τ)2 ≤ eO(ε)
(
pτ (τ0)

2 +O(ε)
)
≤ 2pτ (τ0)

2

for τ in the domain of γ̃ and for ε sufficiently small. This proves the second inequality in (3.3.15).

To prove the first inequality, we observe that by the estimate we have just proved,

|(pτ (τ))2 − (pτ (τ0))
2| ≲ ε sup

γ̃
|ξun + ξvn| ≲ εpτ (τ0)

2
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Choosing ε perhaps even smaller proves (3.3.15) and completes the proof of the lemma.

Proof of Lemma 3.3.4. The proof is by induction on n and induction on k for each fixed n. As the ex-

istence and estimates for the base case n = 0 are trivial, we assume the existence of (Ψn−1, Qn−1, fn−1)

satisfying (3.3.12)–(3.3.14), where the constants are still to be determined. We will choose the con-

stants to satisfy C̃k ≤ Ck ≤ C̃k+1, which we use without comment in the sequel. By (3.3.12)–(3.3.14)

for (Ψn−1, Qn−1, fn−1) and iterating the chain rule, it is easy to see that

|∂kMn−1| ≤ C(C̃k+1)e
Ck+1τ (k ≥ 0), (3.3.16)

|Fn−1| ≤ C(C1), (3.3.17)

|∂kFn−1| ≤ C(C̃k+1)e
Ck+1τ (k ≥ 1), (3.3.18)

|Kn−1| ≤ C(C1), (3.3.19)

|∂kKn−1| ≤ C(C̃k+1)e
Ck+1τ (k ≥ 1), (3.3.20)

where Mn−1 ∈ {M [fn−1],M
v[fn−1],M

uv[fn−1]}. We also define the number

B′ .= |F (Ψ̊, ∂Ψ̊, Q̊,M [f̊ ],Muv[f̊ ])|(0,0) + |K(Ψ̊,Mv[f̊ ])|(0,0).

Step 1. The function Ψn is defined by the explicit formula

Ψn(u, v)
.
=

∫ u

0

∫ v

0

Fn−1(u
′, v′) dv′du′ + Ψ̊(u, 0) + Ψ̊(0, v)− Ψ̊(0, 0). (3.3.21)

It follows by inspection of this representation formula and (3.3.17) that

∥Ψn∥C1(R) ≤ 10B (3.3.22)

if ε is sufficiently small depending on C1. We estimate k-th order derivatives (k ≥ 2) of the form

∂kuΨn, ∂
k−2
x ∂u∂vΨn, and ∂

k
vΨn separately. For the first type, we simply differentiate the represen-

tation formula (3.3.21) k times to obtain

|∂kuΨn| ≤ (data) +

∫ v

0

|∂k−1
u Fn−1| dv′ ≤ C +

C(C̃k)

Ck
eCkτ ≤ C̃ke

Ckτ

for appropriate choices of C̃k and Ck. For mixed derivatives, we differentiate the wave equation to
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obtain

|∂k−2
x ∂u∂vΨn−1| ≤ sup

{0}×[0,V0]

|∂k−2
x Fn−1|+

∫ u

0

|∂u∂k−2Fn−1| du′ ≤ C(Ck−1) +
C(C̃k)

Ck
eCkτ ≤ C̃ke

Ckτ

for appropriate choices of C̃k and Ck. The estimate for ∂kvΨn is similar to ∂kuΨn. For later use, we

derive a slightly improved estimate for ∂2xΨn. Using the mean value theorem and (3.3.18), we have

|Fn−1 −B′| ≤ C(C2)τ.

We also have

|∂2uΨn − (data)|+ |∂2vΨn − (data)| ≤ C(C2)τ.

Therefore, for ε sufficiently small depending on C2, combined with (3.3.22), we infer

∥Ψn∥C2(R) ≤ 20(B +B′). (3.3.23)

This completes Step 1.

Step 2. The function Qn is defined by the explicit formula

Qn(u, v) =

∫ u

0

Kn−1(u
′, v) du′ + Q̊(0, v).

It follows by inspection of this representation formula and (3.3.19) that

∥Q∥C0(R) ≤ 10B

for ε sufficiently small depending on C1. For k ≥ 1, we estimate

|∂kvQn| ≤ (data) +

∫ u

0

|∂kvKn−1| du′ ≤ C +
C(C̃k+1)

Ck+1
eCk+1τ ≤ C̃k+1e

Ck+1τ ,

|∂k−1∂uQn| ≤ sup
{0}×[0,V0]

|∂k−1Kn−1|+
∫ u

0

|∂kKn−1| du′ ≤ C(Ck) +
C(C̃k+1)

Ck+1
eCk+1τ ≤ C̃k+1e

Ck+1τ

for appropriate chices of C̃k+1 and Ck+1. Arguing as in Step 1, for ε sufficiently small depending on

C2, we also infer

∥Qn∥C1(R) ≤ 20(B +B′). (3.3.24)

This completes Step 2.
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Step 3. For fn we do not have an explicit representation formula and must instead infer its

existence from general properties of flows of vector fields. A slight technical issue is that the “initial

data hypersurface” P |C is not smooth because of the corner in C. Therefore, in order to prove the

existence of a smooth fn, we will construct it as a smooth limit of smooth solutions to the Xn−1

transport equation, corresponding to initial data where we smooth out the corner in C. To carry

out this idea, we first extend f̊ to C∞
σ (Pm|R) according to

E f̊(u, v, pu, pv) .= f̊(u, 0, pu, pv) + f̊(0, v, pu, pv)− f̊(0, 0, pu, pv)

and set, for j ≥ 1,

Sj
.
= {(u, v) ∈ R : uv = 2−j},

Rj
.
= {(u, v) ∈ R : uv ≥ 2−j .}

For any j ≥ j0 sufficiently large that Sj ̸= ∅, there exists a unique function fn,j ∈ C∞(Pm|Rj
) such

that

Xn−1fn,j = 0 (3.3.25)

in Rj , with initial data fn,j = E f̊ on Pm|Sj . The existence follows immediately from the flowout

theorem (see [Lee13, Theorem 9.20]), the fact that Xn−1 is transverse to Pm|Sj
, and Lemma 3.3.5.

It also follows from Lemma 3.3.5 that spt(fn,j) ⊂ Hκ/2. We will use the fact that pτ ≥ κ/2 for any

γ̃ ∈ Γm,κ
n−1 often and without further comment in the sequel.

We now claim that we can choose C̃k and Ck such that

∥fn,j∥Ck
σ(P |Rj

) ≤ C̃k+1e
Ck+1τ (3.3.26)

for every n ≥ 0, j ≥ j0, and k ≥ 0. Let Fn,j,k denote the vector with
(
k+3
k

)
components of the form

(pτ )σ+i2∂i1x ∂
i2
p fn,j , (3.3.27)

where i1 + i2 = k. We will show inductively that C̃k+1 and Ck+1 can be chosen so that

sup
Pm|Rj

|Fn,j,k| ≤ C̃k+1e
Ck+1τ , (3.3.28)
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which would imply (3.3.26).

Orders k = 0 and k = 1 are slightly anomalous in our scheme and we handle them first. We

require the estimate

⟨pτ ⟩−2|∂≤1
x ξan−1|+ ⟨pτ ⟩−1|∂pξan−1| ≲ 1, (3.3.29)

which follows from (3.3.4), (3.3.23), and (3.3.24). Using (3.3.25), we compute

Xn−1((p
τ )σfn,j) =

σ

2
(pτ )σ−1(ξun−1 + ξvn−1)fn,j .

From (3.3.29) we then infer

|Xn−1((p
τ )σfn,j)| ≲ (pτ )σ+1fn,j .

Let γ̃ ∈ Γm,κ
n−1 be parametrized by coordinate time τ . Then along γ̃ we have

∣∣∣∣ ddτ Fn,j,0
∣∣∣∣ ≲ |Fn,j,0|,

whence by Grönwall’s inequality

|Fn,j,0| ≲ ∥E f̊∥C0
σ(P |R) ≲ ∥f̊∥C0

σ(P |C).

Next, we compute

|Xn−1((p
τ )σ∂xfn,j)| ≲ (pτ )σ+1|∂xfn,j |+ (pτ )σ|[Xn−1, ∂x]fn,j |.

The commutator is estimated using (3.3.29) by

|[Xn−1, ∂x]fn,j | ≲ |∂xξan−1||∂pfn,j | ≲ (pτ )2|∂pfn,j |.

The p derivative of fn,j satisfies

|Xn−1((p
τ )σ+1∂pfn,j)| ≲ (pτ )σ+2|∂pfn,j |+ (pτ )σ+1|[Xn−1, ∂p]fn,j |,

where the commutator is now estimated by

|[Xn−1, ∂p]fn,j | ≲ |∂xfn,j |+ |∂pξan−1||∂xfn,j | ≲ |∂xfn,j |+ pτ |∂pfn,j |.
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Putting these estimates together, we find that

∣∣∣∣ ddτ Fn,j,1
∣∣∣∣ ≲ |Fn,j,1|,

whence again by Grönwall’s inequality we conclude a uniform bound

|Fn,j,1| ≲ ∥f̊∥C1
σ(P |C). (3.3.30)

Having now established cases k = 0 and k = 1 of (3.3.28), we now assume (3.3.28) up to order

k − 1. Let φi1,i2 be a component of Fn,j,k. We adopt the convention that if either i1 or i2 are

negative, then φi1,i2 is interpreted as identically zero. Using (3.3.4) and (3.3.29), we estimate

|Xn−1 (φi1,i2)| ≲ (pτ )σ+i2−1|ξun−1 + ξvn−1||∂i1x ∂i2p fn,j |+ (pτ )σ+i2 |[Xn−1, ∂
k]fn,j |

≲ pτ |φi1,i2 |+ (pτ )σ+i2 |[pa∂a, ∂i1x ∂i2p ]fn,j |+ (pτ )σ+i2 |[ξan−1∂pa , ∂
i1
x ∂

i2
p ]fn,j |. (3.3.31)

The first commutator, [pa∂a, ∂
i1
x ∂

i2
p ]fn,j , vanishes unless i1 ≥ 1 and therefore consists of terms of

the form ∂i1+1
x ∂i2−1

p fn,j , which implies

(pτ )σ+i2 |[pa∂a, ∂i1x ∂i2p ]fn,j | ≲ pτ |φi1+1,i2−1| ≲ pτ |Fn,j,k|. (3.3.32)

The second commutator can be estimated by

|[ξan−1∂pa , ∂
i1
x ∂

i2
p ]f | ≲

∑
1≤j1+j2

j1≤i1,j2≤i2

|∂j1x ∂j2p ξan−1||∂i1−j1x ∂i2+1−j2
p fn,j |.

By inspection, ∂j1x ∂
j2
p ξ

a
n−1 is linear in ∂j1+1

x Ψn−1, which is the worst behaved term in our inductive

hierarchy. Therefore, using again (3.3.4), we may estimate

|∂j1x ∂j2p ξan−1| ≲
(
C(Ck) + C̃j1+1e

Cj1+1τ
)
(pτ )2−j2

and therefore infer

(pτ )σ+i2 |[ξan−1∂pa , ∂
i1
x ∂

i2
p ]fn,j | ≲ pτ

∑
1≤j1+j2

j1≤i1,j2≤i2

(
C(Ck) + C̃j1+1e

Cj1+1τ
)
|Fn,j,k+1−j1−j2 |.
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If j1 < k, then C̃j1+1e
Cj1+1τ ≤ C(Ck). If j1 = k, then j2 = 0 and

(
C(Ck) + C̃j1+1e

Cj1+1τ
)
|Fn,j,k+1−j1−j2 | =

(
C(Ck) + C̃k+1e

Ck+1τ
)
|Fn,j,1| ≲ C(Ck)C̃k+1e

Ck+1τ ,

(3.3.33)

where we have used (3.3.30). Therefore, the sum in (3.3.1) can be estimated by

≲ C(Ck)
(
|Fn,j,k|+ C̃k+1e

Ck+1τ
)
.

Putting (3.3.31), (3.3.32), (3.3.1), and (3.3.33) together, we arrive at

|Xn−1Fn,j,k| ≲ C(Ck)p
τ
(
|Fn,j,k|+ C̃k+1e

Ck+1τ
)
.

As before, a simple Grönwall argument now establishes (3.3.26) for appropriate choices of C̃k+1 and

Ck+1.

Having now established the boundedness of the sequence fn,j , we may take the limit j → ∞

(after perhaps passing to a subsequence). This shows the existence of a function fn ∈ C∞(Pm|R)

with spt(fn) ⊂ Hκ/2, satisfying the estimates (3.3.14), and attaining f̊ on Pm|C . Finally, uniqueness

of fn is immediate since it is constant along the integral curves of Xn−1.

Proof of Proposition 3.3.1. We prove first that the sequence iterative sequence (Ψn, Qn, fn) con-

structed in Lemma 3.3.4 is Cauchy in C2 × C1 × C1
σ. We claim that if ε is sufficiently small, then

the following estimate holds for every n ≥ 2:

∥Ψn −Ψn−1∥C2(R) + ∥Qn −Qn−1∥C1(R) + ∥fn − fn−1∥C1
σ(P |R)

≤ 1

2

(
∥Ψn−1 −Ψn−2∥C2(R) + ∥Qn−1 −Qn−2∥C1(R) + ∥fn−1 − fn−2∥C1

σ(P |R)

)
. (3.3.34)

Using the mean value theorem and the boundedness of the iterative sequence, we immediately

estimate

∥Fn−1−Fn−2∥C1(R) ≲ ∥Ψn−1−Ψn−2∥C2(R)+∥Qn−1−Qn−2∥C1(R)+∥fn−1−fn−2∥C1
σ(P |R). (3.3.35)

Using the formula

(Ψn −Ψn−1)(u, v) =

∫ u

0

∫ v

0

(Fn−1 − Fn−2) dv
′du′

we readily infer that for ε sufficiently small, Ψn − Ψn−1 and ∂ia(Ψn − Ψn−1) for a ∈ {u, v} and
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i ∈ {1, 2} are bounded by an arbitrarily small multiple of the right-hand side of (3.3.34). To

estimate the mixed second partial derivative, we simply use the fundamental theorem of calculus to

bound

∥Ψn−1 −Ψn−2∥C1(R) + ∥Qn−1 −Qn−2∥C0(R) + ∥Mn−1 −Mn−2∥C0(R)

by an arbitrarily small multiple of the right-hand side of (3.3.34) and then use the mean value

theorem to estimate

|∂u∂v(Ψn −Ψn−1)| ≤ ∥Fn−1 − Fn−2∥C0(R)

≲ ∥Ψn−1 −Ψn−2∥C1(R) + ∥Qn−1 −Qn−2∥C0(R) + ∥Mn−1 −Mn−2∥C0(R).

The argument for bounding ∥Qn −Qn−1∥C1(R) is essentially the same and is omitted.

To estimate fn − fn−1, we examine the quantity

Fn
.
= (pτ )σ (fn − fn−1, ∂x(fn − fn−1), p

τ∂p(fn − fn−1))

along integral curves of Xn−1. First, note that Fn ̸= 0 only along curves in Γm,κ
n−1 ∪ Γm,κ

n−2. By

Lemma 3.3.5 (and choosing ε perhaps smaller), any value γ̃n−2(s) for a curve γ̃n−2 ∈ Γm,κ
n−2 can be

realized as an initial value γ̃n−1(0) for a curve γ̃n−1 ∈ Γ
m,κ/2
n−1 . Therefore, it suffices to observe that

the following estimate holds along any curve γ̃n−1 ∈ Γ
m,κ/2
n−1 :

∣∣∣∣ ddτ Fn
∣∣∣∣ ≲ |Fn|+ ∥Ψn−1 −Ψn−2∥C2(R) + ∥Qn−1 −Qn−2∥C1(R) + ∥fn−1 − fn−2∥C1

σ(P |R),

which is obtained by simply differentiating Fn and using the estimates proved in Lemma 3.3.4.

Therefore, since Fn vanishes along Pm|C , Grönwall’s inequality implies

|Fn| ≲ ε
(
∥Ψn−1 −Ψn−2∥C2(R) + ∥Qn−1 −Qn−2∥C1(R) + ∥fn−1 − fn−2∥C1

σ(P |R)

)
.

After choosing ε sufficiently small, the proof of (3.3.35) is complete.

Therefore, (Ψn, Qn, fn) converges to a solution (Ψ, Q, f) of the system (3.3.1)–(3.3.3) in C2 ×

C1 × C1, which is moreover C∞ smooth by the higher order estimates proved in Lemma 3.3.4.

Uniqueness of the solution can be proved along the same lines as the proof of the estimate (3.3.34)

and is omitted.
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3.3.2 Proof of local well posedness for the Einstein–Maxwell–Vlasov sys-

tem

In this section, we prove Proposition 3.2.3, local well-posedness for the Einstein–Maxwell–Vlasov

system in small characteristic rectangles. The proof has 3 steps: In the first step, we solve the

wave equations (2.3.20) and (2.3.21), the ingoing Maxwell equation (2.3.24), and the Maxwell–

Vlasov equation (2.3.26) using Proposition 3.3.1. In order to directly quote Proposition 3.3.1, we

in fact consider a renormalized system that fixes the location of the mass shell to the fixed family

of hyperbolas p̃up̃v = m2. In step 2, we show that the outgoing Maxwell equation holds as a result

of conservation law (2.3.32), which follows from the Maxwell–Vlasov equation (2.3.26). Finally, in

step 3, we show that Raychaudhuri’s equations (2.3.22) and (2.3.23) hold, using now the Bianchi

identities (2.3.33) and (2.3.34), which again follow from (2.3.26). Steps 2 and 3 may be thought of

as propagation of constraints, as they require the relevant equations to hold on initial data.

Proof of Proposition 3.2.3. Step 1. Consider the wave-transport system

∂u∂vr = −Ω2

4r
− ∂ur∂vr

r
+
πrΩ2

4

∫
p̃up̃v≥m2

p̃up̃v f̃(u, v, p̃u, p̃v) dp̃udp̃v, (3.3.36)

∂u∂vlog Ω
2 =

Ω2

2r2
+

2∂ur∂vr

r2
+
πΩ2

2

∫
p̃up̃v≥m2

p̃up̃v f̃(u, v, p̃u, p̃v) dp̃udp̃v

− πΩ2

2

∫
p̃up̃v≥m2

(p̃up̃v −m2)f̃(u, v, p̃u, p̃v) dp̃udp̃v, (3.3.37)

∂uQ = −π
2
er2Ω

∫
p̃up̃v≥m2

p̃uf̃(u, v, p̃u, p̃v) dp̃udp̃v, (3.3.38)

X̃f̃ = 0, (3.3.39)

where

X̃
.
= p̃u∂u + p̃v∂v −

(
∂ulog Ω(p̃

u)2 − ∂vlog Ωp̃
up̃v +

2∂vr

r
(p̃up̃v −m2) + e

ΩQ

r2
p̃u
)
∂p̃u

−
(
∂vlog Ω(p̃

v)2 − ∂ulog Ωp̃
up̃v +

2∂ur

r
(p̃up̃v −m2)− e

ΩQ

r2
p̃v
)
∂p̃v ,

with initial data Ψ̊ = (log r̊, log Ω̊2), Q̊, and
˚̃
f(u, v, p̃u, p̃v) = f̊(u, v, Ω̊−1p̃u, Ω̊−1p̃v). Since log Ω̊2 is

bounded on C and either m > 0 or ℓ ≥ cℓ on spt(f̊), there exists a κ > 0 such that spt(
˚̃
f) ⊂ Hκ. Fur-

thermore, the structural conditions (3.3.4) and (3.3.5) are easily verified for X̃, so Proposition 3.3.1

produces a unique local smooth solution to (3.3.36)–(3.3.39) if εloc is chosen sufficiently small. Mak-

ing the change of variables p̃u 7→ Ωpu and p̃v 7→ Ωpv, defining f(u, v, pu, pv) = f̃(u, v,Ωpu,Ωpv), and
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observing that

Xf = Ω−1X̃f̃ = 0,

we have obtained a unique local smooth solution (r,Ω2, Q, f) for the system (2.3.20), (2.3.21),

(2.3.24), and (2.3.26) on R which extends the initial data.

Step 2. We first aim to prove (2.3.32) using only (2.3.26). At this point, one could apply Propo-

sition 2.3.10 and (2.1.11) to derive (2.3.32), but we give now a direct proof.

First, using the definitions (2.3.14) and (2.3.15), we have

∂u

(
r2Ω2

π
Nu

)
+ ∂v

(
r2Ω2

π
Nv

)
= ∂u

∫ ∞

0

∫ ∞

m2/(Ω2pv)

r2Ω4puf dpudpv + ∂v

∫ ∞

0

∫ ∞

m2/(Ω2pu)

r2Ω4pvf dpvdpu

=

∫
Ω2pupv≥m2

(
2r∂urΩ

4puf + 2r2Ω4∂ulog Ω
2puf + r2Ω4pu∂uf

)
dpudpv

+

∫
Ω2pupv≥m2

(
2r∂vrΩ

4pvf + 2r2Ω4∂vlog Ω
2pvf + r2Ω4pv∂vf

)
dpudpv

+

∫ ∞

0

m4r2

(pv)2
∂ulog Ω

2f dpv +

∫ ∞

0

m4r2

(pu)2
∂vlog Ω

2f dpu. (3.3.40)

Adding both terms involving spatial derivatives of f and using (2.3.26) yields

∫
Ω2pupv≥m2

r2Ω4 (pu∂uf + pv∂vf) dp
udpv =

∫ ∞

0

∫ ∞

m2/(Ω2pv)

r2Ω4Ξu∂puf dp
udpv

+

∫ ∞

0

∫ ∞

m2/(Ω2pu)

r2Ω4Ξv∂pvf dp
vdpu, (3.3.41)

where

Ξu
.
= ∂ulog Ω

2(pu)2 +
2∂vr

rΩ2
(Ω2pupv −m2) + e

Q

r2
pu,

Ξv
.
= ∂vlog Ω

2(pv)2 +
2∂ur

rΩ2
(Ω2pupv −m2)− e

Q

r2
pv.

Integrating the first term on the right-hand side of (3.3.41) by parts, we find

∫ ∞

0

∫ ∞

m2/(Ω2pv)

r2Ω4Ξu∂puf dp
udpv = −

∫
Ω2pupv≥m2

(
2r2Ω4∂ulog Ω

2pu + 2r∂vrΩ
4pv + eΩ4Q

)
f dpudpv

−
∫ ∞

0

(
m4r2

(pv)2
∂ulog Ω

2 + e
m2Ω2

pv
Q

)
f dpv, (3.3.42)
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where f is evaluated at pu = m2/(Ω2pv), and for the second term,

∫ ∞

0

∫ ∞

m2/(Ω2pu)

r2Ω4Ξv∂pvf dp
vdpu = −

∫
Ω2pupv≥m2

(
2r2Ω4∂vlog Ω

2pv + 2r∂urΩ
4pu − eΩ4Q

)
f dpudpv

−
∫ ∞

0

(
m4r2

(pu)2
∂vlog Ω

2 − e
m2Ω2

pu
Q

)
f dpu, (3.3.43)

where f is evaluated at pv = m2/(Ω2pu). Combining (3.3.40)–(3.3.43) yields (2.3.32) after noting

that ∫ ∞

0

e
m2Ω2

pv
Qf dpv =

∫ ∞

0

e
m2Ω2

pu
Qf dpu.

We can now derive the ingoing Maxwell equation (2.3.25). By (2.3.24), we have

Q(u, v) = Q(U0, v)−
∫ u

U0

1
2er

2Ω2Nv du′

on R. We then derive

∂vQ(u, v) = ∂vQ(U0, v)−
∫ u

U0

∂v(
1
2er

2Ω2Nv) du′

= ∂vQ(U0, v) +

∫ u

U0

∂u(
1
2er

2Ω2Nu) du′ = 1
2er

2Ω2Nv(u, v),

where in the final equality we used the fundamental theorem of calculus and the assumption that

(2.3.25) holds on {U0} × [V0, V1].

Step 3. By a lengthy calculation which is very similar to the one performed in step 2, one may

use (2.3.26) to derive the Bianchi identities in the form (2.3.33) and (2.3.34). Using the Maxwell

equations (2.3.24) and (2.3.25), this implies the Bianchi identities in the form (2.1.12) and (2.1.13),

where

Tuu = Tuu, Tuv = Tuv +
Q2

Ω2r4
, Tvv = T vv, S = S +

Q2

2r4
.

By another lengthy calculation, using now also the wave equations (2.3.20) and (2.3.21), one can

derive the pair of identities

∂v

(
r∂2ur − r∂ur∂ulog Ω

2 +
1

4
r2Ω4Tvv

)
= 0,

∂u

(
r∂2vr − r∂vr∂vlog Ω

2 +
1

4
r2Ω4Tuu

)
= 0.

These identities, together with the assumption that (2.3.22) holds on [U0, U1] × {V0} and (2.3.23)
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holds on {U0} × [V0, V1], prove that (2.3.22) and (2.3.23) hold throughout R.
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Chapter 4

Formation of black holes via

characteristic gluing

In this chapter, we give a brief outline of the characteristic gluing constructions used in Chapter 5

and Chapter 6.

4.1 The problem of characteristic gluing

Characteristic gluing is a powerful new method for constructing solutions of the Einstein field equa-

tions by gluing together two existing solutions along a null hypersurface. The setup of characteristic

gluing is depicted in Fig. 4.1 below and we will repeatedly refer to this diagram for definiteness.

C

S1

S2

R2

R1

(M, g, . . . )

Figure 4.1: Penrose diagram depicting the setup of characteristic gluing. The null hypersurface C
is declared to be “outgoing.”

In Fig. 4.1, the two dark gray regions R1 and R2 carry Lorentzian metrics and matter fields

which satisfy (1.0.1). The goal is to embed these regions into a spacetime (M, g, . . . ) which satisfies
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(1.0.1) globally, in the configuration depicted in Fig. 4.1. The characteristic gluing problem reduces

to constructing characteristic data along a null hypersurface C going between spheres S1 ⊂ R1 and

S2 ⊂ R2, so that after constructing the light gray regions in Fig. 4.1 by solving a characteristic

initial value problem, the resulting spacetime is of the desired global regularity.

Characteristic gluing is a useful tool for constructing spacetimes that share features of two

existing solutions, and therefore display interesting behavior. Moreover, the causal structure of the

glued spacetime can be immediately read off from the construction, which makes it well suited to

constructing examples of black hole formation.

4.2 Characteristic gluing for the linear wave equation

The study of the characteristic gluing problem was initiated by Aretakis for the linear scalar wave

equation

2gϕ = 0 (4.2.1)

on general spacetimes (M3+1, g) in [Are17]. Aretakis showed that there is always a finite-dimensional

(but possibly trivial) space of obstructions to the characteristic gluing problem. More precisely, he

showed that there are at most finitely many (possibly none) conserved charges that are computed

from the given solutions at S1 and S2 in Fig. 4.1 that determine whether characteristic gluing can be

performed. These charges are conserved along C for any solution of (4.2.1). This gives a definitive

answer1 to the characteristic gluing problem for (4.2.1): There is a precise characterization of which

solutions can be glued—the matching of all conserved charges is both necessary and sufficient.

The gluing problem along characteristic hypersurfaces for hyperbolic equations and associated

null constraints already appears for the linear wave equation on Minkowski space. On R3+1, let

u = 1
2 (t− r), v = 1

2 (t+ r), and let ϕ be a spherically symmetric solution to the wave equation, i.e.

∂u∂v(rϕ) = 0. (4.2.2)

Let C ∪C be a spherically symmetric bifurcate null hypersurface, that is, C = {u = u0} ∩ {v ≥ v0}

and C = {u1 ≥ u ≥ u0} ∩ {v = v0}. The wave equation (4.2.2) implies that ∂u(rϕ) is conserved

along the outgoing cone C. This implies that ∂uϕ cannot be freely prescribed along C, but is in

fact determined by ∂uϕ on the bifurcation sphere C ∩C. Indeed, as we have seen, the characteristic

initial value problem is well posed with just ϕ itself prescribed along C ∪ C—the full 1-jet of ϕ can

1[Are17] only deals with C1 characteristic gluing, but is definitive in this regularity class.
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then be recovered from (4.2.2). For general spacetimes, the question of null gluing for the linear

wave equation was studied by Aretakis [Are17].

For a general wave equation, ingoing derivatives satisfy transport equations along outgoing null

cones. The general Ck characteristic gluing problem is to be given two spheres S1 and S2 along an

outgoing null cone C, and k ingoing and outgoing derivatives of ϕ at S1 and S2. One then seeks to

prescribe ϕ along the part of C between S1 and S2 so that the outgoing derivatives agree with the

given ones and the solutions of the transport equations for the ingoing derivatives have the specified

initial and final values. In general, the linear characteristic gluing problem is obstructed due to the

presence of conserved charges stemming from conservation laws along C.

Remark 4.2.1. Even in the absence of conservation laws at any order, C∞ gluing of transverse

derivatives may be obstructed in linear theory. This can be seen already for the (1+ 1)-dimensional

wave equation ∂u∂vϕ = f(u, v)ϕ for generic f ∈ C∞(R1+1). For such an f , there are no conservation

laws at any order and by imposing trivial data at S1 and very rapidly growing (in k) ∂ku-derivatives

at S2, one can show that C∞ gluing cannot be achieved. Note that in 1 + 1 dimensions, S1 and S2

are points.

4.3 Characteristic gluing for the Einstein vacuum equations

near Minkowski space

The characteristic gluing problem for the Einstein equations amounts to the following:

Question 4.3.1. Which spheres S1 and S2 in which vacuum spacetimes can be characteristically

glued as in Fig. 4.1 as a solution of the Einstein vacuum equations? Are there any nontrivial

obstructions? If so, can they be characterized geometrically?

For example, a genuine obstruction arises from Raychaudhuri’s equation (see already (2.3.23)),

which implies that S2 cannot be strictly outer untrapped if S1 is (marginally) outer trapped. Another

genuine obstruction arises from the rigidity of the positive mass theorem, which implies that if R2

is Minkowski space, then R1 is either Minkowski space or must be singular or incomplete in some

sense.

Characteristic gluing for the Einstein vacuum equations (1.1.6) was initiated by Aretakis, Czimek,

and Rodnianski in a fundamental series of papers [ACR21; ACR23b; ACR23a]. They study the

perturbative regime around Minkowski space, that is, when both spheres S1 and S2 in Fig. 4.1 are

close to symmetry spheres in Minkowski space. Their proof uses the inverse function theorem to
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reduce the nonlinear problem to a linear characteristic gluing problem for the linearized Einstein

equations in double null gauge around Minkowski space, in the formalism of Dafermos–Holzegel–

Rodnianski [DHR]. In the course of their argument, they discover that the linearized Einstein

equations around Minkowski space in double null gauge possess infinitely many conserved charges.

However, it turns out that all but ten of these charges are due to gauge invariance of the Einstein

equations (cf. the pure gauge solutions of [DHR]). The remaining charges, which we define precisely

in Definition 6.5.2 below, are genuine obstructions to the linear characteristic gluing problem. The

inverse function theorem then gives nonlinear gluing close to Minkowski space, provided that, a

posteriori, the 10 transported gauge-invariant charges at S2 agree with the prescribed charges on S2

(which is in fact also perturbed to deal with the gauge-dependent charges).

The conserved charges of Aretakis–Czimek–Rodnianski can be identified with the ADM energy,

linear momentum, angular momentum, and center of mass. This identification is used in [ACR23a]

to give a new proof of the spacelike gluing results of [Cor00; CS06; CS16] using characteristic gluing.

Later, Czimek and Rodnianski [CR22] made the fundamental observation that the linear conser-

vation laws can be violated at the nonlinear level by certain explicit “high frequency” seed data for

the characteristic initial value problem.2 They then use these high frequency perturbations to adjust

the linearly conserved charges in the full nonlinear theory, so that the main theorem of [ACR21]

applies. The result, which we state as Theorem 6.5.3 in Section 6.5.2 below, is that two spheres

close to Minkowski space can be glued if the differences of the conserved charges satisfy a certain

coercivity condition. Roughly, the assumption is that the change in the Hawking mass be larger

than the changes in the other conserved charges and that the change in angular momentum is itself

much smaller than the distance of S1 and S2 to spheres in Minkowski space. Their result has the

remarkable corollary of obstruction-free spacelike gluing of asymptotically flat Cauchy data to Kerr

in the far region.

We note at this point that the analysis of [ACR21; ACR23b; ACR23a; CR22] is limited to C2

regularity in the ingoing direction u, but allows for arbitrarily high regularity in v and angular

directions.3 It is not clear whether their analysis (especially [CR22]) can be generalized to higher

order transverse derivatives.

The linearized characteristic gluing problem for (1.1.6) was redone in Bondi gauge and extended

to incorporate a cosmological constant and different topologies of the cross sections of the null

2The high frequency perturbations are becoming singular in the Minkowski limit and hence do not linearize in a
regular fashion.

3In this paragraph we are referring to the results in [ACR21; ACR23b; ACR23a; CR22] that have to do with char-
acteristic gluing as is depicted in Fig. 4.1. Aretakis–Czimek–Rodnianski also consider another type of characteristic
gluing, bifurcate characteristic gluing, which works to arbitrarily high order of differentiability.
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hypersurface C by Chruściel, Cong, and Gray [CC22; CCG24]. This work also addresses linearized

characteristic gluing of higher order transverse derivatives.

Question 4.3.2. Is there a general geometric characterization of conservation laws associated to

the linearized Einstein equations around a fixed background? Is there always a finite number of

conservation laws? Is the generic spacetime free of conservation laws at the linear level?

One might also wonder if there is a precise connection between the conservation laws observed

in the null setting with the cokernel of the linearized constraint map studied in the spacelike gluing

problem [Cor00; CS06; CD03]. We refer the reader to [CC23] for more discussion about these issues.

Remark 4.3.3. More recently, Mao, Oh, and Tao [MOT23] have developed a different approach

to obstruction-free gluing in the asymptotically flat regime using an explicit solution operator for

the linearized spacelike constraints. This method gives solutions to the spacelike constraints of

arbitrarily high regularity.

4.4 Event horizon gluing for the Einstein–Maxwell-charged

scalar field system in spherical symmetry

In the context of black hole formation, we are however interested in a different regime of gluing.

We wish to glue two specific null cones: a light cone in Minkowski space and a Reissner–Nordström

event horizon, as a solution of the EMCSF null constraint system. On the one hand, this is a genuine

“large data” gluing problem, as these cones are very dissimilar in a gauge invariant sense and there

is no known spacetime around which one could reasonably linearize the equations. On the other

hand, we study our problem in spherical symmetry, which makes it considerably more tractable. We

refer to Section 5.2 below for a precise definition of characteristic gluing in spherical symmetry.

We will now state the rough version of our main null gluing theorem, which concerns gluing a

null cone in Minkowski space to a Reissner–Nordström event horizon.

Theorem 4.4.1 (Rough version). Let k ∈ N be a regularity index, q ∈ [−1, 1] a charge to mass

ratio, and e ∈ R \ {0} a fixed coupling constant. For any M sufficiently large depending on k, q, and

e, there exist spherically symmetric characteristic data for the Einstein–Maxwell-charged scalar field

system with coupling constant e gluing a Minkowski null cone of radius 1
2M to a Reissner–Nordström

event horizon with mass M and charge e = qM up to order k.

We also refer to Fig. 4.2 for an illustration of our construction.
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Figure 4.2: Setup of Theorem 4.4.1.

For the precise version of Theorem 4.4.1 we refer to Theorem 5.4.1 and Theorem 5.4.2 in Sec-

tion 5.4. In fact, more generally, we can replace the Minkowski sphere with certain Schwarzschild

exterior spheres at v = 0, which is important for constructing counterexamples to the third law of

black hole thermodynamics (see already Section 1.1.3). Furthermore, when q = 0 we may take the

scalar field to be real-valued, in which case the EMCSF system collapses to the Einstein-scalar field

system.

Remark 4.4.2. For the proofs of Corollary 4.6.1 and Corollary 4.6.3 below, we will use versions of

Theorem 4.4.1 where the top sphere is not located on a horizon. See Theorem 5.4.4 and Theorem 5.4.7

in Section 5.4 below.

Remark 4.4.3. With our methods one can also construct characteristic data which are exactly

Minkowski initially and then settle down, but only asymptotically, to a Schwarzschild or (sub-

)extremal Reissner–Nordström event horizon of prescribed mass and charge. The rate of decay can

be chosen to be |∂vϕ| ≈ v−p, p > 1
2 , in a standard Eddington–Finkelstein gauge for Schwarzschild

or subextremal Reissner–Nordström black holes. This provides examples of “global” characteristic

data settling down at certain prescribed rates as assumed in [Van18b; GL19; KV21].

4.4.1 Outline of the proof of Theorem 4.4.1

In the Einstein–Maxwell-charged scalar field model in spherical symmetry, the spacetime metric is

written in double null gauge as

g = −Ω2dudv + r2gS2 ,

where Ω2 is the lapse and r the area-radius. We also have a complex-valued scalar field ϕ and a

real-valued charge Q, which is related to the only nonzero component of the electromagnetic tensor
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F . We choose an electromagnetic gauge in which A = Au du, where A is a gauge potential for F .

The dynamical variables to be glued along an outgoing cone (which we will call C−1
.
= {u = −1})

are (r,Ω2, ϕ,Q,Au). The charge Q solves first order equations in u and v, Au is computed from Q

via F = dA, and the variables r, Ω2, and ϕ solve coupled nonlinear wave equations involving also Q

and Au. See already equations (2.2.3)–(2.2.10). Since the value of Ω2 along any given null cone (or

bifurcate null hypersurface) can be adjusted by reparametrizing the double null gauge, we impose

that Ω2 ≡ 1.

We first consider Raychaudhuri’s equation (see already (2.2.7)), which reads in the gauge Ω2 ≡ 1

∂2vr = −r|∂vϕ|2. (4.4.1)

This equation gives a nonlinear constraint on C−1 and completely determines r on C−1 given r and

∂vr at one point of C−1 and ϕ along C−1. Thus, in the gauge Ω2 ≡ 1 along C−1, up to specifying

the dynamical quantities at a sphere, the free data in this problem is exactly ϕ on C−1: All other

dynamical quantities and their derivatives (both in the u and v coordinates) along C−1 can be

obtained from ϕ and the equations (2.2.3)–(2.2.7).

We will choose ϕ to be compactly supported on the textured segment in Fig. 4.2 and set

∂uϕ(0) = · · · = ∂kuϕ(0) = 0,

where k is the order at which we wish to glue. A first attempt to solve the gluing problem would be

to set (r,Ω2, Q,Au) and derivatives to have their “Minkowski values” at the sphere v = 0 and then

prescribe ϕ(v) so that the dynamical variables reach their “Reissner–Nordström values” at v = 1.

However, specifying a “Minkowski value” for ∂vr is essentially another gauge choice, and the gauge

invariance of the equations enables a much more convenient strategy.

Given that ϕ vanishes to order k at v = 0, to know that the sphere v = 0 is a sphere in Minkowski

space to order k, we merely need to know that r(0) > 0 and that the charge Q and the Hawking

mass (see already (2.1.2)) both vanish. See already Lemma 5.5.1. This reduces to the statement

that in the gauge Ω2 ≡ 1,

∂ur(0)∂vr(0) = − 1
4 .

Since r solves a wave equation (see already (2.2.4)), ∂ur solves a first order equation in v, so it is

determined on C−1 by ∂ur(0) alone. Given ϕ, we solve Raychaudhuri’s equation (4.4.1) backwards,

107



i.e., we teleologically normalize r at the final sphere by setting

r(1) = r+
.
=
(
1 +

√
1− q2

)
M

∂vr(1) = 0

and then set

∂ur(0)
.
=

− 1
4

∂vr(0)
.

Therefore the only “constraint” is that ∂vr(0) > 0, which will be automatically satisfied by the

monotonicity property of Raychaudhuri’s equation as long as r > 0.

The charge Q is determined by Maxwell’s equation (see already (2.2.9))

∂vQ = er2Im(ϕ∂vϕ).

Integrating this forwards in v yields the charge condition

∫ 1

0

er2Im(ϕ∂vϕ) dv = qM. (4.4.2)

At this point we note that if r(0) ≥ 1
2M , then the left-hand side of this equation is ≈M2

∫
Im(ϕ∂vϕ).

So by modulating
∫
Im(ϕ∂vϕ), we can hope to satisfy this equation just on the basis of scaling ϕ

itself.

α1

α2

Minkowski sphere

RN horizon

sphere

α3

Figure 4.3: Schematic illustration of the pulses.

Our ansatz for the scalar field will be

ϕα =
∑

1≤j≤2k+1

αjϕj ,

where α = (α1, . . . , α2k+1) ∈ R2k+1 and the ϕj ’s are smooth compactly supported complex-valued

functions with disjoint supports. We assume q ̸= 0 now, the q = 0 case being in fact much easier.
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The charge condition (4.4.2) is examined on every ray R+α̂ ∈ R2k+1, α̂ ∈ S2k. We show that for a

given choice of baseline profiles ϕj , there is a smooth starshaped hypersurface Q2k ⊂ R2k+1 which

is isotopic to the unit sphere S2k and invariant under the antipodal map α 7→ −α such that (4.4.2)

holds for every α ∈ Q2k.

The condition that M is large depending on k, q, and e in Theorem 4.4.1 comes from natural

conditions that arise when attempting to construct the hypersurface Q2k. The charge condition

(4.4.2) implies |e|M2|α|2 ≈ |q|M on Q2k. However, to keep r ≥ 1
2M on C−1, we find the condition

|α| ≲ 1, see already Lemma 5.5.6. These conditions are consistent only if |e|M ≳ |q|. Furthermore,

this condition is crucially used to propagate the condition ∂ur < 0, see already Lemma 5.5.10.

The remaining equations (2k real equations since the scalar field is complex)

∂iuϕα(1) = 0 1 ≤ i ≤ k (4.4.3)

can naturally be viewed as odd equations as a function of α. So when restricted to α ∈ Q2k, we can

use the classical Borsuk–Ulam theorem to find a simultaneous solution. Once we have an α ∈ Q2k

such that (4.4.3) is satisfied, ϕα will glue all relevant quantities to k-th order, as desired.

Theorem 4.4.4 (Borsuk–Ulam [Bor33]). If f : Sk → Rk is a continuous odd function, i.e., f(−x) =

−f(x) for every x ∈ Sk, then f has a root.

For a nice proof using only basic degree theory and transversality arguments, see Nirenberg’s

lecture notes [Nir01].

4.5 Event horizon gluing in vacuum: the very slowly rotating

case

The spherically symmetric gluing outlined in Section 4.4.1 can be summarized as follows:

(i) The Hawking mass is glued by judiciously initiating the transport equations at S1 or S2 and

directly exploiting gauge freedom in the form of boosting the double null gauge by hand.

(ii) The charge of the Maxwell field is glued by exploiting a monotonicity property of Maxwell’s

equation specific to spherical symmetry.

(iii) Transverse derivatives of the scalar field are glued by exploiting a parity symmetry of the

Einstein–Maxwell-charged scalar field system specific to spherical symmetry and invoking the
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Borsuk–Ulam theorem.

The argument for vacuum gluing has two crucial ingredients: the implementation of idea (i) above

in the context of the Einstein vacuum equations, and the obstruction-free characteristic gluing of

Czimek–Rodnianski [CR22], which replaces the Borsuk–Ulam argument in vacuum. See already

Section 4.5.1 for the outline of our proof.

Our first theorem shows that the characteristic gluing of Minkowski space to (positive mass)

Schwarzschild solutions is completely unobstructed, provided that we aim to glue to a symmetry

sphere in Schwarzschild. In the statements of our theorems, refer to Fig. 4.1.

Theorem 4.5.1. Let M > 0. Let S2 be any non-antitrapped symmetry sphere in the Schwarzschild

solution of mass M . Then S2 can be characteristically glued to a sphere S1 as depicted in Fig. 4.1,

to order C2 as a solution of the Einstein vacuum equations (1.1.6), where S1 is a spacelike sphere

in Minkowski space which is arbitrarily close to a round symmetry sphere.

For the precise statement of this theorem, see already Theorem 6.6.11 in Section 6.6.2 below.

Our method also immediately generalizes to very slowly rotating Kerr, and gives the following

particularly clean statement about event horizon gluing:

Theorem 4.5.2. There exists a constant 0 < a0 ≪ 1 such that if S2 is a spacelike section of the

event horizon of a Kerr black hole with mass M > 0 and specific angular momentum a satisfying

0 ≤ |a|/M ≤ a0, then S2 can be characteristically glued to a sphere S1 as depicted in Fig. 4.1, to

order C2 as a solution of the Einstein vacuum equations (1.1.6), where S1 is a spacelike sphere in

Minkowski space which is close to a round symmetry sphere.

This theorem is a special case of Theorem 6.6.13 in Section 6.6.3 below.

Remark 4.5.3. There is an apparent asymmetry in the statements of Theorem 4.5.1 and Theo-

rem 4.5.2 about the allowable S2’s. In fact, in Theorem 6.6.13 below, we show that any Kerr

coordinate sphere can be connected to a sphere in Schwarzschild with smaller mass, but the maxi-

mum value of allowed angular momentum depends on the sphere in a non-explicit way that we prefer

to explain later, see already Section 6.4.

Remark 4.5.4. In Theorem 4.5.1, the bottom sphere S1 can be made arbitrarily close to an exact

symmetry sphere in Minkowski, whereas in Theorem 4.5.2, the closeness to an exact symmetry

sphere is limited by the size of a/M .

Remark 4.5.5. The C2 regularity of the spacetime metric in Theorem 4.5.1 and Theorem 4.5.2 is
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due to limited regularity in the direction transverse to C. The regularity of the metric in directions

tangent to C can be made arbitrarily high (but finite).

Theorem 4.5.1 above can be viewed as a generalization to vacuum of the first step in the proof

of Theorem 1.1.1. We conjecture that the second step, making the black hole extremal, can also be

generalized to vacuum:

Conjecture 4.5.6. The Schwarzschild symmetry sphere of mass Mi and radius Ri can be char-

acteristically glued to any non-antitrapped Kerr coordinate sphere with radius Rf ≫ Ri in a Kerr

solution with mass Mf ≫Mi and specific angular momentum 0 ≤ |af | ≤Mf .

If this conjecture holds, Schwarzschild can be spun up to extremality, which would likely lead to

a proof of Conjecture 1.1.12.

Remark 4.5.7. By using negatively charged pulses in [KU22], we can design characteristic data that

also “discharges” the black hole. It would be very interesting to find a mechanism that can both

“spin up” and “spin down” a Kerr black hole, or move the rotation axis without changing the angular

momentum much.

4.5.1 Outline of the proof

In this section we give a very brief outline of the proof of Theorem 4.5.1. The gluing is performed

in two stages and should be thought of as being performed backwards in time.

S2

S1

S∗

fully nonperturbative

approximate gluing

obstruction-free

perturbative gluing

round Schwarzschild sphere

genuine Minkowski sphere, close to round

approximate Schwarzschild sphere, small mass

Figure 4.4: Two-step process for the proof of Theorem 4.5.1.

First, a fully nonperturbative mechanism is used to connect the exact Schwarzschild sphere S2 of

mass M and radius R to a sphere data set S∗ which is very close to a Schwarzschild sphere of mass

0 < M∗ ≪ R and radius ≈ R. See already Proposition 6.6.1 below. In the second stage of the gluing,

we use the main theorem of [CR22], which we state below as Theorem 6.5.3, as a black box. In order

to satisfy the necessary coercivity conditions required for obstruction-free characteristic gluing, we
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choose 0 < ε♯ ≪ M∗ ≪ R, where ε♯ measures the closeness of S∗ to the (M∗, R)-Schwarzschild

sphere.

The nonperturbative mechanism which glues S∗ to S2 involves the injection of two pulses4 of

gravitational waves (described mathematically by the shear χ̂) along C = [0, 1]v × S2, of amplitude

δ1/2 = O(ε♯), together with a choice of outgoing null expansion trχ at S2 such that |trχ| ≲ δ. In

order to fix the Hawking mass of S2 to be M , the ingoing null expansion trχ is then chosen to be

≈ −δ−1 at S2.
5 The Hawking mass of S∗ is fixed to be arbitrarily close toM∗ by tuning χ̂ and using

the monotonicity of Raychaudhuri’s equation; see already Lemma 6.6.8.6 We then step through the

null structure equations and Bianchi identities as in [Chr09, Chapter 2] and establish a δ-weighted

hierarchy for the sphere data at S∗; see already Lemma 6.6.10. Finally, we boost the cone by δ,

which brings S2 to a reference Schwarzschild sphere and S∗ within ε♯ of a reference Schwarzschild

sphere with massM∗. This construction may be thought of as a direct adaptation, in vacuum, of the

idea used to prove Schwarzschild event horizon gluing in spherical symmetry for the Einstein-scalar

field system in Section 5.5.1.

4.5.2 Relation to Christodoulou’s short pulse method

After the boost, one can interpret the above approximate nonperturbative gluing mechanism as a

“short pulse” data set defined on [0, δ] × S2 as in [Chr09], but fired backwards. In this context,

our equation (6.6.9) below should be compared with the condition (4.1) in [LY15] (see also [LM20;

AL22b]). This condition guarantees that certain components of the sphere data at S∗ are a posteriori

closer to spherical symmetry.

4.6 Further applications of characteristic gluing

4.6.1 Gravitational collapse with a piece of smooth Cauchy horizon

Another corollary of our method is the construction of regular one-ended Cauchy data which evolve

to a subextremal or extremal black hole for which there exists a piece of Cauchy horizon emanating

from i+. We refer to Fig. 4.5 for the Penrose diagram of the spacetime constructed in Corollary 4.6.1.

The proof of Corollary 4.6.1 is given in Section 5.6.3.

4By the Poincaré–Hopf theorem, the shear χ̂ vanishes somewhere on each sphere. This means that in any charac-
teristic gluing problem in vacuum where the null expansion trχ has to change everywhere, the zero of χ̂ has to move
along the sphere as v increases. In our setting, we choose the first pulse to be supported away from the north pole
and the second pulse to be supported away from the south pole.

5trχ < 0 on S2 means that S2 is not antitrapped.
6In [KU22], we use a similar monotonicity to glue the charge.
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Corollary 4.6.1 (Gravitational collapse to RN with a smooth Cauchy horizon). For any regularity

index k ∈ N and nonzero charge to mass ratio q ∈ [−1, 1] \ {0}, there exist spherically symmetric,

asymptotically flat Cauchy data for the Einstein–Maxwell-charged scalar field system in spherical

symmetry, with Σ ∼= R3 and a regular center, such that the maximal future globally hyperbolic

development (M4, g) has the following properties:

• The spacetime satisfies all the conclusions of Theorem 1.1.4 with q ̸= 0, including Ck-regularity

of all dynamical quantities.

• The black hole region contains an isometrically embedded portion of a Reissner–Nordström

Cauchy horizon neighborhood with charge to mass ratio q.

RN 0 < |q| ≤ 1

I +

H
+

r
=

0

i0

i+

BH

Σ

CH +

Figure 4.5: Penrose diagram depicting Corollary 4.6.1: Gravitational collapse to Reissner–Nordström
with nonempty piece of Cauchy horizon CH+.

Remark 4.6.2. When |q| = 1, the spacetime constructed in Corollary 4.6.1 does not contain trapped

symmetry spheres in the dark shaded region in Fig. 4.5. By a slight modification of the argument

in Proposition 2.5.1 below, this implies no trapped surfaces intersect the dark shaded region. In

particular, the trapped region (in the sense of [HE73, p. 319]) of the spacetime (if nonempty) avoids

a whole double null neighborhood of the event horizon. Nevertheless, the event horizon agrees with

the outermost apparent horizon for late advanced times.

4.6.2 Black hole interiors for which the Cauchy horizon closes off space-

time

Our horizon gluing method can also be extended to glue Reissner–Nordström interior spheres to a

regular center along an ingoing cone, see already Theorem 5.4.7. Using this, we construct asymp-

totically flat Cauchy data for which the future boundary of the black hole region BH is a Cauchy
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horizon CH+ which closes off spacetime. We refer to Fig. 4.6 for the Penrose diagram of the spacetime

constructed in Corollary 4.6.3. The proof of Corollary 4.6.3 is given in Section 5.6.4.

Corollary 4.6.3 (Cauchy horizon that closes off the spacetime). For any regularity index k ∈ N, and

nonzero charge to mass ratio q ∈ [−1, 1] \ {0}, there exist spherically symmetric, asymptotically flat

Cauchy data for the Einstein–Maxwell-charged scalar field system, with Σ ∼= R3 and a regular center,

such that the maximal future globally hyperbolic development (M4, g) has the following properties:

• All dynamical quantities are at least Ck-regular.

• The black hole region is non-empty, BH .
= M\ J−(I+) ̸= ∅.

• The future boundary of BH is a Ck-regular Cauchy horizon CH+ which closes off spacetime.

• The black hole exterior is isometric to a Reissner–Nordström exterior with charge to mass

ratio q. In particular, null infinity I+ is complete.

• The spacetime does not contain antitrapped surfaces.

• When |q| = 1, the spacetime does not contain trapped surfaces.

R
N
0
<
|q| ≤

1

i+

i0

I +

Σ

r
=

0

CH +

regular

BH

H
+

Figure 4.6: Penrose diagram depicting Corollary 4.6.3: The Cauchy horizon is regular and closes off
the spacetime in a regular fashion.

Remark 4.6.4. In contrast to our previous constructions, the Cauchy surface Σ in Corollary 4.6.3

could contain trapped surfaces and Σ intersects the black hole region. It would be interesting to

construct a spacetime as in Corollary 4.6.3 which depicts genuine gravitational collapse, i.e., for

which Σ ⊂ J−(I+).
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In the subextremal case, the behavior exhibited by our construction can be seen as exceptional

as one generically expects a Cauchy horizon which forms in gravitational collapse to be a weak null

singularity [Daf03; Van18b; LO19]. In particular, in the case where the Cauchy horizon CH+ is

weakly singular, Van de Moortel [Van23] showed that the Cauchy horizon CH+ cannot close off

spacetime in the sense of Fig. 4.6. Thus, our construction in Corollary 4.6.3 makes [Van23] sharp in

the sense that the singularity assumption of CH+ in [Van23] is needed. Restricted to the extremal

case, however, on the basis of a more regular Cauchy horizon as in [GL19], one may speculate that

there exists a set of data (open as a subset of the positive codimension set of data settling down to

ERN) for which the Cauchy horizon closes off spacetime as depicted in Fig. 4.6.

4.6.3 Vacuum gravitational collapse with a spacelike singularity

By performing characteristic gluing as in Theorem 4.5.1 of Minkowski space to spheres in a Schwarzschild

solution lying just inside the horizon and using Cauchy stability, we also obtain:

Corollary 4.6.5 (Gravitational collapse with a spacelike singularity). There exist one-ended asymp-

totically flat Cauchy data (g0, k0) ∈ H
7/2−
loc × H

5/2−
loc for the Einstein vacuum equations (1.1.6) on

Σ ∼= R3, satisfying the constraint equations, such that the maximal future globally hyperbolic devel-

opment (M4, g) contains a black hole BH .
= M\ J−(I+) and has the following properties:

• The Cauchy surface Σ lies in the causal past of future null infinity, Σ ⊂ J−(I+). In particular,

Σ does not intersect the event horizon H+ .
= ∂(BH) or contain trapped surfaces.

• For sufficiently late advanced times v ≥ v0, the domain of outer communication, together with

a full double null slab lying in the interior of the black hole, is isometric to a portion of a

Schwarzschild solution as depicted in Fig. 4.7. The double null slab terminates in the future

at a spacelike singularity, isometric to the “r = 0” singularity in Schwarzschild.

We will sketch the proof of this result in Section 6.7 below.
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BH
Schwarzschild

“r = 0” spacelike singularity

Figure 4.7: Example of gravitational collapse with a piece of a spacelike singularity emanating from
timelike infinity i+. Characteristic gluing is performed along the textured line segment, where the
top gluing sphere has radius very close to the Schwarzschild radius of the black hole to be formed.
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Chapter 5

Characteristic gluing for the

charged scalar field model and the

third law of black hole

thermodynamics

In this chapter, we establish the characteristic gluing method for the spherically symmetric Einstein–

Maxwell-charged scalar field model and use this to construct examples of gravitational collapse to

Reissner–Nordström black holes with specified parameters.

5.1 Sphere data and cone data

5.1.1 Determining transversal derivatives from tangential data

We use here the notation of Section 3.1. According to Proposition 3.1.3, characteristic data on the

bifurcate null hypersurface C ∪ C extends (locally) to a solution of the system (2.2.3)–(2.2.7). We

can then use the equations to compute all the partial derivatives of the solution along C ∪ C. We

now describe a procedure for determining all u-derivatives on C just in terms of r,Ω2, ϕ,Q, and Au

(as functions of v) and their u derivatives at the bifurcation sphere.

Proposition 5.1.1. Let (r,Ω2, ϕ,Q,Au) be a Ck bifurcate characteristic initial data set as in Defi-

nition 3.1.2. Then the EMCSF system can be used to determine as many u-derivatives of r,Ω2, ϕ,Q,
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and Au on C as is consistent with Definition 3.1.1, explicitly from the data on C ∪ C.

Proof. Since (r,Ω2, ϕ,Q,Au) are all given on C, we can compute as many u-derivatives of these

quantities at the bifurcation sphere (−1, 0) as the regularity k allows. We describe an inductive

procedure for computing u-derivatives of (r,Ω2, ϕ,Q,Au) on C, starting with ∂ur. Since ∂ur(−1, 0)

is known, and the wave equation (2.2.4) can be written as

(
∂v +

∂vr

r

)
∂ur = −Ω2

4r
+

Ω2

4r3
Q2,

where everything on the right-hand side is already known, ∂ur(−1, v) can be found by solving this

ODE. In the same manner, ∂uϕ(−1, v) and then ∂u log(Ω
2)(−1, v) can be found. To find ∂uQ(−1, v),

differentiate (2.2.8) in v and then integrate. (Alternatively, differentiate (2.2.9) in u.) Finally,

∂uAu(−1, v) is found by differentiating (2.2.10) in v and then integrating.

Proceeding in this way, by commuting all the equations with ∂iu, every partial derivative of

(r,Ω2, ϕ,Q,Au) which is consistent with the initial Ck regularity can be found. We finally note

that ∂k+1
u r(−1, v) is found from differentiating (2.2.6) an appropriate number of times, since the

wave equation it satisfies is not consistent with the level of regularity of the rest of the dynamical

variables.

Remark 5.1.2. Both Proposition 3.1.3 and Proposition 5.1.1 exploit the null condition satisfied by

the EMCSF system in double null gauge. For a general nonlinear wave equation, the solution may

not exist in a full double null neighborhood of the initial bifurcate null hypersurface as in Proposi-

tion 3.1.3. Indeed, the null condition means the transport equations for transversal derivatives in

Proposition 5.1.1 are linear and hence do not blow up in finite time.

5.1.2 Sphere data

In order to define a notion of characteristic gluing later, we introduce a notion of sphere data inspired

by [ACR21; ACR23b]. Given a Ck solution of the EMCSF system in spherical symmetry, for every

(u0, v0) ∈ Q one can extract a list of numbers corresponding to r(u0, v0), Ω2(u0, v0), ϕ(u0, v0),

Q(u0, v0), ∂ur(u0, v0) etc. Our definition of sphere data formalizes this (long) list of numbers and

incorporates the constraints (2.2.8)–(2.2.7), so we may refer to the data induced by a Ck solution

on a sphere without reference to an actual solution of the equations themselves.

Definition 5.1.3. Let k ≥ 1. A sphere data set with regularity index k for the Einstein–Maxwell-
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charged scalar field in the EM gauge (2.2.2) is the following list of numbers1:

1. ϱ > 0, ϱ1u, . . . , ϱ
k+1
u , ϱ1v, . . . , ϱ

k+1
v ∈ R

2. ω > 0, ω1
u, . . . , ω

k
u, ω

1
v , . . . , ω

k
v ∈ R

3. φ,φ1
u, . . . , φ

k
u, φ

1
v, . . . , φ

k
v ∈ C

4. q, q1u, . . . , q
k
u, q

1
v , . . . , q

k
v ∈ R

5. a, a1u, . . . , a
k
u, a

1
v, . . . , a

k
v , a

k+1
v ∈ R

subject to the following conditions:

(i) ϱi+2
u can be expressed as a rational function of ϱj+1

u , ωj+1
u , φj+1

u , and aju for 0 ≤ j ≤ i by

formally differentiating (2.2.6),

(ii) ϱi+2
v can be expressed as a rational function of ϱj+1

v , ωj+1
v , and φj+1

v for 0 ≤ j ≤ i by formally

differentiating (2.2.7),

(iii) qi+1
u can be expressed as a polynomial of ϱju, φ

j
u, and a

j
u for 0 ≤ j ≤ i by formally differentiating

(2.2.8),

(iv) qi+1
v can be expressed as a polynomial of ϱju, and φ

j
u for 0 ≤ j ≤ i by formally differentiating

(2.2.9), and

(v) ai+1
v can be expressed as a rational function of ϱjv, ω

j
v, and qjv for 0 ≤ j ≤ i by formally

differentiating (2.2.10),

where we have adopted the convention that ϱ0u = ϱ, etc. We denote by Dk the set of such sphere

data sets with regularity index k.

Gauge freedom is a very important aspect of the study of the EMCSF system. Our next definition

records the gauge freedom present in sphere data. We need to consider both double null gauge

transformations

u = f(U), v = g(V ),

where f and g are increasing functions on R and EM gauge transformations (2.2.1)

ϕ 7→ e−ieχϕ, A 7→ A+ dχ,

where χ is a function of u alone, i.e. ∂vχ = 0, in order to satisfy (2.2.2).

1One should think that formally r(u0, v0) = ϱ, ϕ(u0, v0) = φ, Ω2(u0, v0) = ω, ∂i
vr(u0, v0) = ϱiv , etc.
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Definition 5.1.4. We define the full gauge group of the Einstein–Maxwell-charged scalar field

system in spherically symmetric double null gauge with the EM gauge condition (2.2.2) as

G .
= {(f, g) : f, g ∈ Diff+(R), f(0) = g(0) = 0} × C∞(R),

with the group multiplication given by2

((f2, g2), χ2) · ((f1, g1), χ1) = ((f2 ◦ f1, g2 ◦ g1), χ2 ◦ f−1
1 + χ1).

The gauge group defines an action on sphere data as follows. Given sphere data D ∈ Dk, assign

functions r(u, v), Ω2(u, v), ϕ(u, v), Q(u, v), and Au(u, v) whose jets agree with the sphere data D.

For τ = ((f, g), χ) ∈ G, let

r̃(u, v) = r(f(u), g(v)) (5.1.1)

Ω̃2(u, v) = f ′(u)g′(v)Ω2(f(u), g(v)) (5.1.2)

ϕ̃(u, v) = e−ieχ(f(u))ϕ(f(u), g(v)) (5.1.3)

Q̃(u, v) = Q(f(u), g(v)) (5.1.4)

Ãu(u, v) = f ′(u)Au(f(u), g(v)) + f ′(u)χ′(f(u)). (5.1.5)

The components of τD are then defined by formally differentiating equations (5.1.1)–(5.1.5) and

evaluating at u = v = 0. For example, τ(ϱ) = ϱ, τ(ϱ1v) = g′(0)ϱ1v, and τ(φ
1
u) = (1−ieχ′(0))e−ieχ(0)φ.

If one is given a bifurcate characteristic initial data set (r,Ω2, ϕ,Q,Au), the lapse Ω2 can be set

to unity on C ∪ C by reparametrizing u and v. In the sphere data setting, we have an analogous

notion:

Definition 5.1.5. A sphere data set D ∈ Dk is said to be lapse normalized if ω = 1 and ωiu = ωiv = 0

for 1 ≤ i ≤ k. Every sphere data set is gauge equivalent to a lapse normalized sphere data set.

5.1.3 Cone data and seed data

In the previous subsection, we saw how a Ck solution (r,Ω2, ϕ,Q,Au) on Q gives rise to a continuous

map Q → Dk. For the purpose of characteristic gluing, it is convenient to consider one-parameter

families of sphere data which are to be thought of as being induced by constant u cones in Q.

2One can view this as a left semidirect product.
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More precisely, if we consider a null cone C ⊂ Q, parametrized by v ∈ [v1, v2], then a solution of

the EMCSF system induces a continuous map D : [v1, v2] → Dk by sending each v to its associated

sphere data D(v). In fact, this map can be produced by knowing only D(v1) and the values of

(r,Ω2, ϕ,Q,Au) on C. Arguing as in Proposition 5.1.1 with D(v1) taking the role of the bifurcation

sphere gives:

Proposition 5.1.6. Let k ∈ N, v1 < v2 ∈ R, r,Au ∈ Ck+1([v1, v2]), and Ω2, ϕ,Q ∈ Ck([v1, v2])

which satisfy the constraints (2.2.9), (2.2.10), and (2.2.7) on [v1, v2]. Let D1 ∈ Dk such that all

v-components of D1 agree with the corresponding v-derivatives of (r,Ω2, ϕ,Q,Au) at v1. Then there

exists a unique continuous function D : [v1, v2] → Dk such that D(v1) = D1 and upon identification

of the formal symbols ϱ(D(v)), ϱ1u(D(v)), etc., with the dynamical variables (r,Ω2, ϕ,Q,Au) and

their u- and v-derivatives, satisfies the EMCSF system and agrees with (r,Ω2, ϕ,Q,Au) in the v-

components for every v ∈ [v1, v2].

Definition 5.1.7. Let k ∈ N and v1 < v2 ∈ R. A Ck cone data set for the Einstein–Maxwell-

charged scalar field in spherical symmetry is a continuous function D : [v1, v2] → Dk satisfying the

conclusion of Proposition 5.1.6, i.e., formally satisfying the EMCSF system.

We now discuss a procedure for generating solutions of the “tangential” constraint equations,

(2.2.9), (2.2.10), and (2.2.7), which were required to be satisfied in the previous proposition.

Proposition 5.1.8 (Seed data). Let k ∈ N, v1 < v2 ∈ R, and D1 ∈ Dk be lapse normalized.

For any ϕ ∈ Ck([v1, v2]) such that ∂ivϕ(v1) = φiv(D1) for 0 ≤ i ≤ k, there exist unique functions

r,Au ∈ Ck+1([v1, v2]) and Q ∈ Ck([v1, v2]) such that (r,Ω2, ϕ,Q,Au) satisfies the hypotheses of

Proposition 5.1.6 with Ω2(v) = 1 for every v ∈ [v1, v2].

Proof. When Ω2 ≡ 1, Raychaudhuri’s equation (2.2.7) reduces to

∂2vr = −r|∂vϕ|2,

which is a second order ODE for r(v). Setting r(v1) = ϱ(D1) and ∂vr(v1) = ϱ1v(D1), we obtain a

unique solution r ∈ Ck+1([v1, v2]). The charge is obtained by integrating Maxwell’s equation (2.2.9):

Q(v) = q(D1) +

∫ v

0

er2(v′)Im(ϕ(v′)∂vϕ(v′)) dv
′.
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Finally, the gauge potential is obtained by integrating (2.2.10):

Au(v) = a(D1)−
∫ v

0

Q(v′)

2r2(v′)
dv′.

The v-derivatives of (r,Ω2, ϕ,Q,Au) agree with the v-components of D1 by virtue of the definitions.

5.2 Characteristic gluing in spherical symmetry

In this section we give precise statements of our main theorems. In order to do this, we carefully

define the notion of characteristic gluing.

Definition 5.2.1 (Characteristic gluing). Let k ∈ N. Let D1, D2 ∈ Dk be sphere data sets. We

say that D1 can be characteristically glued to D2 to order k in the Einstein–Maxwell-charged scalar

field system in spherical symmetry if there exist v1 < v2 and a Ck cone data set D : [v1, v2] → Dk

such that D(v1) is gauge equivalent to D1 and D(v2) is gauge equivalent to D2.

Remark 5.2.2. It is clear that if D1 and D2 can be characteristically glued and τ1, τ2 ∈ G, then τ1D1

and τ2D2 can be characteristically glued.

Remark 5.2.3. Definition 5.2.1 on characteristic gluing along an outgoing cone has a natural analog

defining characteristic gluing along an ingoing cone by parametrizing the cone data with u and

letting v denote the transverse null coordinate, but keeping the definition of sphere data unchanged.

By Proposition 5.1.8, characteristic gluing is equivalent to choosing an appropriate seed ϕ in the

following sense. By applying a gauge transformation toD1, we may assume it to be lapse normalized.

Then cone data sets with Ω2 ≡ 1 agreeing with D1 at v1 are parametrized precisely by functions

ϕ ∈ Ck([v1, v2];C) with the correct v-jet at v1. Therefore, characteristic gluing reduces to finding ϕ

so that the final data set D(v2) produced by Proposition 5.1.6 is gauge equivalent to D2.

5.2.1 Spacetime gluing from characteristic gluing

If the two sphere data sets in Definition 5.2.1 come from spheres in two spherically symmetric

EMCSF spacetimes, we can use local well posedness for the EMCSF characteristic initial value

problem, Proposition 3.1.3, to glue parts of the spacetimes themselves. This principle underlies all

of our constructions in Section 5.6.
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Figure 5.1: Spacetime gluing obtained from characteristic gluing. The two spacetimes (dark gray)
are glued along the cone u = −1. Note that the dark gray regions are causally disconnected except
for the cone u = −1. Such a spacetime exists if and only if D1 and D2 can be characteristically
glued.

Proposition 5.2.4. Let (Q1, r1,Ω
2
1, ϕ1, Q1, Au 1) and (Q2, r2,Ω

2
2, ϕ2, Q2, Au 2) be two Ck solutions

of the EMCSF system in spherical symmetry, where each Qi is a double null rectangle, i.e.,

Q1 = [u0,1, u1,1]× [v0,1, v1,1]

Q2 = [u0,2, u1,2]× [v0,2, v1,2].

Let D1 be the sphere data induced by the first solution on (u0,1, v1,1) and D2 be the sphere data

induced by the second solution on (u1,2, v0,2). If D1 can be characteristically glued to D2 to order

k, then there exists a spherically symmetric Ck solution (Q, r,Ω2, ϕ,Q,Au) of the EMCSF system

with the following property: There exists a global double null gauge (u, v) on Q containing double

null rectangles

R1 = [−1, u2]× [v0, v1],

R2 = [u0,−1]× [v2, v3],

such that the restricted solutions (Ri, r,Ω
2, ϕ,Q,Au) are isometric and gauge equivalent to the solu-

tions (Qi, ri,Ω
2
i , ϕi, Qi, Au i) for i = 1, 2, the sphere data induced on (−1, v1) is equal to D1 to k-th

order, and the sphere data induced on (−1, v2) is gauge equivalent to D2 to k-th order.

Proof. In this proof, we will refer to spherically symmetric solutions of the EMCSF system by their

domains alone.
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By Definition 5.2.1, since D1 and D2 can be characteristically glued, we obtain v1 < v2, functions

r,Ω2, ϕ,Q, and Au on [v1, v2], and a gauge transformation τ ∈ Dk which acts on D2. We now build

the spacetime out of two pieces which will then be pasted along u = −1 and match to order Ck. See

Fig. 5.2.

First, we prepare the given spacetimes. We relabel the double null gauge on Q1 by changing the

southeast edge to be u = −1 and the northeast edge to be v = v1. This also determines u2 and v0

and we apply no further gauge transformation to Q1. We denote this region by R1.

Next, the gauge transformation τ is extended and applied to Q2. We relabel the double null

gauge to have u = −1 on the northwest edge and v = v2 on the southwest edge. We denote this

region by R2.

We now construct the left half of Fig. 5.2 as follows. Extend the cone u = −1 in R1 until

v = v3, and extend the functions (r,Ω2, ϕ,Q,Au) on u = −1 by taking them from the definition of

characteristic gluing for v ∈ [v1, v2], and then from the induced data on u = −1 in R2 for v ∈ [v2, v3].

We now appeal to local existence, Proposition 3.1.3, the EMCSF system in spherical symmetry to

construct the solution in a thin slab S1 to the future of

({u = −1} × [v1, v3]) ∪ ([−1, u2]× {v = v1}).

This completes the construction of R1 ∪ S1.

The region R2∪S2 is constructed similarly, with the cone u = −1 now being extended backwards,

first using the characteristic gluing data and then using the tangential data induced byR1 on u = −1.

Again, Proposition 3.1.3 is used to construct the thin strip S2.

Finally, the spacetime is constructed by taking Q .
= (R1∪S1)∪ (R2∪S1) and pasting r,Ω2, ϕ,Q,

and Au. From the construction, it is clear that the dynamical variables, together with all v-

derivatives consistent with Ck regularity are continuous on Q. To show that all u-derivatives are

continuous across u = −1, we observe that all transverse quantities are initialized consistently to

k-th order at (−1, v1) and that the tangential data agrees by construction. Now Proposition 5.1.1

implies that the transverse derivatives through order k are equal on u = −1 in both R1 ∪ S1 and

R2 ∪ S2. This completes the proof.

Remark 5.2.5. If the characteristic gluing hypothesis is Ck but no better and the original solutions

Q1 and Q2 are more regular than Ck, then one expects (k+1)-th derivatives of dynamical quantities

to jump across any of the null hypersurfaces bordering the light gray regions in Fig. 5.1.
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Figure 5.2: Proof of Proposition 5.2.4.

5.3 Sphere data in Minkowski, Schwarzschild, and Reissner–

Nordström

Before stating our main gluing results, we need to precisely define the terms Minkowski sphere,

Schwarzschild event horizon sphere, and Reissner–Nordström event horizon sphere.

Definition 5.3.1 (Minkowski sphere data). Let k ∈ N and R > 0. The unique lapse normalized

sphere data set satisfying

• ϱ = R,

• ϱ1u = − 1
2 ,

• ϱ1v =
1
2 , and

• all other components zero,

is called the Minkowski sphere data of radius R and is denoted by DM
R,k.

Definition 5.3.2 (Schwarzschild sphere data). Let k ∈ N, R > 0, and 0 ≤ 2M ≤ R. The unique

lapse normalized sphere data set satisfying

• ϱ = R,

• ϱ1u = − 1
2
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• ϱ1v =
1
2 (1− 2M/R), and

• all other components zero,

is called the Schwarzschild sphere data of mass M and radius R and is denoted by DS
M,R,k. Note

that DS
0,R,k = DM

R,k.

Definition 5.3.3 (Reissner–Nordström horizon sphere data). Let k ∈ N, M > 0, and 0 ≤ |e| ≤M .

The unique lapse normalized sphere data set satisfying

• ϱ = r+
.
=M +

√
M2 − e2,

• ϱ1u = − 1
2 ,

• ϱ1v = 0,

• q = e, and

• all other components zero,

is called the Reissner–Nordström horizon sphere data with parameters M and e and is denoted by

DRNH
M,e,k. Note that DRNH

M,0,k = DS
M,2M,k.

We will also define sphere data for general Reissner–Nordström spheres. To do so, we extend the

Hawking mass (2.1.2) to a function on sphere data sets D ∈ Dk by setting

m(D)
.
=
ϱ

2

(
1 +

4ϱ1uϱ
1
v

ω

)
.

We also define the modified Hawking mass of a spherically symmetric spacetime with charge by

ϖ
.
= m+

Q2

2r

and extend it to sphere data sets by

ϖ(D)
.
= m(D) +

q2

2ϱ
.

In a Reissner–Nordström spacetime of mass M and charge e, any sphere data set D associated to a

symmetry sphere has ϖ(D) =M . Note that given ϱ > 0, ϱ1u < 0, ω, and q, ϱ1v is determined uniquely

by ϖ(D).
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Recall that the horizons of Reisser–Nordström with parameters |e| ≤M are located at

r± =M ±
√
M2 − e2.

Definition 5.3.4 (Reissner–Nordström sphere data). Let k ∈ N, e ∈ R, and R > 0 satisfy M >

e2/(2R). A lapse normalized sphere data set satisfying

• ϱ = R,

• q = e,

• ϖ =M ,

• |ϱ1v| = 1
2 , or |ϱ

1
u| = 1

2 , or ϱ
1
v = ϱ1u = 0,

• all other components zero

is called a Reissner–Nordström sphere data set of modified Hawking mass M , charge e, and radius

R and is denoted by DRN
M,e,R,k.

Remark 5.3.5. A Reissner–Nordström sphere data set of modified Hawking mass M , charge e, and

radius R, DRN
M,e,R,k, gives rise to unique sphere data if either ϱ1v = ϱ1u = 0, or one additionally

specifies sgn(ϱ1v) ∈ {+,−} or sgn(ϱ1u) ∈ {+,−}.

5.4 Main gluing theorems

With the previous definitions of Section 5.2 and Section 5.3 at hand, we are now in a position to

state our main gluing results.

Our first gluing theorem concerns gluing a sphere in Minkowski space to a Schwarzschild event

horizon with a real scalar field. When the scalar field ϕ in the EMCSF system is real-valued,

Maxwell’s equation decouples from the rest of the system and the charge Q is constant throughout

the spacetime. Since Q must vanish on any sphere in Minkowski space, it vanishes everywhere and

the EMCSF system reduces to the Einstein-scalar field system.

Theorem 5.4.1. For any k ∈ N and 0 < Ri < 2Mf , the Minkowski sphere of radius Ri, D
M
Ri,k

, can

be characteristically glued to the Schwarzschild event horizon sphere with mass Mf , D
S
Mf ,k

, to order

Ck within the Einstein-scalar field model in spherical symmetry.
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The proof of Theorem 5.4.1 is given in Section 5.5.1. We have separated out Minkowski to

Schwarzschild gluing as a special case because it is simpler and highlights our topological argument.

We will actually use this special case as the first step to produce our counterexample to the third

law in Section 5.6.2.

Our second gluing theorem concerns gluing a sphere in the domain of outer communication of a

Schwarzschild spacetime to a Reissner–Nordström event horizon with specified mass and charge to

mass ratio.

Theorem 5.4.2. For any k ∈ N, q ∈ [−1, 1], and e ∈ R \ {0}, there exists a number M0(k, q, e) ≥ 0

such that if Mf > M0, 0 ≤ Mi ≤ 1
8Mf , and 2Mi < Ri ≤ 1

2Mf , then the Schwarzschild sphere of

mass Mi and radius Ri, D
S
Mi,Ri,k

, can be characteristically glued to the Reissner–Nordström event

horizon with mass Mf and charge to mass ratio q, DRNH
Mf ,qMf ,k

, to order Ck within the Einstein–

Maxwell-charged scalar field model with coupling constant e. The associated characteristic data can

be chosen to have no spherically symmetric antitrapped surfaces, i.e. ∂ur < 0 everywhere.

The proof of Theorem 5.4.2 is given in Section 5.5.2.

Remark 5.4.3. The data constructed in the proof of Theorem 5.4.1 will automatically not contain

spherically symmetric antitrapped surfaces because of a special monotonicity property in the absence

of charge. Namely,

∂v(r∂ur) = −Ω2

4
, (5.4.1)

so r∂ur is decreasing. In particular, since r∂ur is negative in Minkowski space, the sign will propagate

in view of (5.4.1) for the Einstein-scalar field model.

Our next gluing theorem supersedes Theorem 5.4.1 and Theorem 5.4.2 by relaxing the require-

ment that the final sphere lie on the event horizon. The proof is slightly more involved than

Theorem 5.4.2 but has the same basic structure and is given in Section 5.5.3 below.

Theorem 5.4.4. For any k ∈ N, q ∈ R, e ∈ R\{0} and r > 0, there exists a numberM0(k, q, e, r) > 0

such that if Mf > M0 and

Rf ≥ Mf

2
(1 + r)q2, (5.4.2)

then there exists Ri ∈ (0, Rf ) such that the Minkowski sphere of radius Ri, D
M
Ri,k

, can be charac-

teristically glued to the Reissner–Nordström sphere with modified Hawking mass Mf , charge qMf ,

and radius Rf , D
RN
Mf ,qMf ,Rf ,k

with ϱ1u < 0, to order Ck within the Einstein–Maxwell-charged scalar

field system with coupling constant e. The associated characteristic data can be chosen to have no

spherically symmetric antitrapped surfaces, i.e., ∂ur < 0 everywhere.
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Remark 5.4.5. Reissner–Nordström spheres with modified Hawking mass M , charge qM and ra-

dius R ≤ M
2 q2 have non-positive Hawking mass, m ≤ 0. In this sense, the assumption r > 0 in

Theorem 5.4.4 is necessary. Indeed, one immediately sees that (5.4.2) implies

m ≥ r

1 + r
Mf ,

so that r > 0 ensures m > 0.

Remark 5.4.6. Theorem 5.4.4 also allows for gluing of Minkowski space to Reissner–Nordström

Cauchy horizons located at r = r−. This is achieved by setting r = q2/4 in Theorem 5.4.4, see

already the proof of Corollary 5.6.7.

While all the above theorems are stated as gluing results along outgoing cones, by mapping

u 7→ −v and v 7→ −u, they also hold true for gluing along ingoing cones, recall Remark 5.2.3. In

particular, restating Theorem 5.4.4 for gluing along ingoing cones gives

Theorem 5.4.7. For any k ∈ N, q ∈ R, e ∈ R\{0} and r > 0, there exists a numberM0(k, q, e, r) > 0

such that if Mf > M0 and

Rf ≥ Mf

2
(1 + r)q2, (5.4.3)

then there exists Ri ∈ (0, Rf ) such that the Reissner–Nordström sphere with modified Hawking mass

Mf , charge qMf , and radius Rf , D
RN
Mf ,qMf ,Rf ,k

with ϱ1v > 0, can be characteristically glued along an

ingoing cone to the Minkowski sphere of radius Ri, D
M
Ri,k

, to order Ck within the Einstein–Maxwell-

charged scalar field system with coupling constant e. The associated characteristic data can be chosen

to have no spherically symmetric trapped surfaces, i.e., ∂vr > 0 everywhere.

5.5 Proofs of the main gluing theorems

We begin with two lemmas which identify the orbits of Schwarzschild and Reissner–Nordström sphere

data under the action of the full gauge group. This essentially amounts to a version of Birkhoff’s

theorem for sphere data.

Lemma 5.5.1 (Schwarzschild exterior sphere identification). If D ∈ Dk satisfies

• ϱ = R > 0,

• ϱ1u < 0,

• ϱ1v > 0,
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• 1
2ϱ(1 + 4ϱ1uϱ

1
v) =M,

• q = 0, and

• φiu = φiv = 0 for 0 ≤ i ≤ k,

then R > 2M and D is equivalent to DS
M,R,k up to a gauge transformation.

Proof. First, we observe that by the relations obtained from Maxwell’s equations, qiu = qiv = 0 for

1 ≤ i ≤ k. Since φiu = φiv = 0, we can perform an EM gauge transformation to make aiu = 0 for

0 ≤ i ≤ k. Also, aiv = 0 for 1 ≤ i ≤ k from F = d(Au du). Next, we can normalize the lapse. Finally,

R > 2M follows from the definitions and ϱ1uϱ
1
v < 0.

Lemma 5.5.2 (Reissner–Nordström horizon sphere identification). If D ∈ Dk satisfies

• ϱ = (1 +
√

1− q2)M for q ∈ [−1, 1] and M > 0,

• ϱ1u < 0,

• ϱ1v = 0,

• q = qM , and

• φiu = φiv = 0 for 0 ≤ i ≤ k,

then D is equivalent to DRN
M,qM,k up to a gauge transformation.

Proof. As before, the charge vanishes to all orders and we normalize the gauge potential and lapse.

We then use the additional double null gauge freedom u 7→ λu, v 7→ λ−1v to make ϱ1u = − 1
2 .

Remark 5.5.3. Without the condition ϱ1u < 0 in the previous lemma, the sphere data in the extremal

case could also arise from the Bertotti–Robinson universe.

With these lemmas and Remark 5.2.2 in mind, we follow the strategy discussed in Section 5.2.

We fix the interval [0, 1], set Ω2 ≡ 1, and solve Raychaudhuri’s equation, Maxwell’s equation, and

the transport equation for transverse derivatives of ϕ with appropriate initial and final values. We

do not have to track transverse derivatives of ∂ur, Ω
2, Q, or Au, because these will be “gauged

away” at the end of the proof.
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5.5.1 Proof of Theorem 5.4.1

In this subsection we prove Theorem 5.4.1. We first note that if the scalar field is chosen to be

real-valued, the Einstein–Maxwell-charged scalar field system collapses to the Einstein-scalar field

system. If the initial data has no charge (Q(0) = 0), then this is equivalent to setting e = 0 and Au

and all its derivatives to be identically zero.

We will first set up our scalar field ansatz as a collection of pulses. To do so, let

0 = v0 < v1 < · · · < vk < vk+1 = 1

be an arbitrary partition of [0, 1]. For each 1 ≤ j ≤ k + 1, fix a nontrivial bump function

χj ∈ C∞
c ((vj−1, vj);R).

In the rest of this section, the functions χ1, . . . , χk+1 are fixed and our constructions depend on

these choices.

Let α = (α1, . . . , αk+1) ∈ Rk+1 and set

ϕα(v)
.
= ϕ(v;α)

.
=

∑
1≤j≤k+1

αjχj(v). (5.5.1)

We set Ω2(v;α) ≡ 1 along [0, 1] and define r(v;α) as the unique solution of Raychauduri’s equation

(2.2.7) with this scalar field ansatz,

∂2vr(v;α) = −r(v;α)(∂vϕα(v))2, (5.5.2)

with prescribed “final values”

r(1;α) = 2Mf

∂vr(1;α) = 0.

Let 0 < ε < 2Mf − Ri. By Cauchy stability and monotonicity properties of Raychaudhuri’s
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equation (5.5.2), there exists a δ > 0 such that for every 0 < |α| ≤ δ,

sup
[0,1]

|r(·;α)− 2Mf | ≤ ε,

inf
[0,1]

∂vr(·;α) ≥ 0,

∂vr(0;α) > 0.

The final inequality follows from the fact that α ̸= 0.

We now consider the sphere Skδ
.
= {α ∈ Rk+1 : |α| = δ}. For each α ∈ Skδ , define Dα(0) ∈ Dk by

setting

• ϱ = r(0;α) > 0,

• ϱ1v = ∂vr(0;α) > 0,

• ϱ1u = − 1
4 (ϱ

1
v)

−1,

• ω = 1, and

• all other components to zero.

By Lemma 5.5.1, Dα(0) is equivalent to D
M
r(0;α),k up to a gauge transformation.

For each α ∈ Skδ , we now apply Proposition 5.1.6 and Proposition 5.1.8 to uniquely determine

cone data

Dα : [0, 1] → Dk,

with initialization Dα(0) above and seed data ϕα given by (5.5.1). By standard ODE theory, Dα(v)

is jointly continuous in v and α. Note that ϱ(Dα(v)) = r(v;α) and φ(Dα(v)) = ϕ(v;α) by definition.

We now use the notation

∂iuϕ(v;α)
.
= φiu(Dα(v))

for i = 1, . . . , k to denote the transverse derivatives of the scalar field obtained by Proposition 5.1.6.

By construction, the data set Dα(1) satisfies

• ϱ = 2Mf ,

• ϱ1u < 0,

• ϱ1v = 0,

• ω = 1, and
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• φiv = 0 for 0 ≤ i ≤ k.

The second property follows from the initialization of ϱ1u in Dα(0) and the monotonicity of

(r∂ur)(v;α)
.
= ϱ(Dα(v))ϱ

1
u(Dα(v))

in the Einstein-scalar field system discussed in Remark 5.4.3.

In order to glue to Schwarzschild at v = 1, by Lemma 5.5.2, it suffices to find an α∗ ∈ Skδ for

which additionally

∂uϕ(1;α∗) = · · · = ∂kuϕ(1;α∗) = 0.

The following discrete symmetry of the Einstein-scalar field system plays a decisive role in finding

α∗.

A function f(v;α) is even in α if f(v;−α) = f(v;α) and odd in α if f(v;−α) = −f(v;α).

Lemma 5.5.4. As functions on [0, 1] × Skδ , the metric coefficients r(v;α), Ω2(v;α) and all their

ingoing and outgoing derivatives are even functions of α. The scalar field ϕ(v;α) and all its ingoing

and outgoing derivatives are odd functions of α. In particular, the map

F : Skδ → Rk (5.5.3)

α 7→
(
∂uϕ(1;α), . . . , ∂

k
uϕ(1;α)

)
is continuous and odd.

Proof. The scalar field itself is odd by the definition (5.5.1). Since Raychaudhuri’s equation (5.5.2)

involves the square of ∂vϕ(v;α), r(v;α) will be automatically even. Next, ∂ur(v;α) is found by

integrating the wave equation for the radius (2.2.4), forwards in v with initial value determined by

Dα(0). Since ϕ enters into this equation with an even power (namely zero), ∂ur(v;α) will also be

even. The wave equation for rϕ in the Einstein-scalar field model can be derived from (2.2.12) and

reads

∂u∂v(rϕ) = −Ω2m

2r3
rϕ,

and the right-hand side is odd in α (the Hawking mass is constructed from metric coefficients so is

also even). Recall from Proposition 5.1.6 that this wave equation is used to compute φiu(Dα(v)).

By inspection ∂u(rϕ) is odd, whence ∂uϕ(v;α) is also odd. The proof now follows by inductively

following the procedure of Proposition 5.1.1, taking note of the fact that the transport equations
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for ingoing derivatives of r and Ω2 only involve even powers of ϕ and its derivatives, whereas the

transport equations for ingoing derivatives of ϕ only involve odd powers.

The claim about the map F follows from the oddness of ingoing derivatives of ϕ and the continuity

of all dynamical quantities in α, per standard ODE theory.

We now complete the proof of Theorem 5.4.1. By the Borsuk–Ulam theorem stated as Theo-

rem 4.4.4, F (α∗) = 0 for some α∗ ∈ Skδ , where F is as in (5.5.3). By Lemma 5.5.2, Dα∗(1) is gauge

equivalent to DS
Mf ,k

.

So far we have glued DM
r(0;α),k to DS

Mf ,k
, and since r(0;α) > Ri, we extend the data trivially in

order to glue DM
Ri,k

to DS
Mf ,k

, which concludes the proof of Theorem 5.4.1.

5.5.2 Proof of Theorem 5.4.2

In this subsection we prove Theorem 5.4.2. We assume that q ̸= 0, the q = 0 version of this

result being essentially a repeat of the arguments in the previous section combined with the new

initialization of ∂ur(0;α) in (5.5.17) below.

In this subsection we adopt the notational convention that A ≲ B means A ≤ CB, where C is a

constant that depends only on k and the baseline scalar field profile, but not on q, e, Mi, Mf , or α.

The notation A ≈ B means A ≲ B and B ≲ A.

Let

0 = v0 < v1 < · · · < v2k < v2k+1 = 1

be an arbitrary partition of [0, 1]. For each 1 ≤ j ≤ 2k + 1, fix a nontrivial bump function

χj ∈ C∞
c ((vj−1, vj);R).

In the rest of this section, the functions χ1, . . . , χ2k+1 are fixed and our constructions depend on

these choices.

For α = (α1, . . . , α2k+1) ∈ R2k+1, set

ϕα(v)
.
= ϕ(v;α)

.
=

∑
1≤j≤2k+1

αjχj(v)e
−iv. (5.5.4)

Remark 5.5.5. If e > 0, this choice of ϕ will make Q ≥ 0, with is consistent with q > 0. If e > 0 and

q < 0, then we replace −iv in the exponential with +iv. Similarly, the cases e < 0, q > 0 and e < 0,

q < 0 can be handled. Therefore, we assume without loss of generality that e > 0, q > 0.
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For α̂ ∈ S2k (the unit sphere in R2k+1) and β ≥ 0, it is convenient to define r(v;β, α̂) = r(v;βα̂),

etc. We again set Ω2(v;α) ≡ 1 and study the equations (2.2.7) and (2.2.9) for v ∈ [0, 1] with the ϕα

ansatz:

∂2vr(v;α) = −|α|2r(v;α)|∂vϕα̂(v)|2, (5.5.5)

∂vQ(v;α) = e|α|2r(v;α)2Im(ϕα̂(v)∂vϕα̂(v)). (5.5.6)

In addition, we again define r at v = 1 by

r(1;α) = r+,

∂vr(1;α) = 0,

and Q at v = 0 by

Q(0;α) = 0, (5.5.7)

which together with (5.5.5) and (5.5.6) uniquely determine r and Q on [0, 1]. Note that we will

initialize ∂ur only later in (5.5.17).

We first note that basic calculations yield

|∂vϕα̂|2 =
∑

1≤j≤2k+1

α̂2
j

(
χ2
j + χ′2

j

)

and

Im(ϕα̂∂vϕα̂) =
∑

1≤j≤2k+1

α̂2
jχ

2
j .

Therefore, ∫ 1

0

|∂vϕα̂|2 dv ≈
∫ 1

0

Im(ϕα̂∂vϕα̂) dv ≈ 1

for any α̂ ∈ S2k.

Lemma 5.5.6. There exists a constant 0 < c ≲ 1 such that if 0 < β ≤ c, then for any α̂ ∈ S2k,

r(·;βα̂) satisfies

r(v;βα̂) ≥ 1
2r+ (5.5.8)

∂vr(v;βα̂) ≥ 0 (5.5.9)
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for v ∈ [0, 1], where

r+
.
=
(
1 +

√
1− q2

)
Mf .

Furthermore,

∂vr(0;βα̂) > 0. (5.5.10)

Proof. This is a simple bootstrap argument in v. Assume that on [v0, 1] ⊂ [0, 1], we have

inf
[v0,1]

r ≥ 0

inf
[v0,1]

∂vr ≥ 0.

This is clear for v0 close to 1 by Cauchy stability. From Raychaudhuri’s equation (5.5.5), r ≥ 0

implies ∂vr is monotone decreasing, hence is bounded above by ∂vr(v0), which can be estimated by

∂vr(v0) =

∫ 1

v0

β2r|∂vϕα̂|2 dv ≲ β2r+, (5.5.11)

since r ≤ r+ on [v0, 1]. It follows that

r(v0) = r+ −
∫ 1

v0

∂vr dv ≥ r+ − Cβ2r+ (5.5.12)

for some C ≲ 1. Choosing β > 0 sufficiently small shows r(v0) ≥ 1
2r+ which improves the bootstrap

assumptions and proves the desired estimate (5.5.8). Finally, note that (5.5.10) holds true as ∂vr is

monotone decreasing and r is not constant (β > 0 and the scalar field is not identically zero).

Lemma 5.5.7. By potentially making the constant c from Lemma 5.5.6 smaller, we have that for

any 0 < β ≤ c and α̂ ∈ S2k, the following estimate holds

∂

∂β
Q(1;β, α̂) > 0.

Proof. Integrating Maxwell’s equation (5.5.6) and using (5.5.7), we find

Q(1;β, α̂) =

∫ 1

0

eβ2r2Im(ϕα̂∂vϕα̂) dv.

136



A direct computation yields

∂βQ(1;β, α̂) = 2eβ

∫ 1

0

(r2 + βr∂βr)Im(ϕα̂∂vϕα̂) dv.

Note that Im(ϕα̂∂vϕα̂) ≥ 0 pointwise and is not identically zero. Since 0 < β ≤ c, we use Lemma 5.5.6

to estimate

r2 + βr∂βr ≥ 1
4r

2
+ − Cβr2+ = r2+(

1
4 − Cβ),

where we also used |∂βr| ≲ r+ which follows directly from differentiating (5.5.5) with respect to

β = |α|. Therefore, by choosing c even smaller, we obtain ∂βQ(1;β, α̂) > 0.

Lemma 5.5.8. If eMf/q is sufficiently large depending only on k and the choice of profiles, then

there is a smooth function βQ : S2k → (0,∞) so that Q(1;βQ(α̂), α̂) = qMf for every α̂ ∈ S2k,

which also satisfies

βQ(α̂) ≈
√
qMf√
er+

(5.5.13)

βQ(−α̂) = βQ(α̂) (5.5.14)

for every α̂ ∈ S2k.

Proof. As in the proof of Lemma 5.5.7 we have

Q(1;β, α̂) = eβ2

∫ 1

0

r2Im(ϕα̂∂vϕα̂).

If β is sufficiently small so that Lemma 5.5.6 and Lemma 5.5.7 apply, we estimate

Q(1;β, α̂) ≈ eβ2r2+.

For eMf/q sufficiently large as in the assumption, we apply now the intermediate value theorem, to

obtain a βQ(α̂) satisfying 0 < βQ(α̂) ≤ c such that

Q(1;βQ, α̂) = qMf . (5.5.15)

Note that βQ(α̂) is unique since Q(1; ·, α̂) is strictly increasing as shown in Lemma 5.5.7. Moreover,

since Q(1; ·, ·) is smooth (note that α̂ ∈ S2k and β > 0 enter as smooth parameters in (5.5.6) which

defines Q), a direct application of the implicit function theorem using that ∂βQ(1; ·, α̂) ̸= 0 shows

137



that βQ : S2k → (0,∞) is smooth.

Moreover, by (5.5.2) and (5.5.15), βQ satisfies

eβ2
Qr

2
+ ≈ qMf

which shows (5.5.13). Finally, note that Q(1;β,−α̂) = Q(1;β, α̂), from which (5.5.14) follows.

Lemma 5.5.9. Let eMf/q be sufficiently large (depending only on k and the choice of profiles) so

that Lemma 5.5.8 applies. Then

pQ : S2k → Q2k

α̂ 7→ βQ(α̂)α̂

is a diffeomorphism, where

Q2k .
= {βQ(α̂)α̂ : α̂ ∈ S2k} ⊂ R2k+1

is the radial graph of βQ. Moreover, Q2k is invariant under the antipodal map A(α) = −α and pQ

commutes with the antipodal map.

Proof. By definition of Q2k and the facts that βQ is smooth, positive, and invariant under the

antipodal map as proved in Lemma 5.5.8, the stated properties of Q2k and pQ follow readily.

Having identified the set Q2k which guarantees gluing of the charge Q, for the rest of the section

we will always take α ∈ Q2k. Recall from (5.5.13) that for every α ∈ Q2k:

|α| ≈
√
qMf√
er+

. (5.5.16)

Before proceeding to choose sphere data, we will need to examine the equation for ∂ur because

this will place a further restriction on α which must be taken into account before setting up the

topological argument. We continue by using the definition of the Hawking mass m in (2.1.2), to

impose the condition

m(0;α) =Mi

by initializing

∂ur(0;α) = −
(
1− 2Mi

r(0;α)

)
1

4∂vr(0;α)
. (5.5.17)
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The transverse derivative ∂ur(v;α) is now determined by solving (2.2.4),

∂v∂ur(v;α) = − 1

4r(v;α)2
− ∂ur(v;α)∂vr(v;α)

r(v;α)2
+
Q(v;α)2

4r(v;α)3
, (5.5.18)

with initialization (5.5.17).

Note that (5.5.17) is well-defined by (5.5.10) and (5.5.8) from Lemma 5.5.6. Furthermore,

1− 2Mi

r(0;α)
≥ 1− 4Mi

Mf
> 0,

so

∂ur(0;α) < 0. (5.5.19)

Having initialized ∂ur at v = 0, we determine ∂ur(v;α) using (5.5.18), and we will now show

that for eMf/q sufficiently large, ∂ur(v;α) < 0 for all v ∈ [0, 1].

Lemma 5.5.10. If eMf/q is sufficiently large depending only on k and the choice of profiles and if

0 ≤Mi ≤ 1
8Mf , then

sup
v∈[0,1]

∂ur(v;α) < 0 (5.5.20)

for every α ∈ Q2k.

Proof. Since r > 0 on [0, 1], it suffices to show that

sup
[0,1]

r∂ur < 0.

First, by (2.2.11),

|∂v(r∂ur)| =
∣∣∣∣14
(
1− Q2

r2

)∣∣∣∣ ≲ 1, (5.5.21)

as

Q(v;α) ≤ Q(1;α) = qMf ≲ r(v;α),

where we used (5.5.8). Integrating (5.5.21), we have

sup
v∈[0,1]

r(v)∂ur(v) ≤ r(0)∂ur(0) + C1, (5.5.22)

139



where C1 ≲ 1 is a constant. Analogously to (5.5.11), we estimate

∂vr(0;α) ≲ |α|2r+ ≲
q

e
,

where we used (5.5.16). Now, using (5.5.17),

−r(0)∂ur(0) =
r(0)− 2Mi

4∂vr(0)

≳
e

q
( 12Mf − 2Mi)

≳
e

q
Mf .

Therefore, we improve (5.5.22) to

sup
v∈[0,1]

r(v)∂ur(v) ≤ −C2
e

q
Mf + C1

for some C2 ≲ 1. Thus, if eMf/q is sufficiently large we obtain (5.5.20).

To continue the proof of Theorem 5.4.2, we now put our construction into the framework of the

sphere data in Section 5.3. For each α ∈ Q2k, define Dα(0) ∈ Dk by setting

• ϱ = r(0;α) ≥ 1
2r+ (see (5.5.8)),

• ϱ1v = ∂vr(0;α) > 0 (see (5.5.10)),

• ϱ1u = ∂ur(0;α) < 0 (see (5.5.17) and (5.5.19)),

• ω = 1, and

• all other components to zero.

By Lemma 5.5.1, Dα(0) is equivalent to D
S
Mi,r(0;α),k

up to a gauge transformation.

For each α ∈ Q2k, we now apply Proposition 5.1.6 and Proposition 5.1.8 to uniquely determine

cone data

Dα : [0, 1] → Dk,

with initialization Dα(0) above and seed data ϕα given by (5.5.4). By standard ODE theory,

Dα(v) is jointly continuous in v and α. Note that ϱ(Dα(v)) = r(v;α), φ(Dα(v)) = ϕ(v;α), and

q(Dα(v)) = Q(v;α) by definition. As in the proof of Theorem 5.4.1, we use the notation

∂iuϕ(v;α)
.
= φiu(Dα(v))
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for i = 1, . . . , k to denote the transverse derivatives of the scalar field obtained by Proposition 5.1.6.

Note also that

∂ur(v;α) = ϱ1u(Dα(v)),

where ∂ur(v;α) is as in (2.2.4) above.

By construction, the data set Dα(1) satisfies

• ϱ = 2Mf ,

• ϱ1u < 0 (see Lemma 5.5.10),

• ϱ1v = 0,

• ω = 1,

• q = qMf (definition of Q2k), and

• φiv = 0 for 0 ≤ i ≤ k.

In order to glue to the appropriate Reissner–Nordström event horizon sphere, by Lemma 5.5.2,

it suffices to find an α∗ ∈ Q2k for which additionally

∂uϕ(1;α∗) = · · · = ∂kuϕ(1;α∗) = 0.

Analogously to Lemma 5.5.4 we first establish

Lemma 5.5.11. The metric coefficients r(v;α), Ω2(v;α), the electromagnetic quantities Q(v;α),

Au(v;α), and all their ingoing and outgoing derivatives are even functions of α. The scalar field

ϕ(v;α) and all its ingoing and outgoing derivatives are odd functions of α.

Proof. The proof is essentially the same as Lemma 5.5.4, noting that equations (2.2.8), (2.2.9), and

(2.2.10) are also even in ϕ.

We now complete the proof of Theorem 5.4.2. Recall from Lemma 5.5.9 that pQ : S2k → Q2k is a

diffeomorphism which commutes with the antipodal map. We now argue similarly to Section 5.5.1.

By Lemma 5.5.11, the function

F : Q2k → Ck

α 7→
(
∂uϕ(1;α), . . . , ∂

k
uϕ(1;α)

)
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is continuous and odd. Therefore, the Borsuk–Ulam theorem, stated as Theorem 4.4.4, applied to

(ReF 1, ImF 1, . . . ,ReF k, ImF k) ◦ pQ : S2k → R2k,

where F i is the ith component of F , shows that there is an α∗ ∈ Q2k such that F (α∗) = 0. By

Lemma 5.5.2, Dα∗(1) is gauge equivalent to DRNH
Mf ,qMf ,k

which concludes the gluing construction.

Since we have already established that ∂ur < 0 for all v ∈ [0, 1] in Lemma 5.5.10, this concludes the

proof of Theorem 5.4.2.

5.5.3 Proof of Theorem 5.4.4

In this section we extend our characteristic gluing result Theorem 5.4.2 to allow for sphere data

at the final sphere which is not necessarily located on a horizon. Recall Definition 5.3.4 for the

definition of general Reissner–Nordström sphere data. As the steps in the proof below are direct

generalizations of the proof of Theorem 5.4.2, our presentation here will have fewer details.

Proof of Theorem 5.4.4. We only consider the case q ̸= 0, the case q = 0 being strictly easier and

requiring only “gluing 3” below. Without loss of generality, we may also assume Rf ≤ 3Mf as for

r ≥ 3Mf we can extend trivially with Reissner–Nordström data satisfying ∂vr > 0 and ∂ur < 0. In

the following proof, we use the convention that all constants appearing in ≲,≳ and ≈ to also depend

on q, r and e. The theorem is proved as a consequence of the following three intermediate gluings:

1. DM
Ri,k

is glued to DRN
M ′,Qf ,R1,k

with a complex scalar field,

2. DRN
M ′,Qf ,R1,k

is glued to DRN
M ′,Qf ,R2,k

trivially (i.e., with identically vanishing scalar field), and

3. DRN
M ′,Qf ,R2,k

is glued to DRN
Mf ,Qf ,Rf ,k

with a real scalar field,

where Ri
.
= Rf −M

3/4
f , 0 < M ′ < Mf is an intermediate modified Hawking mass, Qf

.
= qMf ,

R1, R2 are intermediate radii which satisfy Ri < R1 < R2.

Gluing 1. In the interval v ∈ [0, 1] we impose the ansatz (5.5.4). At v = 0, we set

r(0) = Ri, m(0) = Q(0) = 0, ∂ur(0) = − 1

2M
1/2
f

, ∂vr(0) =
M

1/2
f

2
. (5.5.23)

The pulse parameters α∗ which achieve gluing of transverse derivatives of ϕ are determined by

the procedure of Section 5.5.2, with charge condition Q(1;α) = Qf . As in Section 5.5.2 we find that

the gluing can be performed with parameters satisfying |α∗|2 ≲ M−1
f . Using this estimate on α∗,
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we obtain from Raychaudhuri’s equation (2.2.7) and (5.5.23) that 1
2M

1/2
f ≥ ∂vr ≥ 1

4M
1/2
f for every

v ∈ [0, 1] by choosing M0(k, q, e, r) sufficiently large. This also implies Ri ≤ r ≤ Ri +
1
2M

1/2
f . Using

r ≥ Rf −M
3/4
f and the estimate analogous to (5.5.21) we infer |r∂ur − r(0)∂ur(0)| ≲ 1 for every

v ∈ [0, 1], i.e., 0 < −∂ur ≤ M
−1/2
f . We now estimate the Hawking mass at v = 1 by integrating

(2.2.13),

m(1) =

∫ 1

0

2r2(−∂ur)|∂vϕ|2 dv +
∫ 1

0

Q2

2r2
∂vr dv ≲M2

fM
−1/2
f M−1

f +M
1/2
f ≲M

1/2
f . (5.5.24)

Setting R1 = r(1) and M ′ = m(1) + Q2
f/(2R1), we have shown that Ri < R1 ≤ Ri +

1
2M

1/2
f . The

condition (5.4.2) shows that Q2
f/(2Rf ) ≤ Mf/(1 + r). In particular, since R1 ≥ Rf − M

3/4
f we

estimate

M ′ = m(1) +
Q2
f

2R1
≤ 1

2

(
1 +

1

1 + r

)
Mf =

2 + r

2 + 2r
Mf (5.5.25)

by possibly taking M0(k, q, e, r) larger. This completes the first gluing step.

Gluing 3. It is more convenient to now carry out the third gluing step and simply ensure that

R2 > R1. We use a collection of k + 1 real-valued pulses as in (5.5.1) on v ∈ [0, 1]. We impose

r(1) = Rf , ∂ur(1) = −Mf , Q(1) = Qf , ϖ(1) =Mf . (5.5.26)

This uniquely determines ∂vr(1) which can have either sign but satisfies |∂vr(1)| ≲ M−1
f . We also

note that as long as |α|2 ≤ M
−3/2
f , we have |∂vr| ≲ M

−1/2
f and thus |r − Rf | ≲ M

−1/2
f on [0, 1].

This also gives −∂ur ≈Mf . Using

ϖ(1)−ϖ(0) =

∫ 1

0

2r2(−∂ur)|∂vϕ|2 dv

and (5.5.25), we write the mass conditionϖ(1) =Mf andϖ(0) =M ′ as a sphere of α’s (|α|2 ≈M−2
f )

for which we will apply the Borsuk–Ulam argument. We use here thatMf−M ′ =Mf r/(2+2r). With

|α∗|2 ≈M−2
f we have the improved estimate |∂vr| ≲M−1

f for v ∈ [0, 1] and thus, |r(0)−Rf | ≲M−1
f .

Taking now M0(k, q, e, r) sufficiently large makes R2
.
= r(0) > R1.

Gluing 2. By the previous constructions, we have R1 < R2, ϖ(0) = ϖ(1) =M ′, Q(0) = Q(1) =

Qf , ∂vr(0) > 0, and ∂ur(0) < 0. Now DRN
M ′,Qf ,Rk

can be trivially glued to DRN
M ′,Qf ,R2,k

by choosing

ϕ ≡ 0, and we must merely ensure that ∂ur < 0 along the way. Since ∂vr > 0 by Raychauduri’s
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equation, this amounts to proving 2m
r < 1. Indeed,

m(v) ≤ m(0) +

∫ 1

0

Q2
f

2r2
∂vr dv = m(0) +

∫ R2

R1

Q2
f

2r2
dr ≲ m(0) + (R2 −R1) ≲M

1/2
f +M

3/4
f ,

where we used (5.5.24). In particular, by choosing M0(k, q, e, r) larger, we can make m(v)/Mf

arbitrarily small and thus ∂ur < 0 throughout gluing 2.

5.6 Constructing the spacetimes and Cauchy data

In this final section we will prove our main result Theorem 1.1.11 as well as Theorem 1.1.4, Corol-

lary 4.6.1, and Corollary 4.6.3.

5.6.1 Construction of gravitational collapse to Reissner–Nordström

We now state a more precise version of Theorem 1.1.4 as follows.

Corollary 5.6.1. For any k ∈ N, q ∈ [−1, 1] \ {0}, and e ∈ R \ {0}, let M0(k, q, e) be as in

Theorem 5.4.2. Then for any M ≥M0 there exist asymptotically flat, spherically symmetric Cauchy

data (Σ, g0, k0, E0, B0, ϕ0, ϕ1) for the EMCSF system, with Σ ∼= R3 and a regular center, such that

the maximal future globally hyperbolic development (M4, g, F,A, ϕ) has the following properties:

• All dynamical quantities are at least Ck-regular.

• Null infinity I+ is complete.

• The black hole region is nonempty, BH .
= M\ J−(I+) ̸= ∅.

• The Cauchy surface Σ lies in the domain of outer communication J−(I+). In particular, it

does not intersect the event horizon H+ .
= ∂(BH).

• The initial data hypersurface does not contain trapped surfaces.

• The spacetime does not contain antitrapped surfaces.

• For sufficiently late advanced times v ≥ v0, the domain of outer communication, including the

event horizon, is isometric to that of a Reissner–Nordström solution with mass M charge to

mass ratio q. For v ≥ v0, the event horizon of the spacetime can be identified with the event

horizon of Reissner–Nordström.
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Figure 5.3: Penrose diagram for the proof of Corollary 5.6.1.

Remark 5.6.2. A similar statement can be made with q = 0 for the Einstein-scalar field model, using

instead Theorem 5.4.1. In that case, there will also be no assumption made on the mass.

Proof. We refer the reader to Fig. 5.3 for a visual guide to the proof. Using Theorem 5.4.2 with

regularity index k + 1 (see footnote below) and Proposition 5.2.4, a portion of Minkowski space

t+ r ≤ 1
2M,

t− r ≥ − 1
2M,

can be glued to a Reissner–Nordström solution with parameters M and qM . Note that as depicted,

one can solve for a complete future neighborhood of the event horizon, which might not be a complete

double null neighborhood.

Since we are in spherical symmetry, standard techniques (see [Chr93, Section 5] or [LOY18,

Section 3]) allow the “local existence” region emanating from the Reissner–Nordström portion of

the spacetime to be extended all the way up to the center.3 (In this figure, this region is denoted

“Cauchy stability” for reasons that will become clear below.)

We now identify a spacelike curve Σ connecting spacelike infinity i0 in the exactly Reissner–

Nordström region to the center, to the past of the cone u = −1. The curve Σ can be chosen so the

3The wave equation in spherical symmetry loses one derivative at the center when compared to characteristic data.
Therefore, to obtain a globally Ck solution, we take Ck+1 characteristic data.
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induced data on it is asymptotically flat near i0. For example, it may be taken to be a constant

t curve near i0 in standard coordinates. Furthermore, by having Σ hug the gluing region closely

enough, we are guaranteed to have no spherically symmetric antitrapped surfaces on Σ.

Completeness of null infinity I+ is inherited from the exact Reissner–Nordström solution. By

inspecting Fig. 5.3, we see that the null hypersurface C−1 is the event horizon H+ = ∂J−(I+) of

the spacetime and that Σ can be arranged to lie in the domain of outer communication J−(I+).

The statement about trapped surfaces follows from Proposition 2.5.3 below.

We now consider the (unique) maximal future globally hyperbolic development (M4, g, F,A, ϕ)

of the induced data (Σ, g0, k0, E0, B0, ϕ0, ϕ1) on Σ. By uniqueness of the MFGHD, it contains the

domain of dependence of Σ in the gluing spacetime (and thus all shaded regions to the future of Σ in

Fig. 5.3). Therefore, by construction, (M4, g, F,A, ϕ) has all the properties listed in the statement

of Corollary 5.6.1. Note that the property of having no antitrapped symmetry spheres is propagated

to the whole development by Raychaudhuri’s equation (2.2.6). By Proposition 2.5.3, the spacetime

does not contain any nonspherically symmetric antitrapped surfaces either. This concludes the

proof.

The above proof made use of spherical symmetry in the local existence region and the region up

to the center. In view of potentially extending our work to the Einstein vacuum equations in the

future, we give a second construction of these regions which does not invoke spherical symmetry.

First, the “local existence region” can be constructed outside of spherical symmetry by the well-

known theorem of Luk [Luk12]. Once such a region has been constructed, we can use the fact that

it lies “outside” of a Minkowski region to construct the rest of the spacetime, up to the center, by

Cauchy stability:

Lemma 5.6.3. Let Br0 and Br1 denote the (open) balls of radii r0 > 0 and r1 > r0 in R3, re-

spectively. Consider on Br1 data for the Einstein–Maxwell-charged scalar field system corresponding

to Minkowski space, (δ, 0, 0, 0, 0, 0). Let D
.
= (g0, k0, E0, B0, ϕ0, ϕ1) be a Ck (for k ∈ N sufficiently

large and not assumed to be spherically symmetric) initial data set for the Einstein–Maxwell-charged

scalar field system defined on Br1 which agrees with the Minkowski data set on Br0 . Then the max-

imal globally hyperbolic development of D contains the Minkowski cone over Br0 “in its interior” in

the following sense:

There exists an ε > 0 and a development (g, F,A, ϕ) of the data D on Kr0+ε
.
= {t + r <

r0 + ε} ∩ {t ≥ 0} ⊂ R3+1 so that the development of the Minkowski portion of the data is defined on

Kr0
.
= {t+ r < r0} ∩ {t ≥ 0} and is the Minkowski metric in those coordinates.
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Proof. Since this is a standard Cauchy stability argument we merely sketch the proof. For 0 < ε <

r1−r0
2 , let θε be a cutoff function which is equal to one on Br0+ε and vanishes outside Br0+2ε. On

Br1 , we consider the “initial data set”

Dε
.
= (θεg0 + (1− θε)δ, θεk0, θεE0, θεB0, θεϕ0, θεϕ1).

This does not solve the constraints everywhere, but it does solve them on Br0+ε, where it equals

D. We assume that k ≥ 5 and show that Dε is O(ε)-close to the Minkowski data set in H4. Then

Cauchy stability for the reduced Einstein equations (in harmonic coordinates) will show that a

solution to the reduced equations with data Dε exists on Kr0+2ε for ε sufficiently small. By domain

of dependence arguments, a genuine solution will then exist on a smaller domain which still contains

the entirety of Kr0 in its interior.

To show that Dε is close to Minkowski data we must check it componentwise. For brevity, we

only check θεk0. Note first that

∥θεk0∥H4 ≲ ∥θεk0∥C4 .

Now since k0 vanishes on Br0 and is at least C5, Taylor’s theorem implies

|∂ir /∇
j
k0| ≲ max{0, r − r0}5−i−j ,

if 0 ≤ i + j ≤ 5. In the region where either θε or ∂rθi are nonvanishing, max{0, r − r0} ≲ ε. It

follows that

∥θεk0∥H4 ≲
∑

0≤i+j≤4

sup
Br1

|∂ir /∇
j
(θεk0)| ≲ ε,

which proves the claim and hence the lemma.

5.6.2 Construction of counterexample to the third law

In this section we prove Theorem 1.1.11 with an analogous approach as in the proof of Corollary 5.6.1.

We first restate the result in more detail.

Theorem 5.6.4. For any k ∈ N and e ∈ R\{0}, there exist asymptotically flat, spherically symmetric

Cauchy data (Σ, g0, k0, E0, B0, ϕ0, ϕ1), with Σ ∼= R3 and a regular center, for the EMCSF system such

that the maximal future globally hyperbolic development (M4, g, F,A, ϕ) has the following properties:

• All dynamical quantities are at least Ck-regular.
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Figure 5.4: Penrose diagram for the proof of Theorem 5.6.4.

• The spacetime and Cauchy data satisfy all the conclusions of Corollary 5.6.1 with q = 1 and

final mass Mf ≥M0(1, e, k) + 8.

• The spacetime contains a double null rectangle of the form R
.
= {−2 ≤ u ≤ −1}∩ {1 ≤ v ≤ 2}

which is isometric to a double null rectangle in a Schwarzschild spacetime of mass 1.

• The cone {u = −1} ∩ R lies in the outermost apparent horizon A′ of the spacetime and is

isometric to an appropriate portion of the r = 2 hypersurface in the Schwarzschild spacetime

of mass 1.

• The outermost apparent horizon A′ is disconnected.

• The spacetime contains trapped surfaces in the black hole region, for all arbitrarily late advanced

time. More precisely, for every symmetry sphere Su,v ⊂ H+, J+(Su,v) contains a trapped

sphere.

• There exists a neighborhood U of H+ in M such that there are no trapped surfaces S ⊂ U .
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Proof. We refer to Fig. 5.4 for a Penrose diagram illustrating the proof. The proof begins as the

proof of Corollary 5.6.1 (recall also Proposition 5.2.4), by gluing a Minkowski cone to a Schwarzschild

event horizon of unit mass along {u = −1}. Then, attach a double null rectangle R of Schwarzschild

along the hypersurface r = 2, as in Corollary 5.6.1, but stop after a finite advanced time v = 2. Now

place u = −2 so that

sup
{u=−2}∩R

r = 2 + ε ≤ 3.

For ε sufficiently small, the first strip down to the center can be constructed as in the proof of

Corollary 5.6.1. Now let Mf ≥M0 + 8 and extend the cone u = −2 to the future with trivial scalar

field until r = 1
2 (M0 + 8) ≫ 3. Then using Theorem 5.4.2, extremal Reissner–Nordström of mass

Mf can be attached. We again solve backward up to the center as in Corollary 5.6.1 and have now

constructed the spacetime depicted in Fig. 5.4.

As in the proof of Corollary 5.6.1, we again find an asymptotically flat spacelike curve Σ con-

necting i0 with the center and lying entirely in J−(I+). The maximal future globally hyperbolic

development (M, g, F,A, ϕ) of the induced data on Σ contains the domain of dependence of Σ in

the spacetime constructed above (and thus all shaded regions to the future of Σ in Fig. 5.4) and

satisfies all the conclusions of Corollary 5.6.1 with q = 1 and final mass Mf ≥ M0(1, e, k) + 8. By

construction, M contains the double null rectangle R which satisfies the stated properties. Further,

the cone {u = −1} ∩R lies in the apparent horizon A of (M, g) and {u = −1} ∩R is isometric to

an appropriate portion of the r = 2 hypersurface in the Schwarzschild spacetime of mass 1.

We readily see that (M, g) contains trapped surfaces in any (future) neighborhood of {u =

−1} ∩R as ∂vr = 0 along {u = −1} ∩R and (2.2.11) evaluated on {u = −1} ∩R gives

∂u(r∂vr) = −Ω2

4
.

To prove that trapped surfaces exist for arbitrarily late advanced time, we invoke the general bound-

ary characterization of [Kom13]. If the r = 0 singularity S is empty, then the outgoing cone starting

from one of these trapped spheres terminates on the Cauchy horizon CH+ and the claim is clearly

true by Raychaudhuri’s equation (2.2.7). If S is nonempty, then every ougoing null cone which

terminates on S is eventually trapped since r extends continuously by zero on S. Furthermore, S

terminates at the Cauchy horizon CH+ or future timelike infinity i+, so the claim is also true in this

case.

We now show that there exists a neighborhood U of H+ in M which does not contain spherically
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symmetric trapped surfaces. It suffices to show that there is a neighborhood V of H+ in Q such that

∂vr > 0 on V \ H+, where we use the same symbol for the event horizon in M and Q. Let p ∈ H+

be any sphere after the final gluing sphere, see Fig. 5.4. Then r(p) = Q(p) = Mf , ∂vr(p) = 0, and

ϕ(p) = 0. Reparametrize the double null gauge so that Ω ≡ 1 on the ingoing cone C passing through

p. By the wave equation for the radius (2.2.4),

∂u∂vr(p) = − 1

4Mf
+

M2
f

4M3
f

= 0.

Differentiating (2.2.4) in u, we find

∂2u∂vr =
∂ur

4r2
− ∂u(∂u log r)∂vr − (∂u log r)∂u∂vr −

3Q2∂ur

4r4
+
Q∂uQ

2r3
.

Evaluating at p, we find ∂uQ(p) = 0 by Maxwell’s equation (2.2.8), so we have

∂2u∂vr(p) =
∂ur(p)

4M2
f

−
3M2

f ∂ur(p)

4M4
f

= −2∂ur(p)

M2
f

> 0.

Therefore, ∂vr becomes immediately positive for all points along C sufficiently close to the event

horizon but not on it (see also Fig. 1.3).4

By the monotonicity of Raychaudhuri’s equation (2.2.7) and since p ∈ H+ after the final gluing

sphere was arbitrary, this shows that there exists a neighborhood V of H+ contained in Q that does

not contain trapped symmetry spheres except for H+ itself. That there are also no nonspherically

symmetric trapped surfaces in U .
= V × S2 now follows immediately from Proposition 2.5.1 below.

The claim about the disconnectedness of the outermost apparent horizon A′ now follows from

the fact that A′∩H+ is one connected component of A′ which does not contain {u = −1}∩R ⊂ A′.

This concludes the proof.

5.6.3 Construction of collapse to Reissner–Nordström with piece of Cauchy

horizon

In this section, we show that a mild modification of the proof of Corollary 5.6.1 allows us to construct

examples of gravitational collapse such that the black hole region admits a piece of future boundary

which is a Cauchy horizon which is isometric to a subextremal or extremal Reissner–Nordström

Cauchy horizon.

4This calculation is related to the discussion in Section 1.1.3.4 above and Section 5.A below. In fact, we have
effectively just proved the claim in Remark 5.A.2.
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Figure 5.5: Penrose diagram depicting the proof of Corollary 5.6.5.

Corollary 5.6.5. For any k ∈ N, q ∈ [−1, 1] \ {0}, and e ∈ R \ {0}, let M0(k, q, e, 1/2) be as in

Theorem 5.4.4. Then for any M ≥M0 there exist asymptotically flat, spherically symmetric Cauchy

data (Σ, g0, k0, E0, B0, ϕ0, ϕ1), with Σ ∼= R3 and a regular center, for the EMCSF system such that

the maximal future globally hyperbolic development (M4, g, F,A, ϕ) has the following properties:

• All dynamical quantities are at least Ck-regular.

• The spacetime and Cauchy data satisfy all the conclusions of Corollary 5.6.1.

• The black hole region contains an isometrically embedded portion of a Reissner–Nordström

Cauchy horizon neighborhood with parameters M and qM , in particular CH+ ̸= ∅.

Proof. The proof is completely analogous to the proof of Corollary 5.6.1. We apply the gluing

construction of Theorem 5.4.4 to glue a sphere in Minkowski space to a Reissner–Nordström interior

sphere with radius Rf < r+ and r+ − Rf small. Indeed, this can be achieved by setting r = 1
2 in

Theorem 5.4.4 as then 1
2Mf (1 + r)q2 ≤ 3

4Mf < Mf ≤ r+. We then apply the local existence and

Cauchy stability argument as in the proof of Corollary 5.6.1. We note that the u-width of the local

existence and Cauchy stability argument remains uniform as Rf → r+ so by choosing Rf sufficiently

close to r+, we guarantee that we find a Cauchy hypersurface Σ which does not intersect the event

horizon. We refer to Fig. 5.5 for the Penrose diagram explaining the proof.

Remark 5.6.6. As in Remark 5.6.2, we note that a similar statement with a piece of Schwarzschild

interior including the {r = 0} singularity can be made with q = 0.
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Figure 5.6: Penrose diagram depicting the proof of Corollary 5.6.7.

5.6.4 Construction of black hole interior for which the Cauchy horizon

closes off spacetime

We now give our construction of a spacetime for which the Cauchy horizon closes off the black hole

region.

Corollary 5.6.7. For any k ∈ N, q ∈ [−1, 1] \ {0}, e ∈ R \ {0}, let M̃0(k, q, e, q
2/4) be as in

Theorem 5.4.7. Then for any M ≥ M̃0 there exist asymptotically flat, spherically symmetric Cauchy

data (Σ, g0, k0, E0, B0, ϕ0, ϕ1), with Σ ∼= R3 and a regular center, for the EMCSF system such that

the maximal future globally hyperbolic development (M4, g, F,A, ϕ) has the following properties:

• All dynamical quantities are at least Ck-regular.

• The spacetime does not contain antitrapped surfaces.

• The black hole region is nonempty, BH .
= M\ J−(I+) ̸= ∅.

• The future boundary of the black hole region is a Ck-regular Cauchy horizon CH+ which closes

off spacetime, i.e., N ∪ S = ∅ in Fig. 2.1.

• The exterior region is isometric to a Reissner–Nordström exterior with mass M and charge

qM . In particular, future null infinity I+ is complete.

Proof. Analogous to the proof of Corollary 5.6.5 we glue a Reissner–Nordström interior sphere

with Rf < r− and r− − Rf small to a sphere in Minkowski space along an ingoing cone using

Theorem 5.4.7. We can choose Rf arbitrarily close to r− in Theorem 5.4.7 by setting r = q2/4.
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Indeed, in this case

r− − Mf

2

(
1 +

q2

4

)
q2 =Mf

(
1−

√
1− q2

)
− Mf

2

(
1 +

q2

4

)
q2

=Mf

(
1−

√
1− q2 − q2

2
− q4

8

)
≥Mf

q6

16
,

where in the last step we used the Taylor expansion of
√
1− q2 around q = 0. The rest of the proof

is now analogous to Corollary 5.6.5 and can be read off from Fig. 5.6. We note that an isometric

copy of the Reissner–Nordström exterior can be attached to the past of H+ in Fig. 5.6.

5.A An isolated extremal horizon with nearby trapped sur-

faces

In this appendix we show that, in the context of the dominant energy condition, there is no local

mechanism forcing a stationary extremal Killing horizon to have no trapped surfaces “just inside”

of the horizon. We also refer back to Section 1.1.3.4.

Proposition 5.A.1. There exists a C∞ spherically symmetric spacetime (M4, g) with a complete

null hypersurface H ⊂ M and a Killing vector field T with the following properties. The Killing

field T is spherically symmetric, timelike in I−(H), spacelike in I+(H), null and tangent along H,

where it also satisfies ∇TT = 0, i.e., its integral curves are affinely parametrized null generators of

H. Furthermore, (M, g) contains no antitrapped symmetry spheres, i.e., ∂ur < 0, and satisfies the

dominant energy condition. Therefore, H is an extremal Killing horizon and I+(H) is foliated by

trapped symmetry spheres.

We recall that a spacetime (M, g) satisfies the dominant energy condition if for all future directed

causal vectors X ∈ TM, −G(·, X)♯ is future directed causal or zero. Here G denotes the Einstein

tensor of g,

G(g)
.
= Ric(g)− 1

2R(g)g.

Proof. The spacetime is given by the spherically symmetric ansatz

M = Q× S2

g = gQ + r2gS2 ,
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where

Q = {(t, u) ∈ R2 : t ∈ R,−ε < u < ε}

for ε to be chosen later, and r = r(u). Let f = f(u) and set

gQ = fdt2 − 2dtdu.

The vector field L = ∂u is geodesic and null and we declare it to be future directed. The Killing

vector field T = ∂t satisfies g(T, T ) = f . Letting f(u) = u2F (u) for a smooth function F (u)

makes H = {u = 0} an extremal Killing horizon and ∂t is future directed where it is causal. The

conjugate null vector to L is L = ∂t +
1
2f∂u such that g(L,L) = −1. The symmetry spheres

St0,u0 = {t = t0} ∩ {u = u0} are trapped if

Lr < 0

Lr < 0,

which can be more simply written as

f(u)r′(u) < 0

r′(u) < 0.

From this we see that r′(u) < 0 implies no antitrapped spheres of symmetry and f(u) < 0 for u < 0

and f(u) > 0 for u > 0 implies the symmetry spheres to the past (respectively, future) of H are

untrapped (respectively, trapped). This also makes T timelike to the past of H. Since we require

f(u) = u2F (u) but also that f changes sign, we in fact have f(u) = u3F̃ (u).

We will now see which restrictions on f , r, and ε enforce the dominant energy condition. The

Einstein tensor of g is given by

G = −θgQ − 2r′′

r
du2 + ζr2gS2 , (5.A.1)

where

θ
.
=

1 + (u′)2f + rfr′ + 2frr′′

r2
, ζ

.
= − 1

2f
′′ − r′

r
f ′ − r′′

r
f.

For f(u) = u3F̃ (u) and r(u) fixed and ε > 0 sufficiently small, we have θ(u) > 0 and |ζ(u)| ≪ θ(u)

for |u| < ε.
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Let X be a future causal vector, that is

gQ(X,X) + r2gS2(X,X) ≤ 0, gQ(L+ L,X) < 0. (5.A.2)

To show that −G(·, X)♯ is causal or zero, it suffices to show that

gµνG
µ
ρG

ν
σX

ρXσ ≤ 0. (5.A.3)

To simplify the calculation, we assume r′′ vanishes identically and then the left-hand side of (5.A.3),

using (5.A.1) and (5.A.2), can be estimated as

gµνG
µ
ρG

ν
σX

ρXσ = θ2gQ(X,X) + ζ2r2gS2(X,X) ≤ (ζ2 − θ2)r2gS2(X,X).

Since ζ2 − θ2 ≤ 0, this proves that −G(·, X)♯ is causal. To show that −G(·, X)♯ is future directed

we compute using (5.A.2)

g(L+ L,−G(·, X)♯) = −G(L+ L,X) = θgQ(L+ L,X) < 0.

Finally, an explicit example of a metric satisfying all of our conditions is

g = u3dt2 − 2dtdu+ (1− u)2gS2 .

Remark 5.A.2. Extremal Reissner–Nordström has f(u) ∼ −u2. One might say that an extremal

horizon constructed in the above manner with f(u) vanishing faster than u2 is a degenerate extremal

horizon.
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Chapter 6

Characteristic gluing in vacuum

and formation of very slowly

rotating Kerr black holes

In this chapter, we prove that Minkowski space can be characteristically glued to any slowly rotating

Kerr event horizon, see Section 1.1.5.1 and Section 4.5.

6.1 Spacetimes in double null gauge

We first briefly recall the basic notion of double null gauge for the Einstein vacuum euqations outside

of spherical symmetry [Chr91a; Chr09].

6.1.1 Double null gauge

Let W ⊂ R2
u,v be a domain and define M3+1 .

= W × S2. Denote Su,v
.
= {(u, v)} × S2 ⊂ M. The

distinguished foliation of M by these spheres carries a tangent bundle TS and cotangent bundle

T ∗S
.
= (TS)∗. An S-tensor (field) is a section of a vector bundle consisting of tensor products of

TS and T ∗S. Let /g be a positive-definite (0, 2) S-tensor field, let Ω2 be a positive function on M,

and b be an S-vector field. Under these assumptions, the formula

g = −4Ω2 du dv + /gAB(dϑ
A − bA dv)(dϑB − bB dv)
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defines a Lorentzian metric on M, where (ϑ1, ϑ2) are arbitrary local coordinates on S2 and /gAB

(resp., bA) are the components of /g (resp., b) relative to this coordinate basis. The coordinate

functions u and v satisfy the eikonal equation, i.e.,

gµν∂µu∂νu = 0 and gµν∂µv∂νv = 0.

Consequently, the hypersurfaces Cu
.
= {u = const.} and Cv

.
= {v = const.} are null hypersurfaces.

We time orient (M, g) by declaring ∂u + ∂v + bA∂ϑA to be future-directed.

The vector fields

L′ .= −2(du)♯ and L′ .= −2(dv)♯

are future-directed null geodesic vector fields. We set

L
.
= Ω2L′ and L

.
= Ω2L′,

which then satisfy

Lu = 0, Lv = 1,

Lu = 1, Lv = 0.

Finally, we set

e4
.
= ΩL′, e3

.
= ΩL′.

Given arbitrary coordinates ϑA on S2 and defining eA
.
= ∂ϑA , the quadruple {e1, e2, e3, e4} is called

a (normalized) null frame, which satisfies

g(eA, e3) = g(eA, e4) = 0, g(e3, e4) = −2, g(e3, e3) = g(e4, e4) = 0.

6.1.2 Algebra and calculus of S-tensors

Let (M, g) be a spacetime equipped with a double null gauge as above. For vector fields on M, we

define the orthogonal projection to S vector fields by

Π : TM → TS, ΠX
.
= X + 1

2g(X, e3)e4 +
1
2g(X, e4)e3
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which we extend componentwise to contravariant tensors of higher rank. We note that Π ◦ i = id on

TS, where i : TS ⊂ TM is the natural inclusion. By duality, this defines a “promotion” operator

Π∗ : T ∗S → T ∗M which extends componentwise to covariant S-tensors and satisfies i∗ ◦Π∗ = id on

T ∗S.

We now define projected Lie derivatives /LL and /LL on S-tensors. If X is an S-vector field, then

/LLX
.
= LLX, /LLX

.
= LLX

are already S-vector fields. If ξ is an S-1-form, then

/LLξ
.
= i∗LL(Π∗ξ) = LL(ξ ◦Π)|TS , /LLξ

.
= i∗LL(Π∗ξ) = LL(ξ ◦Π)|TS ,

where we have explicitly written the “promotion” operation which will be consistently omitted in

the sequel. The operation is extended to general S-tensor fields via the Leibniz rule. As a shorthand,

we write

D
.
= /LL, D

.
= /LL.

The symbol /∇ acts on functions and S-vector fields as the induced covariant derivative on the

spheres and is extended to general S-tensors by the Leibniz rule.

We will frequently make use of the following notation: Let ξ, η be S-1-forms and θ, ϕ symmetric

covariant S-2-tensor fields. We then define

(ξ ⊗̂ η)AB
.
= ξAηB + ξBηA − (ξ · η)/gAB

( /∇⊗̂ ξ)AB
.
= /∇AξB + /∇BξA − ( /div ξ)/gAB

/div ξ
.
= /g

AB /∇AξB

/rot ξ
.
= /εAB /∇AξB

(∗ξ)A
.
= /εAB/g

BCξC

θ̂AB
.
= θAB − 1

2 tr θ /gAB

θ ∧ ϕ .
= /εAB/g

CDθACϕBD,

where /ε is the induced volume form on Su,v. The notation /gAB denotes the inverse of the induced

metric /gAB . Indices of S-tensors are raised and lowered with /g and /g−1.
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6.1.3 Ricci and curvature components

The Ricci components are given by the null second fundamental forms

χAB
.
= g(∇Ae4, eB), χ

AB

.
= g(∇Ae3, eB),

the torsions

ηA
.
= − 1

2g(∇3eA, e4), η
A

.
= − 1

2g(∇4eA, e3),

and

ω
.
= D log Ω, ω

.
= D log Ω.

The 1-form

ζ
.
= η − /∇ log Ω

is also referred to as the torsion. Note that

η + η = 2 /∇ log Ω. (6.1.1)

The null curvature components are given by

αAB
.
= R(eA, e4, eB , e4), αAB

.
= R(eA, e3, eB , e3),

βA
.
= 1

2R(eA, e4, e3, e4), β
A

.
= 1

2R(eA, e3, e3, e4),

ρ
.
= 1

4R(e4, e3, e4, e3), σ
.
= 1

4
∗R(e4, e3, e4, e3),

where R(W,Z,X, Y ) = g(R(X,Y )Z,W ) is the Riemann tensor.

6.1.4 Normalized sphere data determined by a geometric sphere

For the notion of sphere data used here, see Section 6.3.1.1.

Lemma 6.1.1. Let (M4, g) be a spacetime satisfying the Einstein vacuum equations (1.1.6) and

i : S2 → M an embedding with spacelike image S
.
= i(S2). Let L be a null vector field along S

which is normal to S. Then for any m ≥ 0 there exists a unique associated C2
uC

2+m
v sphere data set

x[g, i, L] such that /g = i∗g, Ω2 = 1, and ω = Dω = · · · = Dm+1ω = ω = Dω = 0.

The sphere data x[g, i, L] depends smoothly on (g, i, L) in the natural way.

We say that x[g, i, L] is generated by (g, i, L). If ψ : S2 → S2 is a diffeomorphism, then x[g, i◦ψ,L]
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is related to x[g, i, L] by a sphere diffeomorphism as in Definition 6.3.4.

Proof. The geometric sphere S is identified with the round sphere by i, which endows S with a

choice of round metric γ. The dual null vector field L is uniquely determined by the requirement

that L ⊥ TS and g(L,L) = −2. Let C∪C be the (locally defined) bifurcate null hypersurface passing

through S such that L is tangent to C and C is tangent to L. Let Ω2 = 1 identically on C ∪ C.

Given this data, there is a unique double null foliation with respect to g covering a neighborhood of

S in M. Now x[g, i, L] is constructed by computing the corresponding quantities in this double null

foliation and taking the values at S.

6.2 The Einstein equations in double null gauge

We now assume that the spacetime metric g satisfies the Einstein vacuum equations (1.1.6). In

double null gauge, the Einstein equations are equivalent to the null structure equations (with the

Ricci coefficients on the left-hand side) and the Bianchi equations (with the curvature components

on the left-hand side). The Einstein equations (1.1.6) imply

trα = 0, trα = 0. (6.2.1)

6.2.1 The null structure equations

First variation formulas:

D/g = 2Ωχ = 2Ωχ̂+Ωtrχ /g (6.2.2)

D/g = 2Ωχ̂ = 2Ωχ̂+ 2Ω trχ /g (6.2.3)

Raychaudhuri’s equations:

D trχ+ 1
2Ω(trχ)

2 − ω trχ = −Ω|χ̂|2 (6.2.4)

D trχ+ 1
2Ω(trχ)

2 − ω trχ = −Ω|χ̂|2 (6.2.5)
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Transport equations for Ricci components:

Dχ̂ = Ω|χ̂|2/g + ωχ̂− Ωα (6.2.6)

Dχ̂ = Ω|χ̂|2/g + ωχ̂− Ωα (6.2.7)

Dη = Ω(χ · η − β) (6.2.8)

Dη = Ω(χ · η + β) (6.2.9)

Dω = Ω2(2η · η − |η|2 − ρ) (6.2.10)

Dω = Ω2(2η · η − |η|2 − ρ) (6.2.11)

Dη = −Ω(χ · η − β) + 2 /∇ω (6.2.12)

Dη = −Ω(χ · η − β) + 2 /∇ω (6.2.13)

D(Ω trχ) = 2Ω2 /div η + 2Ω2|η|2 − Ω2(χ̂, χ̂)− 1
2Ω

2 trχ trχ+ 2Ω2ρ (6.2.14)

D(Ω trχ) = 2Ω2 /div η + 2Ω2|η|2 − Ω2(χ̂, χ̂)− 1
2Ω

2 trχ trχ+ 2Ω2ρ (6.2.15)

D(Ωχ̂) = Ω2
(
(χ̂, χ̂) + 1

2 trχ χ̂+ /∇⊗̂ η + η ⊗̂ η − 1
2 trχ χ̂

)
(6.2.16)

D(Ωχ̂) = Ω2
(
(χ̂, χ̂) + 1

2 trχ χ̂+ /∇⊗̂ η + η ⊗̂ η − 1
2 trχ χ̂

)
(6.2.17)

Gauss equation:

K + 1
4 trχ trχ− 1

2 (χ̂, χ̂) = −ρ (6.2.18)

Codazzi equations:

/div χ̂− 1
2
/∇ trχ+ χ̂ · ζ − 1

2 trχ ζ = −β (6.2.19)

/div χ̂− 1
2
/∇ trχ− χ̂ · ζ + 1

2 trχ ζ = β (6.2.20)

Curl equations:

/rot η = − /rot η = /rot ζ = − 1
2 χ̂ ∧ χ̂− σ (6.2.21)

We also require

DDω =− 12Ω2(η − /∇ log Ω, /∇ω) + 2Ω2ω
(
(η,−3η + 4 /∇ log Ω)− ρ

)
(6.2.22)

+ 4Ω3χ(η, /∇ log Ω) + Ω3(β, 7η − 3 /∇ log Ω) + 3
2Ω

3ρ trχ+Ω3 /div β + 1
2Ω

3(χ̂, α).
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6.2.2 The Bianchi identities

In this chapter, we only need the following two Bianchi identities:

D̂α+
(
2ω − 1

2Ω trχ
)
α = Ω

(
− /∇⊗̂β − (4η − ζ) ⊗̂ ζ − 3χ̂ρ+ 3∗χ̂σ

)
, (6.2.23)

Dβ +
(
1
2Ω trχ− Ωχ̂+ ω

)
β = Ω

(
− /∇ρ+ ∗ /∇σ − 3ηρ+ 3∗ησ + 2χ̂ · β

)
. (6.2.24)

6.3 Characteristic initial data and characteristic gluing

In this section, we give a brief review of the characteristic gluing problem for the Einstein vacuum

equations (1.1.6) in double null gauge [ACR21; ACR23b; ACR23a; CR22]. We follow the conventions

of [CR22] unless otherwise stated.

6.3.1 Sphere data, null data, and seed data

The terminology used in this chapter is in agreement with [CR22], which we will be using as a

black box, and therefore differs slightly from Chapter 5. We hope this facilitates the reader in

understanding exactly how the main notions and results from [CR22] are being used here.

6.3.1.1 Sphere data

Given a solution (M4, g) of the Einstein vacuum equations (1.1.6) and a sphere S in a double

null foliation, the 2-jet of g can be determined from knowledge of the metric coefficients, Ricci

coefficients, and curvature components. However, the equations themselves, such as the Codazzi

equation (6.2.19) allow some of these degrees of freedom to be computed from the others, just in

terms of derivatives tangent to S. This leads to the following definition:

Definition 6.3.1 (C2 sphere data, [ACR23b, Definition 2.4]). Let S be a 2-sphere. Sphere data x

on S consists of a choice of round metric γ on S and the following tuple of S-tensors

x = (Ω, /g,Ω trχ, χ̂,Ω trχ, χ̂, η, ω,Dω, ω,Dω, α, α), (6.3.1)

where Ω is a positive function, /g a Riemannian metric, Ω trχ, χ̂,Ω trχ, ω,Dω, ω,Dω are scalar

functions, η is a vector field, χ̂, χ̂, α and α are symmetric /g-traceless 2-tensors.

Definition 6.3.2 (C2
uC

2+m
v sphere data, [ACR23b, Definition 2.28]). Let S be a 2-sphere andm ≥ 0

an integer. Higher order sphere data x on S consists of a choice of round metric γ on S, the tuple
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(6.3.1), together with

(D̂α, . . . , D̂mα,D2ω, . . . ,Dm+1ω), (6.3.2)

where D̂jα are symmetric /g-traceless 2-tensors and Djω scalar functions. We will write x =

(xlow, xhigh), where xlow is a C2 sphere data set and xhigh denotes the tuple (6.3.2).

When sphere data is obtained from a geometric sphere in a vacuum spacetime, one has to make a

choice of normal null vector fields L and L. See Lemma 6.1.1 below, for instance. As is well known,

the null pair {L,L} can be “boosted” by the transformation

L̃
.
=

1

λ
L, L̃

.
= λL, (6.3.3)

where λ ∈ R+. This boost freedom was also quite useful in Chapter 5.

Definition 6.3.3 (Boosted sphere data). Let x be a sphere data set as in Definition 6.3.2 and

λ ∈ R+. Then the λ-boosted sphere data set is the C2
uC

2+m
v sphere data set given by

bλ(x
low)

.
= (Ω, /g, λ

−1Ω trχ, λ−1χ̂, λΩ trχ, λχ̂, η, λ−1ω, λ−2Dω, λω, λ2Dω, λ−2α, λ2α),

bλ(x
high)

.
= (λ−3D̂α, . . . , λ−2−mD̂mα, λ−3Dω, . . . , λ−2−mDm+1ω).

This is the effect that the boost (6.3.3) has on the metric coefficients, Ricci coefficients, and curvature

components in double null gauge.

There is a norm ∥x∥Xm defined on C2
uC

2+m
v sphere data sets employed in [ACR23b; CR22], which

is just a sum of high order (in the angular variable θ) Sobolev norms of the sphere data components

[ACR23b, Definition 2.5]. We will show very strong pointwise smallness for arbitrary numbers of

angular derivatives later and thus will not need the exact form of these norms in order to apply the

result of [CR22].

Definition 6.3.4 (Sphere diffeomorphisms). Given a diffeomorphism ψ : S2 → S2, we let ψ act on

C2
uC

2+m
v data sets by pullback on each component.

6.3.1.2 Null data

Definition 6.3.5 (Ingoing and outgoing null data [ACR23b, Definition 2.6]). Let v1 < v2. An

outgoing null data set is given by an assignment v 7→ x(v), where x(v) is a C2 sphere data set. We

may say that the null data lives on the null hypersurface C
.
= C [v1,v2] .= [v1, v2]×S2. An ingoing null
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data set is defined in the same way, but with the formal variable v replaced with u and η replaced

by η in (6.3.1).

Higher order null data is defined in the obvious way, with x(v) being C2
uC

2+m
v sphere data. Null

data on its own is not assumed to satisfy the null structure equations and Bianchi identities.

There are several norms on null data that are employed in [ACR21; ACR23b; ACR23a; CR22].

These include the standard norm X defined on ingoing and outgoing null data the high regularity

norm X+ defined on ingoing null data, and the high frequency norm X h.f. defined on outgoing null

data using in obstruction-free characteristic gluing. As we will not need the precise forms of these

norms in the present work, we refer the reader to [ACR23b, Definition 2.7] for details.

6.3.1.3 Christodoulou seed data

We will employ the following method, originating in the work of Christodoulou [Chr09], for producing

solutions of the null structure and Bianchi equations along a null hypersurface C.

For definiteness, we seek a solution of the null constraints on the null cone segment C
.
= C [0,1] .=

[0, 1] × S2. The coordinate along [0, 1] is called v and we set L = ∂v. On S2, we have the round

metric

γ
.
= dϑ2 + sin2 ϑ dφ2,

where (ϑ, φ) are standard spherical polar coordinates. We interpret γ as a symmetric S-tensor on

C (see Section 2.3.1 for this terminology) by imposing γ(∂v, ·) = 0. We set Sv
.
= {v} × S2.

Lemma 6.3.6. Let /̂g be a smooth S-(0,2)-tensor field on C which induces a Riemannian metric on

the sections of C satisfying

tr
/̂g
D/̂g = 0, (6.3.4)

where D/̂g
.
= /LL/̂g as in Section 2.3.1.1 Let /g1 be a Riemannian metric on S1 which is conformal

to /̂g(1), trχ1 and trχ
1
be functions on S1, η1 be a 1-form on S1, and χ̂

1
and α1 be /g1-traceless

symmetric 2-tensors on S1.

Then there exist uniquely determined /g1-traceless symmetric 2-tensors χ̂1 and α1, D̂α1 . . . , D̂
mα1

1Concretely, this means /̂g = /̂g(v) is a smooth 1-parameter family of Riemannian metrics on S2. We identify S2

with Sv ⊂ C. Since b = 0, /LL/̂g = LL/̂g and relative to any angular coordinates ϑA defined on S1 extended to C

according to LϑA = 0, (D/̂g)AB = ∂v(/̂gAB).
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on S1, v0 ∈ (−1, 1), and null data

xlow(v) = (Ω, /g,Ω trχ, χ̂,Ω trχ, χ̂, η, ω,Dω, ω,Dω, α, α),

xhigh(v) = (D̂α, . . . , D̂mα,D2ω, . . . ,Dm+1ω),

defined for v ∈ (v0, 1]∩ [0, 1], satisfying the null structure equations and Bianchi identities along C,

such that

xlow(1) = (1, /g1, trχ1, χ̂1, trχ1
, χ̂

1
, η1, 0, 0, 0, 0, α1, α1) (6.3.5)

xhigh(1) = (D̂α1, . . . , D̂
m+1α1, 0, . . . , 0), (6.3.6)

For every v ∈ (v0, 1] ∩ [0, 1], /g(v) is conformal to /̂g(v) and Ω2(v) = 1 identically, so Djω(v) = 0

identically for j = 0, . . . ,m+1. The number v0 is either strictly negative (in which case x exists on

all of C), or is nonnegative and satisfies

lim
v↘v0

inf
Sv

|/g(v)|/̂g = 0. (6.3.7)

A conformal class of Riemannian metrics on C is the equivalence class K of symmetric S-(0, 2)-

tensors on C which are positive definite on each Sv with the equivalence relation /g′, /g
′′ ∈ K if there

exists a smooth positive function ψ on C such that /g
′ = ψ2/g

′′.

Lemma 6.3.6 shows that the free data2 for the characteristic data (in the gauge Ω2 = 1) are

given by

K, /g(1), trχ(1), trχ(1), η(1), χ̂(1), and α(1),

subject to the condition that /g(1) is compatible with K and that χ̂(1) and α(1) are traceless, which

is a notion that depends only on K. The desired induced metric /g will be a representative of K. One

often writes K = [/g], so the prescription of K is the prescription of the conformal class of the induced

metric /g which is to be found.

The condition (6.3.4) on the representative /̂g of K can be imposed without loss of general-

ity, i.e., K always contains a representative satisfying (6.3.4). Indeed, let /̃g ∈ [/g] and let ψ
.
=

exp(
∫ 1

v
1
4 tr/̃gD/̃g dv

′). Then /̂g
.
= ψ2/̃g satisfies (6.3.4).

Remark 6.3.7. In Lemma 6.6.2 below, we will directly construct a specific /̂g satsifying the volume

form condition D(dµ
/̂g
) = 0, which easily implies (6.3.4) by the first variation formula for area.

2That is, the quantities that may be freely prescribed.
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Outline of the proof of Lemma 6.3.6. Let ϕ1 be the positive function on S1 satisfying /g1 = ϕ21/̂g1.

We make the ansatz

/g = ϕ2/̂g, (6.3.8)

on C, where ϕ is now a positive function on C agreeing with ϕ1 on S1.

We define

e
.
= 1

8 /̂g
AB
/̂g
CD∂v /̂gAC∂v /̂gBD (6.3.9)

relative to any Lie-transported angular coordinate system on the spheres. We set

∂vϕ1
.
= 2ϕ1 trχ1 (6.3.10)

and let ϕ be the unique solution of the second order ODE

∂2vϕ+ eϕ = 0, (6.3.11)

with initial conditions (ϕ1, ∂vϕ1). If ϕ remains strictly positive on all of C, then we let v0 be any

strictly negative number. If however ϕ has a zero on C, then we take v0 to be the supremum of

v ∈ [0, 1] for which infSv
ϕ ≤ 0. This definition gives (6.3.7).

We now set

χ̂
.
= 1

2ϕ
2D/̂g and (6.3.12)

trχ
.
= 1

2∂v log ϕ (6.3.13)

along C and observe that this choice of trχ is consistent with (6.3.5). By (6.3.4), the shear defined

by (6.3.12) is /g-traceless. From (6.3.8), we have

D/g = ϕ2D/̂g + 2ϕ∂vϕ/̂g = ϕ2D/̂g + 2∂v log ϕ /g,

and by comparing with the first variation formula (6.2.2) written in the form

D/g = 2χ̂+ trχ /g,

we conclude that (6.3.12) and (6.3.13) are consistent with the first variation formula.
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From (6.3.12), we have

e = 1
2 |χ̂|

2, (6.3.14)

so the ODE (6.3.11) is seen to be equivalent to Raychaudhuri’s equation (6.2.4).

From here, the full null data along C can be determined by stepping through the null structure

and Bianchi equations in the right order, as in [Chr09]. We will outline this procedure in the proof

of Lemma 6.6.10 below.

6.4 Reference sphere data for the Kerr family

Definition 6.4.1 (The Kerr family of metrics). Let M∗
.
= (−∞,∞)v × (0,∞)r × S2, where S2

carries standard spherical polar coordinates ϑ and φ. The Kerr family of metrics is the smooth

two-parameter family of Lorentzian metrics

gM,a = −
(
1− 2Mr

Σ

)
dv2 + 2 dv dr − 4Mar sin2 ϑ

Σ
dv dφ− 2a sin2 ϑ dr dφ+Σ dϑ2 + ρ2 sin2 ϑ dφ2

(6.4.1)

on M∗, where M ≥ 0 is the mass, a ∈ R is the specific angular momentum,

Σ
.
= r2 + a2 cos2 ϑ, and

ρ2
.
= r2 + a2 +

2Ma2r sin2 ϑ

Σ
.

When a = 0, gM,a reduces to the Schwarzschild metric

gM = −
(
1− 2M

r

)
dv2 + 2 dv dr + r2γ, (6.4.2)

where γ
.
= dϑ2 + sin2 ϑ dφ2. When M = 0, gM,a reduces to the Minkowski metric

m
.
= −dv2 + 2 dv dr + r2γ.

The metrics gM,a solve the Einstein vacuum equations (1.1.6). The spacetime (M∗, gM,a) is

time-oriented by ∂v for r ≫ 1. The vector field ∂v is Killing—the Kerr family is stationary. If

|a| ≤M and M > 0, these metrics describe black hole spacetimes. For 0 ≤ |a| < M , the black hole

is said to be subextremal, and for 0 < |a| =M , extremal.

Remark 6.4.2. In the context of the Schwarzschild solution, the coordinates (v, r, ϑ, φ) are called
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ingoing Eddington–Finkelstein coordinates. Indeed, defining

t
.
= v − r − 2M log |r − 2M |

brings gM into the familiar form

gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2γ

and (t, r, ϑ, φ) are called Schwarzschild coordinates. In the context of the Kerr solution, the coor-

dinates (v, r, ϑ, φ) are called Kerr-star coordinates. For the relation to the perhaps more familiar

Boyer–Lindquist coordinates, see [ONe95]. The advantage of defining the Kerr family gM,a directly

in these coordinates is that we may view it as a smooth two-parameter family of Lorentzian metrics

on the fixed smooth manifold M∗, even across the horizons located at r± = M ±
√
M2 − a2 when

M > 0.

Remark 6.4.3. The spacetimes (M∗, gM,a) defined here do not cover the entire maximal analytic

extensions of the Minkowski, Schwarzschild, and Kerr solutions. Most importantly, (M∗, gM,a)

includes the portion of the future event horizon H+ .
= {r = r+} strictly to the future of the

bifurcation sphere.

We will now define the reference sphere data for the Kerr family. We will use the notion of

sphere data x[g, i, L] generated by a Lorentzian metric g on a smooth manifold M, an embedding

i : S2 → M, and a choice of null vector field L defined along and orthogonal to i(S2), which is

defined in Lemma 6.1.1 below. Note that

Y
.
= −∂r

is a future-directed null vector field for (M∗, gM,a). We also define the family of embeddings

iR : S2 → M∗

(ϑ, φ) 7→ (0, R, ϑ, φ)

for R > 0.

Definition 6.4.4 (Reference sphere data). Let M ≥ 0, a ∈ R, R > 0, and m ≥ 0 be an integer.
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The reference Kerr sphere data set of mass M , specific angular momentum a, and radius3 R is the

C2
uC

2+m
v sphere data set given by

kM,a,R
.
= x[gM,a, iR, Y ]. (6.4.3)

The reference Schwarzschild data sets are defined by

sM,R
.
= kM,0,R (6.4.4)

and the reference Minkowski data sets are defined by

mR
.
= s0,R. (6.4.5)

We will colloquially refer to kM,a,R as a “Kerr coordinate sphere” and sM,R (resp., mR) as a

“(round) Schwarzschild symmetry sphere” (resp., “(round) Minkowski symmetry sphere”).

In the notation of Section 6.3.1.1, one can show that

slowM,R =

(
1, R2γ,

2

R

(
1− 2M

R

)
, 0,− 2

R
, 0, . . . , 0

)
, (6.4.6)

shighM,R = 0. (6.4.7)

A similarly simple expression is neither available nor needed for Kerr. Indeed, we have the

Lemma 6.4.5. For any integer m ≥ 0, kM,a,R is a smooth three-parameter family of C2
uC

2+m
v sphere

data sets. In particular,

lim
a→0

∥kM,a,R − sM,R∥Xm = 0. (6.4.8)

Proof. The metrics gM,a are defined on the fixed smooth manifold M∗. By inspection of (6.4.1),

gM,a varies smoothly in M and a. Therefore, the smooth dependence of kM,a,R on the parameters

and (6.4.8) follow from the smooth dependence of the sphere data generated by (g, i, L) on g, i, and

L; see Lemma 6.1.1.

We conclude this section with several remarks.

Remark 6.4.6. As was already mentioned, the Kerr family is stationary. Defining iR(ϑ, φ) =

(v,R, ϑ, φ) for any v ∈ R leads to the same sphere data.

3We use the term radius because it is associated to the Kerr coordinate r, but the spheres are not round!
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Remark 6.4.7. We always take the Kerr axis to point along the poles of the fixed identification of

the Kerr coordinate spheres with the usual unit sphere.

Remark 6.4.8. The induced metric /gM,a,R in kM,a,R is not conformal to the round metric γ (defined

relative to the Kerr angular coordinates). For this reason we have slightly modified the setup in

Section 6.3.1.3 by imposing (6.3.4) instead of simply dµ
/̂g
= dµγ as in [Chr09, Chapter 2]. See already

Lemma 6.6.2 below.

Remark 6.4.9. The induced metric /gM,a,R is given in Kerr angular coordinates by

/gM,a,R = Σ dϑ2 + ρ2 sin2 ϑ dφ2. (6.4.9)

To show that this extends smoothly over the poles relative to the smooth structure defined by the

Kerr angular coordinates, we note the identity

Σ dϑ2 + ρ2 sin2 ϑ dφ2 = Σ(dϑ2 + sin2 ϑ dφ2) + a2
(
1 +

2Mr

Σ

)
sin4 ϑ dφ2. (6.4.10)

Now sin2 ϑ dφ is a globally defined smooth 1-form on S2 since it is the γ-dual of the globally defined

vector field ∂φ, so the right-hand side of (6.4.10) can be extended smoothly over the poles.

6.5 Perturbative characteristic gluing

Since the characteristic gluing results of [ACR21; ACR23b; ACR23a; CR22] pass through linear

theory, the conserved charges in Minkowski space play an important role. In Section 6.5.1, we give

the definition of conserved charges. In Section 6.5.2, we state the main result of [CR22] in the form

which we will directly apply it.

6.5.1 Conserved charges

Definition 6.5.1 (Spherical harmonics). For ℓ ∈ N0 and m = −ℓ, . . . , ℓ, let Y ℓm denote the standard

real-valued spherical harmonics on the unit sphere (S2, γ). We also define the electric and magnetic

1-form spherical harmonics by

Eℓm
.
= − 1√

ℓ(ℓ+ 1)
/∇Y ℓm and Hℓ

m
.
=

1√
ℓ(ℓ+ 1)

∗ /∇Y ℓm
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for ℓ ≥ 1 and |m| ≤ ℓ. By a standard abuse of notation, we will use the same symbol for the

vector-valued spherical harmonics, with the understanding that γ is used to raise the index.

Definition 6.5.2 (Linearly conserved charges). Let x be C2 sphere data and define the 1-form B

and scalar function m by

B
.
=

ϕ3

2Ω2

(
/∇(Ω trχ) + Ω trχ(η − 2 /∇ log Ω)

)
and

m
.
= ϕ3

(
K + 1

4 trχ trχ
)
− ϕ /divB.

The conformal factor ϕ is defined as the unique positive function on S2 such that dµ/g = ϕ2dµγ ,

where γ is the distinguished choice of round metric on S. Then the charges E,P,L, and G (where

the latter three are vectors in R3 indexed by m ∈ {−1, 0, 1}) are defined by

E
.
= mℓ=0

P
.
= mℓ=1

L
.
= Bℓ=1,H

G
.
= Bℓ=1,E .

Here the modes are defined by

f ℓ=0 .
=

∫
S2

f Y 0
0 dµγ , (f ℓ=1)m

.
=

∫
S2

f Y 1
m dµγ ,

(Xℓ=1,E)m
.
=

∫
S2

γ(X,E1
m) dµγ , (Xℓ=1,H)m

.
=

∫
S2

γ(X,H1
m) dµγ .

6.5.2 Czimek–Rodnianski obstruction-free perturbative characteristic glu-

ing

The following theorem is a combination of [ACR23b, Theorem 3.2], [CR22, Theorem 2.9], and

Remark (5) after Theorem 2.9 in [CR22].

Theorem 6.5.3 (Czimek–Rodnianski obstruction-free characteristic gluing). For any CE > 0 and

integer m ≥ 0, there exist constants C∗ > 0 and ε0 > 0 such that the following holds. Let x be

ingoing null data on an ingoing cone C = [− 1
100 ,

1
100 ]u × S2 solving the null structure equations and

Bianchi identities, and x2 be C2
uC

2+m
v sphere data. Let x1 be the sphere data in x corresponding to
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u = 0. Let

(∆E,∆P,∆L,∆G)
.
= (E,P,L,G)(x2)− (E,P,L,G)(x1)

be the difference of the conserved charges of x2 and x1. If the data sets satisfy the smallness condition

∥x−m∥X+(C) + ∥x2 −m2∥Xm < ε♭ (6.5.1)

for some 0 < ε♭ < ε0, where m is reference Minkowski null data4 and m2 is reference Minkowski

sphere data, and the following “coercivity” conditions on the charge differences

∆E > CEε♭, (6.5.2)

|∆L| < ε2♭ , and (6.5.3)

|∆P|+ |∆G| < C∗∆E, (6.5.4)

then there is a solution x ∈ X (C) of the null structure equations along a null hypersurface C =

[1, 2]v × S2 such that

x(1) = x′1, x(2) = x2, (6.5.5)

and

∥x−m∥Xh.f.(C) + ∥x′1 −m1∥X ≲ ∥x−m∥X+(C) + ∥x2 −m2∥Xm .

The sphere data x′1 is obtained by applying a sphere diffeomorphism and a transversal sphere per-

turbation to x1 inside of C. See [ACR23b; CR22] for the precise definitions of these terms.

Remark 6.5.4. The matching condition (6.5.5) is to order C2+m in directions tangent to the cone.

Since all hypotheses in Theorem 6.5.3 are open conditions, we immediately have:

Corollary 6.5.5. If the sphere data set x2 satisfies the hypotheses of Theorem 6.5.3, there exists

an ε∗ > 0 such that if x̃2 is another sphere data set such that

∥x̃2 − x2∥Xm < ε

for some 0 ≤ ε < ε∗, then the conclusion of the theorem holds for x̃2 in place of x2.

4That is, reference Minkowski sphere data defined along the ingoing cone C. See [ACR23b] for details.
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6.6 Proofs of the main gluing theorems

6.6.1 Gluing an almost-Schwarzschild sphere to a round Schwarzschild

sphere with a larger mass

In this subsection, we prove the main technical lemma of the chapter. In essence, we show how to

decrease the mass of a Schwarzschild sphere (going backwards in time) by an arbitrary amount, with

an arbitrary small error.

Proposition 6.6.1. Given any 0 ≤ M∗ < M , R > 0, integer m ≥ 0, and any ε♯ > 0, there exists

a δ > 0 and null data x on C
[0,1]
1 = [0, 1] × S2 solving the null structure equations and Bianchi

identities such that

bδ(x(1)) = sM,R (6.6.1)

and

∥bδ(x(0))− sM∗,R∥Xm < ε♯, (6.6.2)

where b is the boost operation defined in Definition 6.3.3 and Xm is the sphere data norm appearing

in Theorem 6.5.3.

The proof of the proposition is given at the end of this subsection. We first give a general

construction of seed data /̂g compatible with the hypotheses of Lemma 6.3.6.

Lemma 6.6.2. Let C be as in Section 6.3.1.3. Let γ̃ be a Riemannian metric on S2. There exists

an explicitly defined smooth assignment γ̃ 7→ h, where h is a traceless (1, 1)-S-tensor field along C,

such that for any λ ∈ R,

/̂gAB
.
= γ̃AC exp(λh)CB (6.6.3)

defines a Riemannian metric for each v, satisfies condition (6.3.4), and /̂g(1) = γ̃. Here γ̃ is defined

along C according to Dγ̃ = 0. We have

∂v /̂gAB = λ/̂gAC∂vh
C
B (6.6.4)

and the inverse metric is given by

/̂g
AB =

(
/̂g
−1
)AB

= (γ̃−1)AC exp(−λh)BC = (γ̃−1)BC exp(−λh)AC . (6.6.5)

Proof. We first fix some cutoff functions. Let χ ∈ C∞
c (0, 12 ) be nonnegative and not identically zero.
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Let χ1
.
= χ(v) and χ2(v)

.
= χ(v − 1

2 ). Let p1 be the north pole of S2, p2 the south pole, and set

Ui
.
= S2 \ {pi} for i = 1, 2. Let f1 ∈ C∞

c (U1) and f2 ∈ C∞
c (U2) be such that f21 + f22 = 1 on S2.

Let (ϑ11, ϑ
2
1) be a coordinate chart covering U1, (ϑ

1
2, ϑ

2
2) be a coordinate chart covering U2, and

set

h̊i
.
= dϑ1i ⊗

∂

∂ϑ1i
− dϑ2i ⊗

∂

∂ϑ2i
on Ui.

As matrices, these tensor fields are given by diag(1,−1) in the respective coordinate systems.

We now claim that the symmetric (0, 2)-tensor fields

hi AB
.
= 1

2

(
γ̃AC h̊

C
i B + γ̃BC h̊

C
i A

)

are nowhere vanishing on their respective domains of definition. This follows from the fact that

hi AA = γ̃

(
∂

∂ϑAi
,
∂

∂ϑAi

)
,

where no summation is implied. Since γ̃ is positive definite, we must at each point have both hi 11

and hi 22 nonvanishing, so hi is always nonvanishing. Let h♯i be the (1, 1)-tensor field obtained by

dualizing hi with γ̃. We then finally define

h
.
= χ1f1|h1|−1

γ̃ h♯1 + χ2f2|h2|−1
γ̃ h♯2. (6.6.6)

It is clear that tr h = 0 and that h♭ is symmetric, where ♭ is taken relative to γ̃.

We now show that (6.6.3) defines a Riemannian metric. Viewing h as an endomorphism TS2 →

TS2, the power series

exp(λh) =

∞∑
n=0

1

n!
(λh)n (6.6.7)

converges and defines a smooth family of endomorphisms.
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To verify that /̂g is symmetric, we examine (6.6.7) term by term:

γ̃AC ((λh)n)
C
B = λnγ̃AD1h

D1
D2h

D2
D3 · · · hDn−1

Dnh
Dn

B

= λnγ̃D1D2h
D1

Ah
D2

D3 · · · hDn−1
Dnh

Dn
B

= · · ·

= λnγ̃Dn−1Dn
hD1

D2
hD2

D3
· · · hDn−1

Ah
Dn

B

= λnγ̃Dn−1Dn
hD1

D2
hD2

D3
· · · hDn−1

Bh
Dn

A

= γ̃BC ((λh)n)
C
A,

where we used the symmetry of h♭ repeatedly. That /̂g is positive definite follows easily from the fact

that at the origin of a normal coordinate system for γ̃, /̂gAB is the matrix exponential of a symmetric

matrix, and hence positive definite.

To show that (6.3.4) is satisfied, we use Jacobi’s formula to calculate

det /̂g = det γ̃ exp(λ tr h) = det γ̃

relative to any coordinate system, where we used tr h = 0. We conclude that the volume form of /̂g

satisfies

dµ
/̂g
= dµγ̃ . (6.6.8)

Observe that since D(dµγ̃) = 0 by definition of γ̃ along C, (6.6.8) implies

0 = D(dµ
/̂g
) = 1

2 tr/̂g(D/̂g) dµ/̂g,

so D/̂g is /̂g-traceless.

To prove (6.6.4), we use the fact that h(v) and h(v′) commute for any v and v′ sufficiently close

to simply differentiate (6.6.3):

D/̂gAB = ∂v /̂gAB = γAC exp(λh)CDλ∂vh
D
B = λ/̂gAC∂vh

C
B .

The formula (6.6.5) is immediately seen to hold.

Remark 6.6.3. By the Poincaré–Hopf theorem, the shear χ̂ must vanish at some point on each

Sv ⊂ C. Equivalently, any h for which (6.6.3) satisfies condition (6.3.4), must vanish at some point
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on each Sv. In order to satisfy (6.6.9) below, this zero cannot stay along the same generator of C.

The simplest solution to this problem is the two-pulse configuration above.

With this general construction out of the way, we begin the proof of Proposition 6.6.1 in earnest.

We specialize now to the case of γ̃ = γ, the round metric on the unit sphere.

Convention. We now introduce a parameter δ > 0 satisfying 0 < δ < δ0, where δ0 > 0 is a

sufficiently small fixed parameter only depending on M∗,M,R and the fixed choices of χ,U1, U2, f1,

and f2. We will further use in this section the notation that implicit constants in ≲,≳, and ≈ may

depend M∗,M,R and χ,U1, U2, f1, and f2. We also use the notation ≲j ,≳j , and ≈j if the implicit

constants in ≲,≳, and ≈ depend on an additional parameter j.

Lemma 6.6.4. The geometric quantity e, defined in (6.3.14), satisfies

/∇
∫ 1

0

e dv = 0 (6.6.9)

and

| /∇j
e| ≲j λ2. (6.6.10)

for j ≥ 0.

Proof. We have

e = 1
8λ

2∂vh
A
B∂vh

B
A = 1

8λ
2
(
(χ′

1)
2f21 + (χ′

2)
2f22
)

by (6.3.9), (6.6.5), and (6.6.6). Therefore, we have

/∇j
e = 1

8λ
2
(
(χ′

1)
2 /∇j

f21 + (χ′
2)

2 /∇j
f22

)
,

which immediately proves (6.6.10). To prove (6.6.9), we note that

∫ 1

0

(
(χ′

1)
2f21 + (χ′

2)
2f22
)
dv =

(
f21 + f22

) ∫ 1

0

(χ′)2 dv =

∫ 1

0

(χ′)2 dv,

which is independent of the angle on S2.

Along [0, 1]× S2 we impose the gauge condition Ω2 = 1 and at v = 1 we impose

trχ(1) = δ
2

R

(
1− 2M

R

)
. (6.6.11)

The conformal factor ϕ solves Raychaudhuri’s equation (6.3.11) with final values (see (6.3.13) and
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(6.6.11))

ϕ(1) = Rf

∂vϕ(1) = δ

(
1− 2M

R

)

Lemma 6.6.5. If 0 < δ ≤ δ0 and 0 ≤ λ ≤ δ1/4, then

| /∇j
(ϕ−R)|+ | /∇j

∂vϕ| ≲j δ + λ2 (6.6.12)

uniformly on [0, 1]× S2 for every integer j ≥ 0.

Proof. Integrating (6.3.11), we obtain

∂vϕ(v) = δ

(
1− 2M

R

)
+

∫ 1

v

ϕ e dv′. (6.6.13)

Assuming |ϕ| ≤ 10Rf in the context of a simple bootstrap argument, we see that (6.6.13) and

(6.6.10) imply

|∂vϕ| ≲ δ + λ2, (6.6.14)

which implies

|ϕ−R| ≲ δ + λ2. (6.6.15)

Since λ2 ≤ δ1/2, taking δ0 > 0 sufficiently small closes the boostrap and (6.6.14) and (6.6.15) hold

on [0, 1]. Commuting (6.3.11) repeatedly with /∇ and arguing inductively using (6.6.14) and (6.6.15)

as the base cases, we easily obtain (6.6.12).

Lemma 6.6.6. Fix an angle θ0 ∈ S2. For 0 < δ ≤ δ0, the function

λ 7−→ trχ(0, θ0;λ)

is monotonically increasing.

Proof. Since Ω = 1 identically, Raychaudhuri’s equation (6.2.4) becomes

∂v trχ = −2λ2e1 − 1
2 (trχ)

2, (6.6.16)
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where e1
.
= 1

8∂vh
A
B∂vh

B
A. Taking the ∂λ derivative of (6.6.16) gives

∂v (∂λ trχ) = −4λe1 − trχ(∂λ trχ)

This is at once solved for

∂λ trχ(v) = 4λe
∫ 1
v
trχdv′

∫ 1

v

e−
∫ 1
v′ trχdv

′′
e1 dv

′,

which is strictly positive at v = 0 for λ > 0.

Lemma 6.6.7. Let 0 < δ ≤ δ0 and 0 ≤ λ ≤ δ1/4. Then trχ is monotonically decreasing along each

generator and

inf
[0,

1
2 ]×S

2

trχ ≳ δ + λ2. (6.6.17)

Proof. Monotonicity of trχ follows at once from Raychaudhuri’s equation (6.6.16). We can imme-

diately integrate (6.6.16) to obtain

trχ(v) = δ
2

R

(
1− 2M

R

)
+ 2λ2e

1
2

∫ 1
v
trχdv′

∫ 1

v′
e−

1
2

∫ 1
v′ trχdv

′′
e1dv

′, (6.6.18)

By (6.6.12), trχ ≲ δ + λ2 ≲ δ1/2 ≤ 1, so (6.6.18) implies (6.6.17).

Lemma 6.6.8. Fix an angle θ0 ∈ S2. For 0 < δ ≤ δ0, there exists a unique λ0 = λ0(δ) ∈ (0, δ1/4)

(depending also on θ0) such that

trχ(0, θ0;λ0) = δ
2

R

(
1− 2M∗

R

)
, (6.6.19)

which also satisfies

λ0(δ) ≈ δ1/2. (6.6.20)

Proof. Let

c
.
=

4

R
(M −M∗) and C

.
= 2

∫ 1

0

e1(v, ϑ0) dv.

Then the condition (6.6.19) becomes (see (6.6.11) and (6.6.16))

cδ = Cλ2 + 1
2

∫ 1

0

(trχ)2 dv. (6.6.21)

Combining (6.6.12) with (6.6.17) shows immediately that (6.6.21) can be achieved by a λ0(δ) satis-
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fying (6.6.20).

From now on, we always take λ = λ0(δ) as constructed in Lemma 6.6.8. With this λ, our main

estimates (6.6.12) are improved to:

| /∇j
e|+ | /∇j

(ϕ−R)|+ | /∇j
trχ|+ δ1/2| /∇j

χ̂| ≲j δ (6.6.22)

for any j ≥ 0 and uniformly on [0, 1]× S2. Importantly, we also have

Lemma 6.6.9. Let 0 < δ ≤ δ0. Then,

| /∇j
trχ(0)| ≲j δ2 (6.6.23)

at v = 0 for j ≥ 1. Hence,

∣∣∣∣ /∇j
(
trχ(0)− δ

2

R

(
1− 2M∗

R

))∣∣∣∣ ≲j δ2 (6.6.24)

for all j ≥ 0 at v = 0.

Proof. Applying /∇j
to (6.6.16), integrating in v, and applying (6.6.9) yields

/∇j
trχ(0) = − 1

2

∫ 1

0

/∇j
(trχ)2 dv.

We arrive at (6.6.23) after applying (6.6.22). This also proves (6.6.24) for j ≥ 1. For j = 0, we

integrate (6.6.23) along geodesics emanating from θ0 and use (6.6.19).

The remaining sphere data at v = 1 is now specified as follows:

trχ(1) = −1

δ

2

R

χ̂(1) = 0

η(1) = 0

ω(1) = Dω(1) = 0

α(1) = α(1) = 0.

Combining everything and using the null structure and Bianchi equations to solve the rest of the

system, we have
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Lemma 6.6.10. For 0 < δ ≤ δ0 we have at v = 0

δ−1| /∇j
(/g −R2γ)|+ δ−2

∣∣∣∣ /∇j
(
trχ(0)− δ

2

R

(
1− 2M∗

R

))∣∣∣∣+ δ−1

∣∣∣∣ /∇j
(
K − 1

R2

)∣∣∣∣
+ δ−1/2| /∇j

η|+
∣∣∣∣ /∇j

(
trχ+

1

δ

2

R

)∣∣∣∣+ δ1/2| /∇j
χ̂|+ δ−3/2| /∇j

β|

+ δ−1/2

∣∣∣∣ /∇j
(
ρ+

2M∗

R3

)∣∣∣∣+ δ−1/2| /∇j
σ|+ | /∇j

β|+ δ1/2| /∇j
α|+ | /∇j

ω|+ δ| /∇j
Dω| ≲j 1 (6.6.25)

for every j ≥ 0 and

χ̂(0) = 0, α(0) = 0. (6.6.26)

The terms in (6.6.25) are displayed in the order in which they are estimated.

Proof. The proof follows the procedure of [Chr09, Chapter 2], which we now outline. The first term

is estimated using (6.6.22). The second term was estimated in (6.6.24). The third term is estimated

using the formula

K/g = ϕ−2(K
/̂g
− /∆

/̂g
log ϕ).

Note that the first and third terms are estimated by δ1/2 on the whole cone, but are improved at

v = 0. To estimate the fourth term, the transport equation (6.2.8) combined with the Codazzi

equation (6.2.19) and (6.1.1) yields

∂vηA + trχηA = ( /divχ)A − /∇A trχ.

Now |η| can be estimated using Grönwall’s inequality and (6.6.22). To estimate the fifth term, the

transport equation (6.2.14) is combined with the Gauss equation (6.2.18) to give

∂v trχ+ trχ trχ = −2K − 2 /div η + |η|2.

Grönwall gives |trχ| ≲ δ−1, which then easily implies the desired estimate by Grönwall applied to

(∂v + trχ)

(
trχ+

1

δ

2

R

)
= −2K − 2 /div η + |η|2 + 1

δ

2

R
trχ.

To estimate the sixth term, apply Grönwall directly to (6.2.16). The first variation formula (6.3.12),

the second variation formula (6.2.6), and (6.6.4) imply (6.6.26). The seventh term in (6.6.25) is

estimated directly from the Codazzi equation (6.2.19). The eighth term is estimated directly from

the Gauss equation (6.2.18). The ninth term is estimated directly from the curl equation (6.2.21).
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The tenth term is estimated using Grönwall and the Bianchi equation (6.2.24). The eleventh term is

estimated by using the Einstein equations (6.2.1) and the first variation formula (6.2.2) to compute

0 = D trα = trDα− 2Ω(χ, α).

Combined with the Bianchi identity (6.2.23), this yields

∂vαAB − (χ̂, α)/gAB − 1
2 trχαAB = −( /∇⊗̂β)AB + 5(η ⊗̂β)AB − 3χ̂

AB
ρ+ 3∗χ̂

AB
σ,

from which the desired estimate follows by Grönwall. The twelfth term is estimated by integrating

(6.2.10) and the thirteeth term is estimated by integrating (6.2.22).

We are now ready to prove the main result of this subsection.

Proof of Proposition 6.6.1. Let xlow(v), v ∈ [0, 1], be the null data constructed above. We have

defined

xlow(1) =

(
1, R2γ, δ

2

R

(
1− 2M

R

)
, 0,−1

δ

2

R
, 0, . . . , 0

)
and we set xhigh(1)

.
= 0. Immediately from the definition of the boost bδ in Definition 6.3.3, we have

(6.6.1).

Since Ω2 = 1 along C and χ̂ is compactly supported away from v = 0, we have xhigh(0) = 0. The

boost bδ changes every positive power of δ on the left-hand side of (6.6.25) into a negative power,

so that

∥bδ(x(0))− sM∗,R∥Cj ≲j δ
1/2

for any j ≥ 0. Therefore, taking j sufficiently large, we have

∥bδ(x(0))− sM∗,R∥Xm ≲ ∥bδ(x(0))− sM∗,R∥Cj ≲ δ1/2,

where Xm is the sphere data norm appearing in Theorem 6.5.3. Now (6.6.2) follows follows by

taking δ sufficiently small.

6.6.2 Gluing Minkowski space to any round Schwarzschild sphere

Theorem 6.6.11. Let M > 0, R > 0, and k ∈ N. For any ε > 0 there exists a solution x of

the null constraints on a null cone C [0,1] such that x(1) equals sM,R after a boost and x(0) can be

realized as a sphere in Minkowski space in the following sense: There exists a Ck spacelike 2-sphere
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S in Minkowski space and a choice of L and L on S such that the induced C2
uC

k
v sphere data on this

sphere equals x(0) after a boost and a sphere diffeomorphism.

Remark 6.6.12. The sphere S can be made arbitrarily close to round and the sphere diffeomorphism

can be made arbitrarily close to the identity.

Proof. By scaling, it suffices to prove the theorem when R = 2. We first use Proposition 6.6.1

to connect bδ(sM,R) to the sphere data set bδ(x(0)) with M∗ = ε
1/4
♯ ≪ 1. We now aim to use

Theorem 6.5.3 to connect x2
.
= bδ(x(0)) to a sphere in Minkowski space. Let x be the usual ingoing

Minkowski null data passing through the unit sphere at u = 0.5

By a direct computation, ∥sM∗,2 −m2∥Xm ≈M∗. It follows that

∥x2 −m2∥Xm < C1M∗ (6.6.27)

if ε♯ is sufficiently small, where C1 does not depend on ε♯.

We must estimate the conserved charge deviation vector

(∆E,∆P,∆L,∆G) = (E,P,L,G)(bδ(x(0))).

By (6.6.2),

|B|+ |ϕ /divB| ≲ ε♯.

We then compute

ϕ3
(
K + 1

4 trχ trχ
)
= 23

(
1

22
+

1

4

(
2

2

(
1− 2M∗

2

))(
−2

2

))
+O(ε♯)

= 2M∗ +O(ε♯),

where O(ε♯) denotes a function all of whose angular derivatives are ≲ ε♯. It follows that for ε♯

sufficiently small,

∆E ≥ 3
2M∗ > M∗ (6.6.28)

and

|∆P|+ |∆L|+ |∆G| ≲ ε♯. (6.6.29)

Let and C∗ and ε0 as in Theorem 6.5.3 for the choice CE = C−1
1 . For 0 < ε♯ < (ε0/C1)

4, set

5Note that Theorem 6.5.3 was formulated for C = [1, 2]v × S2, but we are applying it on C = [0, 1]v × S2 here,
which is merely a change of notation. We refer the reader back to Fig. 4.4 for the setup of this proof.
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ε♭ = C1M∗. Then (6.5.1) and (6.5.2) are satisfied,

|∆L| < Cε♯ = CM4
∗ ≤ (C1M∗)

2

if ε♯ is sufficiently small, so (6.5.3) is satisfied, and finally

|∆P|+ |∆G| < Cε♯ = CM3
∗ ·M∗ ≤ C∗∆E (6.6.30)

if ε♯ is sufficiently small, so (6.5.4) is also satisfied.

By applying Theorem 6.5.3, we obtain a null data set for which the bottom sphere x′1 is a sphere

diffeomorphism of a genuine Minkowski sphere data set and satisfies

∥x′1 −m1∥X ≲ ∥x2 −m2∥X ≲ ε
1/4
♯ , (6.6.31)

which can be made arbitrarily small and hence completes the proof of the theorem.

6.6.3 Gluing Minkowski space to any Kerr coordinate sphere in very

slowly rotating Kerr

In this section, we perform Kerr gluing for small angular momentum essentially as a corollary of the

Schwarzschild work.

Theorem 6.6.13. For any k ∈ N, there exists a function a0 : (0,∞)2 → (0,∞) with the following

property. Let M > 0 and R > 0. If 0 ≤ |a| ≤ a0(M,R)M , there exists a solution x of the null

constraints on a null cone C
[0,1]
0 such that x(1) equals kM,a,R after a boost and x(0) can be realized

as a sphere in Minkowski space in the following sense: There exists a Ck spacelike 2-sphere S in

Minkowski space and a choice of L and L on S such that the induced C2
uC

k
v sphere data on this

sphere equals x(0) after a boost and a sphere diffeomorphism.

Proof. Again, it suffices to prove the theorem for R = 2 and M > 0 fixed but otherwise arbitrary.

Let x(v) and δ be the associated null data set and boost parameter constructed in Proposition 6.6.1,

where M and R are as in the statement of the present theorem and ε♯ is sufficiently small that the

argument of Theorem 6.6.11 applies.

Let γ̃
.
= 2−2/gM,a,2 and define /̂g by (6.6.3) with λ = λ0(δ) from Lemma 6.6.8. By (6.4.8), Cauchy

stability for the proof of Proposition 6.6.1, and Corollary 6.5.5, we conclude that kM,a,2 can be glued

to Minkowski space as in Fig. 4.1 for a sufficiently small.
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6.7 Gravitational collapse to a Kerr black hole of prescribed

mass and angular momentum

In this section we give the proof of Theorem 1.1.15 and the sketch of the proof of Corollary 4.6.5.

Recall the fractional Sobolev spaces Hs, s ∈ R, and their local versions Hs
loc. Recall also the notation

f ∈ Hs−
loc which means f ∈ Hs′

loc for every s′ < s.

We refer the reader back to Fig. 1.2 for the Penrose diagram associated to the following result.

Corollary 6.7.1. There exists a constant a0 > 0 such that the following holds. For any mass M > 0

and specific angular momentum a satisfying a/M ∈ [−a0, a0], there exist one-ended asymptotically

flat Cauchy data (g0, k0) ∈ H7/2− ×H5/2− for the Einstein vacuum equations (1.1.6) on Σ ∼= R3,

satisfying the constraint equations

Rg0 + (trg0 k0)
2 − |k0|2g0 = 0 and (6.7.1)

divg0 k0 − g0∇ trg0 k0 = 0, (6.7.2)

such that the maximal future globally hyperbolic development (M4, g) has the following properties:

• Null infinity I+ is complete.

• The black hole region is non-empty, BH .
= M\ J−(I+) ̸= ∅.

• The Cauchy surface Σ lies in the causal past of future null infinity, Σ ⊂ J−(I+). In particular,

Σ does not intersect the event horizon H+ .
= ∂(BH) or contain trapped surfaces.

• (M, g) contains trapped surfaces.

• For sufficiently late advanced times v ≥ v0, the domain of outer communication, including the

event horizon, is isometric to that of a Kerr solution with parameters M and a. For v ≥ v0,

the event horizon of the spacetime can be identified with the event horizon of Kerr.

Remark 6.7.2. The spacetime metric g is in fact C2 everywhere away from the region labeled “Cauchy

stablity” in Fig. 6.1 below. Near the set Ḣ+
− (see [HE73, p. 187] for notation), the spacetime metric

might fail to be C2, but is consistent with the regularity of solutions constructed in [HKM76] with

s = 7
2−. See also [Chr13] for the notion of the maximal globally hyperbolic development in low

regularity.
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Cauchy stability

local existence

Σ

Mink

Figure 6.1: Penrose diagram for the proof of Theorem 1.1.15. The diagram does not faithfully
represent the geometry of the spacetime near the “bottom” of the event horizon Ḣ+

− (i.e., the locus
where the null geodesic generators “end”). The event horizon does not necessarily end in a point
since the distinguished Minkowski sphere is not necessarily round.

Proof. We refer the reader to Fig. 6.1 for the anatomy of the proof, which is essentially the same as

Corollary 5.6.1. The region to the left ofH+ is constructed using our gluing theorem, Theorem 6.6.13,

and local existence (in this case we appeal to [Luk12]). The region to the right of the horizon, save

for the part labeled “Cauchy stability” in Fig. 6.1, is constructed in the same manner. These two

regions can now be pasted along u = 0 and the resulting spacetime will be C2.

We can now use a Cauchy stability argument to construct the remainder of the spacetime. A

very similar argument in carried out in Lemma 5.6.3, but the lower regularity of our gluing result

in the present proof forces us to use slightly more technology here. As in Lemma 5.6.3, we take the

induced data (g∗, k∗) on a suitably chosen spacelike hypersurface Σ∗ passing through the bottom

gluing sphere. See Fig. 6.1. This data lies in the regularity class H
7/2−
loc × H

5/2−
loc by part (i)

of Lemma 6.7.3 below and satisfies the constraint equations. The cutoff argument presented in

Lemma 5.6.3 goes through using (ii) of Lemma 6.7.3 and the low regularity well-posedness theory in

[HKM76]. Note that for simplicity we have applied well-posedness in the class H3−
loc ×H

2−
loc because of

a loss of half a derivative in our Hardy inequality argument below, but since (g∗, k∗) actually lies in

the better space H
7/2−
loc ×H5/2−

loc , the spacetime metric has regularity consistent with H
7/2−
loc ×H5/2−

loc

initial data by propagation of regularity.

To show that (M, g) contains trapped surfaces, it suffices to observe that D(Ω trχ) < 0 on
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kMf ,af ,r+ for a0 sufficiently small by (6.4.8) and (6.2.15).6

Having constructed the spacetime, we can finally extract a Cauchy hypersurface Σ, which com-

pletes the proof.

Lemma 6.7.3. Let f and g be functions defined on B2 ⊂ R3, the ball of radius two, such that

f ∈ C2(B2), f |B1
∈ C3(B1), f |B2\B1

∈ C3(B2 \ B1), g ∈ C1(B2), g|B1
∈ C2(B1), and g|B2\B1

∈

C2(B2 \B1). Then:

(i) (f, g) ∈ H7/2− ×H5/2−(B2).

(ii) Suppose that f = g = 0 identically on B1. For 0 < ε < 1
2 , let θε be a cutoff function which is

equal to one on B1+ε and zero outside of B2+ε. Then fε
.
= θεf and gε

.
= θεg satisfy

lim
ε→0

∥(fε, gε)∥Hs×Hs−1(B2) = 0 (6.7.3)

for any s < 3.

Proof. The proof of (i) follows in a straightforward manner from the physical space characterization

of fractional Sobolev spaces (such as in [DPV12]) and is effectively an elaboration of the fact that

the characteristic function of B1 lies in H1/2−.

Proof of (ii): Using Taylor’s theorem as in Lemma 5.6.3, we see that ∥(fε, gε)∥H2×H1(B2) → 0 as

ε→ 0. By iterating Hardy’s inequality, we see that

∫
B2

f2|∂3θε|2 dx ≲
∫
B1+2ε\B1+ε

f2

ε6
dx ≲

∫
B2

f2 + |∂f |2 + |∂2f |2 + |∂3f |2 dx,

so (fε, gε) is bounded in H3 ×H2. We now obtain (6.7.3) by interpolation.

Remark 6.7.4. In fact (6.7.3) holds for s < 7
2 , but this requires a fractional Hardy inequality.

We now sketch the proof of Corollary 4.6.5 and refer the reader back to Fig. 4.7 for the associated

Penrose diagram.

Sketch of the proof of Corollary 4.6.5. Using Theorem 6.6.11, we glue Minkowski space to a round

Schwarzschild sphere of mass 1 and radius R = 2− ε for 0 ≤ ε ≪ 1. As ε → 0 (perhaps only along

a subsequence εj → 0), the gluing data converge to the horizon gluing data used in the proof of

Corollary 6.7.1, in an appropriate norm. It then follows by Cauchy stability that the spacetimes

6For convenience, we have deduced the presence of trapped surfaces in very slowly rotating Kerr perturbatively
from Schwarzschild. However, it is well known that any subextremal Kerr black hole contains trapped surfaces right
behind the event horizon, and one may invoke that fact instead since the spacetime metric constructed here is C2

across the event horizon H+.
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constructed by solving backwards as in the proof of Corollary 6.7.1 contain the full event horizon,

for ε sufficiently small.
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Chapter 7

Revisiting the charged Vaidya

metric

In this chapter, we introduce Ori’s bouncing charged null dust model [Ori91]. We then show that

Ori’s model exhibits extremal critical collapse and can be used to construct counterexamples to the

third law of black hole thermodynamics. Later, in Chapter 8, we will then show that these dust

solutions can be (in an appropriate sense) globally desingularized by passing to smooth solutions of

the Einstein–Maxwell–Vlasov system. The constructions in this section are crucial to motivate the

choice of initial data in the proof of Theorem 1.2.1 in Chapter 8.

7.1 Ori’s bouncing charged null dust model

We begin by recalling the general notion of charged null dust from [Ori91]:

Definition 7.1.1. The Einstein–Maxwell–charged null dust model for particles of fundamental

charge e ∈ R \ {0} consists of a charged spacetime (M, g, F ), a future-directed null vector field

k representing the momentum of the dust particles, and a nonnegative function ρ which describes
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the energy density of the dust. The equations of motion are

Rµν − 1
2Rgµν = 2

(
TEM
µν + Tµν

)
, (7.1.1)

∇αFµα = eρkµ, (7.1.2)

kν∇νk
µ = eFµνk

ν , (7.1.3)

∇µ(ρk
µ) = 0, (7.1.4)

where TEM
µν was defined in (2.1.17) and Tµν

.
= ρkµkν is the energy-momentum tensor of a pressureless

perfect fluid. By the forced Euler equation (7.1.3), the integral curves of k are electromagnetic null

geodesics.

Any two functions ϖin, Qin ∈ C∞(R) determine a spherically symmetric solution to the system

(7.1.1)–(7.1.4) by the formulas

gin[ϖin, Qin]
.
= −D(V, r) dV 2 + 2 dV dr + r2γ, (7.1.5)

F
.
= −Qin

r2
dV ∧ dr, (7.1.6)

k
.
=

e

Q̇in

(
ϖ̇in − QinQ̇in

r

)
(−∂r), ρ

.
=

(Q̇in)
2

e2r2

(
ϖ̇in − QinQ̇in

r

)−1

, (7.1.7)

where · denotes differentiation with respect to V and

D(V, r)
.
= 1− 2ϖin(V )

r
+
Qin(V )2

r2
.

The metric (7.1.5) is known as the ingoing charged Vaidya metric [PS68; BV70] and describes a

“time dependent” Reissner–Nordström spacetime in ingoing Eddington–Finkelstein-type coordinates

(V, r, ϑ, φ). The spacetime is time oriented by −∂r. The metric (7.1.5) and Maxwell field (7.1.6) are

spherically symmetric and may therefore be considered as a spherically symmetric charged spacetime

in the framework of Section 2.1. One easily sees that D = 1− 2m
r , Q = Qin, and ϖ = ϖin.

We will always make the assumption ϖ̇in ≥ 0 so that Tµν = ρkµkν satisfies the weak energy

condition for r sufficiently large. We also assume that e > 0 and impose the condition Q̇in ≥ 0 on

the seed function Qin, which just means that positively charged particles increase the charge of the

spacetime. (If e < 0, we would instead assume Q̇in ≤ 0 and the discussion would otherwise remain

unchanged.)
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We define a function rb = rb(V ), called the bounce radius, by

rb
.
=
QinQ̇in

ϖ̇in

whenever ϖ̇in(V ) > 0. The reason for this terminology will become clear shortly. By inspection

of (7.1.7), we observe the following: For r > rb(V ), (gin, F, k, ρ) defines a solution of the Einstein–

Maxwell-charged null dust system, k is future-directed null, and ρ ≥ 0. If rb(V ) > 0 and r ↘ rb(V ),

then k and T dust vanish. If also Q̇in(V ) > 0, then ρ blows up at r = rb(V ), but ρk is nonzero and

bounded. Finally, for r < rb(V ), k is past-directed null and ρ < 0, so T dust violates the weak energy

condition.

Physically, the ingoing Vaidya metric and (7.1.7) describe an ingoing congruence of radial charged

massless dust particles which interact with the electromagnetic field that they generate. One can

interpret the vanishing of k as the dust being “stopped” by the resulting repulsive Lorentz force.

Integral curves of k are ingoing radial electromagnetic null geodesics γ(s) with limit points on the

bounce hypersurface Σb
.
= {r = rb} as s → ∞. The charged null dust system is actually ill-posed

across Σb since the transport equation (7.1.3) breaks down there. Because of this, Ori argued in

[Ori91] that the ingoing charged Vaidya metric (7.1.5) (and the associated formulas in (7.1.7)) should

only be viewed as physical to the past of Σb and must be modified if we wish to continue the solution

beyond Σb.

Remark 7.1.2. The divergence of ρ along Σb does not seem to have been explicitly mentioned by

Ori, but it is one of the fundamentally singular features of charged null dust. One can also see

that ρ can blow up if Q̇in/Qin blows up as a function of V , which occurs if the dust is injected into

Minkowski space.

Remark 7.1.3. Before Ori’s paper [Ori91], the “standard interpretation” [SI80; LZ91] of the ingoing

Vaidya metric (7.1.5) did not actually involve Maxwell’s equation and the fluid equation was simply

taken to be the standard geodesic equation. The set {r < rb} was included in the ingoing solution

and the dust was thought to violate the weak energy condition in this region. We refer to [Ori91]

for discussion.

In order to continue the dust solution across Σb, we must make some further (nontrivial!) as-

sumptions on the seed functions ϖin and Qin. In order to not trivially violate causality, we must

demand that Σb is spacelike, so that the “other side” {r < rb} of Σb does not intersect the past of

Σb. This is equivalent to

D − 2ṙb < 0 on Σb. (7.1.8)
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We further assume that Σb does not contain trapped symmetry spheres, which is equivalent to

D > 0 on Σb. (7.1.9)

By examining the behavior of almost-radial electromagnetic null geodesics in Reissner–Nordström,

Ori proposed the following bouncing continuation of the solution through Σb: it should be as an

outgoing charged Vaidya metric. This metric takes the form

gout[ϖout, Qout]
.
= −D(U, r)dU2 − 2 dUdr + r2γ, (7.1.10)

where

D(U, r)
.
= 1− 2ϖout(U)

r
+
Qout(U)2

r2
,

for free functionsϖout andQout. The coordinates (U, r, ϑ, φ) are now outgoing Eddington–Finkelstein-

like. Ori defined a procedure for gluing an outgoing Vaidya metric to the ingoing Vaidya metric

along Σb by demanding continuity of the second fundamental form of Σb from both sides. One sets

(ϖout, Qout)(U) = (ϖin, Qin) ◦ G−1(U),

where the gluing map G = G(V ) is determined by

dG
dV

=
D(V, rb(V ))− 2ṙb(V )

D(V, rb(V ))
, (7.1.11)

up to specification of the (unimportant) initial condition. Notice that G is strictly monotone de-

creasing on account of (7.1.8) and (7.1.9). It turns out that this continuation preserves the weak

energy condition through Σb. We formalize this choice of extension of the Vaidya metric with the

following

Definition 7.1.4. Let ϖin and Qin be nondecreasing charged Vaidya seed functions such that

spt(ϖ̇in) = spt(Q̇in) = [V1, V2] and rb is well-defined and positive on [V1, V2]. Assume also the

conditions (7.1.8) and (7.1.9). Ori’s bouncing charged null dust model consists of the ingoing charged

Vaidya metric gin[ϖin, Qin] on Min
.
= {V ∈ spt(ϖ̇in), r ≥ rb(V )} × S2 with spacelike, untrapped

bounce hypersurface Σin
b

.
= {V ∈ spt(ϖ̇in), r = rb(V )} × S2 glued to the outgoing charged Vaidya

metric gout[ϖin ◦ G−1, Qin ◦ G−1] on Mout
.
= {U ∈ spt(ϖ̇out), r ≥ rb ◦ G−1(U)} × S2 with spacelike,

untrapped bounce hypersurface Σout
b

.
= {U ∈ spt(ϖ̇out), r = rb(G−1(U))} × S2 along the map
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Σb

RN (ϖ1, Q1)

RN (ϖ2, Q2)

gin[ϖin, Qin]

gout[ϖout, Qout]

Figure 7.1: Penrose diagram of Ori’s bouncing charged null dust model. The geometry of the beams
is described by the ingoing and outgoing Vaidya metrics, gin and gout, which are related by the gluing
map G. The spacetime to the left and right of the bouncing beam is described by the Reissner–
Nordström solution, with parameters (ϖ1, Q1) and (ϖ2, Q2) with ϖ1 < ϖ2 and Q1 < Q2. The
endpoints of Σb correspond to symmetry spheres in these Reissner–Nordström spacetimes with radii
r1 < r2. In this diagram, the V coordinate is normalized according to the ingoing solution. We
have depicted here the case of a totally geodesic bounce hypersurface Σb and the outgoing beam is
exactly the time-reflection of the ingoing beam.

G × idr : Σin
b → Σout

b defined by (7.1.11). Outside the support of the dust, Ori’s bouncing charged

null dust model extends by attaching two Reissner–Nordström solutions with parameters (ϖ1, Q1)
.
=

(ϖin, Qin)(V1) and (ϖ2, Q2)
.
= (ϖin, Qin)(V2) as depicted in Fig. 7.1.

The model can be generalized to allow for multiple beams of dust by iterating the above definition

in the obvious manner.

7.2 The radial parametrization of bouncing charged null dust

spacetimes

It is not immediately clear that interesting seed functions ϖin and Qin satisfying the requirements

of Definition 7.1.4 exist. Therefore, it is helpful to directly prescribe the geometry of Σb and the

dust along it in the following sense. Given a spacetime as in Fig. 7.1, we can parametrize Σb by the

area-radius function r. Then the renormalized Hawking mass ϖ and charge Q, which are gauge-

invariant quantities, can be viewed as functions of r on Σb, and we wish to prescribe these functions.

We will also prescribe Σb to be totally geodesic. While not essential, this condition greatly simplifies

Proposition 7.2.3 below and will later play a key role in our Vlasov construction in Chapter 8.

Definition 7.2.1. Let P denote the set of points (r1, r2, ϖ1, ϖ2, Q1, Q2) ∈ R6
≥0 subject to the
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conditions

0 < r1 < r2, Q1 < Q2, ϖ1 < ϖ2 (7.2.1)

2r1ϖ1 ≥ Q2
1, (7.2.2)

2r1(ϖ2 −ϖ1) < Q2
2 −Q2

1 < 2r2(ϖ2 −ϖ1), (7.2.3)

min
r∈[r1,r2]

(r1r
2 − 2ϖ1r1r +Q2

1r −Q2
2r +Q2

2r1) > 0. (7.2.4)

Elements of P will typically be denoted by the letter α and are called admissible parameters. Let V

denote the set of triples (α, ϖ̌, Q̌) ∈ P×C∞([0,∞)
)
×C∞([0,∞)

)
such that the functions ϖ̌ = ϖ̌(r)

and Q̌ = Q̌(r) are monotone increasing and satisfy

spt(ϖ̌′) = spt(Q̌′) = [r1, r2], (7.2.5)

d

dr
Q̌2(r) = 2r

d

dr
ϖ̌(r), (7.2.6)

ϖ̌(r1) = ϖ1, Q̌(r1) = Q1, ϖ̌(r2) = ϖ2, Q̌(r2) = Q2, (7.2.7)

where ′ denotes differentiation with respect to r.

Remark 7.2.2. In the proof of Theorem 1.2.1 we will employ the regular center parameter space PΓ,

consisting of those α ∈ P with ϖ1 = Q1 = 0.

Proposition 7.2.3 (Radial parametrization of bouncing charged null dust). Let (α, ϖ̌, Q̌) ∈ V, and

define strictly monotone functions V,U : [r1, r2] → R by

V(r) = −U(r) =
∫ r

r1

D(r′)−1 dr′,

where D(r)
.
= 1− 2ϖ̌(r)

r + Q̌2(r)
r2 . Then:

1. The seed functions (ϖin, Qin)
.
= (ϖ̌, Q̌)◦V−1 and (ϖout, Qout)

.
= (ϖ̌, Q̌)◦U−1 define a bouncing

charged null dust spacetime as in Definition 7.1.4 with gluing map G(V ) = −V and bounce

radius rb(V ) = V−1(V ).

2. The bounce hypersurface Σb is spacelike and untrapped. With the setup as in Fig. 7.1, the

left edge of Σb has area-radius r1 and Reissner–Nordström parameters (ϖ1, Q1) and the right

edge has area-radius r2 and Reissner–Nordström parameters (ϖ2, Q2). The Hawking mass m

is nonnegative on Σb.
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3. The bounce hypersurface Σb is totally geodesic with respect to gin and gout.

Proof. We must check that ϖin
.
= ϖ̌ ◦ V−1 and Qin

.
= Q̌ ◦ V−1 satisfy the assumptions of Defini-

tion 7.1.4. Using the chain rule and (7.2.6), we compute

rb(V ) =
Q̌(V−1(V ))Q̌′(V−1(V ))

ϖ̌′(V−1(V ))
= V−1(V ).

Differentiating, we obtain

ṙb(V ) = D(V−1(V )) = D(V, rb(V )), (7.2.8)

which implies that dG/dV = −1. To prove (7.1.9), we show thatD(r) > 0 for r ∈ [r1, r2]. Integrating

(7.2.6) in r and integrating by parts yields

ϖ̌(r) = ϖ1 +
1

2

∫ r

r1

1

r′
d

dr′
Q̌2(r′) dr′ = ϖ1 +

Q̌2(r)

2r
− Q2

1

2r1
+

1

2

∫ r

r1

Q̌2(r′)

r′2
dr′. (7.2.9)

Using condition (7.2.4) and Q̌ ≤ Q2, we then find

D(r) = 1− 2ϖ̌(r)

r
+
Q̌2(r)

r2
= 1− 2ϖ1

r
+
Q2

1

r1r
− 1

r

∫ r

r1

Q̌2(r′)

r′2
dr′

>
1

r1r2
(
r1r

2 − 2ϖ1rr1 +Q2
1r −Q2

2r +Q2
2r1
)
> 0 (7.2.10)

for r ∈ [r1, r2]. This proves (7.1.9) and since D − 2ṙb = −D, also proves (7.1.8). Condition

(7.2.2) implies that the Hawking mass is nonnegative at r1. Finally, that Σb is a totally geodesic

hypersurface is shown by directly computing its second fundamental form and using (7.2.8).

The definition of V involves many more conditions than just (7.1.8) and (7.1.9) alone, but it

turns out that these are relatively easy to satisfy. In particular, we have:

Proposition 7.2.4. The natural projection map V → P admits a smooth section ς : P → V.

In other words, given any smooth family of parameters in P we may associate a smooth family

of bouncing charged null dust spacetimes attaining those parameters, with totally geodesic bounce

hypersurfaces.

Remark 7.2.5. In the remainder of the dissertation (in particular, Chapter 8), we fix the choice of

section to be the one constructed in the proof below.
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Proof. Define a smooth, surjective function ψ : R2 → (0, 1) by

ψ(x, ξ) =
1

1 + exp
[
−(x− ξ)e(x−ξ)2

] .
Note that for each fixed ξ ∈ R the function x 7→ ψ(x, ξ) is strictly monotone increasing and surjective.

Moreover, for x ∈ R we have ψ(x, ξ) → 0 as ξ → ∞ and ψ(x, ξ) → 1 as ξ → −∞.

We now define the function Q̌ : (r1, r2)× R× P → R by

Q̌(r, ξ, α)
.
= Q1 + (Q2 −Q1)ψ

(
log

(
r − r1
r2 − r

)
, ξ

)
. (7.2.11)

By construction of ψ, the function Q̌ extends smoothly to [0,∞)×R×P by setting Q̌(r, ξ, α) = Q1

for 0 ≤ r ≤ r1 and Q̌(r, ξ, α) = Q2 for r ≥ r2.

With our family of candidate Q̌’s at hand, we aim to satisfy the constraint ϖ̌(r2) = ϖ2, where

ϖ̌(r) is defined by (7.2.9). Consider the smooth map Π : (ξ, α) ∈ R× P → R defined by

Π(ξ, α)
.
= ϖ1 +

Q2
2

2r2
− Q2

1

2r1
+

∫ r2

r1

Q̌2(r′, ξ, α)

2r′2
dr′.

Since ψ satisfies ∂ψ
∂ξ < 0 on R2, we have that ∂Π

∂ξ < 0 on R×P. Moreover, using the pointwise limits

of ψ, a direct computation gives

lim
ξ→∞

Π(α, ξ) = ϖ1 +
Q2

2

2r2
− Q2

1

2r2
, lim

ξ→−∞
Π(α, ξ) = ϖ1 +

Q2
2

2r1
− Q2

1

2r1
.

By condition (7.2.3), this implies that

lim
ξ→∞

Π(α, ξ) < ϖ2 < lim
ξ→−∞

Π(α, ξ).

Thus, the intermediate value theorem and the fact that ∂Π
∂ξ < 0 show that there exists a unique

ξ(α) such that Π(α, ξ(α)) = ϖ2. Moreover, a direct consequence of the implicit function theorem is

that the assignment P ∋ α 7→ ξ(α) ∈ R is smooth. The above construction shows that the functions

Q̌(r, ξ(α), α) and ϖ̌ satisfy all required properties.

The set P is defined by simple polynomial relations and includes many interesting examples as

we will see in the next two sections.
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Figure 7.2: Penrose diagrams of extremal critical collapse in Ori’s bouncing charged null dust model.
Compare with Fig. 1.6. In Theorem 7.3.2, λ∗ = 1.

7.3 Extremal critical collapse in Ori’s model

The first application of Propositions 7.2.3 and 7.2.4 is the construction of one-parameter families

of bouncing charged null dust spacetimes exhibiting extremal critical collapse. We first show that

the regular center parameter space PΓ contains elements with arbitrary final Reissner–Nordström

parameters:

Lemma 7.3.1. Let ϖ2, Q2 > 0. Then there exist 0 < r1 < r2 such that (r1, r2, 0, ϖ2, 0, Q2) ∈ PΓ.

If ϖ2 ≥ Q2, then r2 can moreover be chosen so that r2 < ϖ2 −
√
ϖ2

2 −Q2
2.

Proof. Let

r1
.
= Q2

(
Q2

2ϖ2
− ε

)
, r2

.
= Q2

(
Q2

2ϖ2
+ ε

)
,

where ε > 0 is a small parameter to be determined. With this choice, (7.2.3) is clearly satisfied. Let

p(r)
.
= r1r

2 −Q2
2r +Q2

2r1 and observe that

lim
ε→0

p

(
Q2

2

2ϖ2

)
=

Q6
2

8ϖ3
2

> 0.

It follows that (7.2.4) is satisfied for ε sufficiently small. If x ≥ 1, then (2x)−1 < x −
√
x2 − 1, so

taking ε perhaps smaller ensures that r2 < ϖ2 −
√
ϖ2

2 −Q2
2.

Using this, we can show that Ori’s model exhibits extremal critical collapse. Compare the

following theorem with Theorem 1.2.1 and refer to Fig. 7.2 for Penrose diagrams.
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Theorem 7.3.2. For any M > 0 and fundamental charge e ∈ R\{0}, there exist a small parameter

δ > 0 and a smooth two-parameter family of regular center parameters {αλ,M ′} ⊂ PΓ for λ ∈ (0, 2]

and M ′ ∈ [M−δ,M+δ] such that the two-parameter family of bouncing charged null dust spacetimes

{Dλ,M ′}, obtained by applying Proposition 7.2.3 to ς(αλ,M ′), has the following properties:

1. For 0 < λ < 1, Dλ,M ′ is isometric to Minkowski space for all sufficiently late retarded times

u and hence future causally geodesically complete. In particular, it does not contain a black

hole or naked singularity, and for λ < 1 sufficiently close to 1, sufficiently large advanced

times v ≥ v0 and sufficiently small retarded times u ≤ u0, the spacetime is isometric to an

appropriate causal diamond in a superextremal Reissner–Nordström solution. Moreover, Dλ,M ′

converges smoothly to Minkowski space as λ→ 0.

2. λ = 1 is critical: D1,M ′ contains a nonempty black hole region BH and for sufficiently large

advanced times v ≥ v0, the domain of outer communication, including the event horizon H+,

is isometric to that of an extremal Reissner–Nordström solution of mass M ′. The spacetime

contains no trapped surfaces.

3. For 1 < λ ≤ 2, Dλ,M ′ contains a nonempty black hole region BH and for sufficiently large

advanced times v ≥ v0, the domain of outer communication, including the event horizon H+,

is isometric to that of a subextremal Reissner–Nordström solution. The spacetime contains an

open set of trapped surfaces.

In addition, for every λ ∈ [0, 2], Dλ,M ′ is isometric to Minkowski space for sufficiently early advanced

time and near the center {r = 0} for all time, and possesses complete null infinities I+ and I−.

Proof. Using Lemma 7.3.1, choose 0 < r1 < r2 < r−(4M, 2M) such that (r1, r2, 0, 4M, 0, 2M) ∈ PΓ.

We consider

αλ,M ′
.
= (r1, r2, 0, λ

2M ′, 0, λM ′) (7.3.1)

and note that αλ,M ′ lies in PΓ for |λ − 2| sufficiently small and |M −M ′| ≤ δ sufficiently small by

the openness of the conditions defining PΓ. Moreover, from the scaling properties of (7.2.3) and the

monotonicity of (7.2.4), we observe that αλ,M ′ ∈ PΓ for all 0 < λ ≤ 2 and |M −M ′| ≤ δ.

After applying Proposition 7.2.3 to ς(αλ,M ′) for λ > 0, it remains only to show thatDλ,M ′ extends

smoothly to Minkowski space as λ→ 0. Indeed, a direct inspection of the proof of Proposition 7.2.4

shows that ξ(αλ,M ′) is independent of λ, so that the function r 7→ Q̌(r, ξ(αλ,M ′), αλ,M ′) defined in

(7.2.11) converges smoothly to the function Q̌ ≡ 0 as λ→ 0. Therefore, ϖ̌ also converges smoothly

to the zero function and hence Dλ,M ′ converges smoothly to Minkowski space as λ→ 0.
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The construction in the proof of Theorem 1.2.1 can be thought of as a global-in-time desingu-

larization of this family of dust solutions. In fact, we will make essential use of the one-parameter

family {ς(αλ,M ′)} when constructing initial data for the Einstein–Maxwell–Vlasov system.

7.4 A counterexample to the third law of black hole thermo-

dynamics in Ori’s model

Using the radial parametrization, we can now give a very simple disproof of the third law:

Theorem 7.4.1. There exist bouncing charged null dust spacetimes that violate the third law of

black hole thermodynamics: a subextremal Reissner–Nordström apparent horizon can evolve into an

extremal Reissner–Nordström event horizon in finite advanced time due to the incidence of charged

null dust.

Proof. Apply Propositions 7.2.3 and 7.2.4 to (r1, r2, ϖ1, ϖ2, Q1, Q2) ∈ P satisfying r2 < ϖ2, Q1 <

ϖ1, and Q2 = ϖ2. For example, one may take (0.85, 0.88, 0.56, 1, 0.5, 1) ∈ P. See Fig. 7.3.

Remark 7.4.2. Since the energy-momentum tensor remains bounded in Ori’s model and the weak

energy condition is satisfied, this is indeed a counterexample to Israel’s formulation of the third law

[Isr86].

The counterexample in Theorem 7.4.1 explicitly displays the disconnectedness of the outermost

apparent horizon which is also present in our charged scalar field counterexamples to the third law

[KU22]. Note that the bouncing dust beam does not cross the subextremal apparent horizon, as is

required by (7.1.9).

Remark 7.4.3. In the example depicted in Fig. 7.3, the parameters ϖ̌ and Q̌ satisfy ϖ̌(r) < Q̌(r)

for r ∈ (r2 − ε, r2) and some ε > 0. Indeed, the ODE (7.2.6) implies

Q̌′(r) =
r

Q̌(r)
ϖ̌′(r) < ϖ̌′(r)

near r2, where we have used r2 < Q2. The possibility (in fact, apparent inevitability) of the Vaidya

parameters being superextremal right before extremality is reached seems to have been overlooked

in the literature [SI80; FGS17].1

1The paper [FGS17] reexamines the third law in light of Ori’s paper [Ori91], but always makes the assumption
that the parameters satisfy Q(V ) < ϖ(V ) right before extremality. Therefore, they seemingly reaffirm the third law!
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Figure 7.3: Penrose diagram of a counterexample to the third law of black hole thermodynamics in
Ori’s charged null dust model, Theorem 7.4.1. Note that the bounce Σb lies behind the extremal
event horizon H+ since r2 < ϖ2 and ϖ2 is the area-radius of the extremal horizon. The broken curve
A′ is the outermost apparent horizon of the spacetime. The disconnectedness of A′ is necessary in
third law violating spacetimes—refer back to the discussion in Section 1.1.3.3. A crucial feature of
this counterexample is that Σb lies strictly between the (initially) subextremal apparent horizon and
the (eventually) extremal event horizon. Compare with Fig. 1.8.

Remark 7.4.4. If one applies the old “standard interpretation” of the ingoing Vaidya metric from

[SI80; LZ91] to the seed functions ϖin(V ) and Qin(V ) constructed in the proof of Theorem 7.4.1,

one sees that the beam will hit the subextremal apparent horizon with a negative energy density,

which is consistent with [SI80].

Using methods from the proof of Theorem 1.2.1, the dust spacetimes in Theorem 7.4.1 can

be “desingularized” to smooth Einstein–Maxwell–Vlasov solutions. The desingularized solutions

can also be chosen to have the property that the matter remains strictly between the subextremal

apparent horizon and the event horizon and we refer back to Section 1.2.7.

7.5 Issues with the bouncing charged null dust model

While Proposition 7.2.3 allows us to construct these interesting examples, the bouncing charged null

dust model is unsatisfactory and we should seek to replace it for several reasons:

1. The model does not arise as a well-posed initial value problem for a system of PDEs. Pasting

the ingoing and outgoing Vaidya solutions together is a deliberate surgery procedure that only

works for seed functions ϖin and Qin satisfying several nontrivial and nongeneric conditions.

2. The solutions are generally not smooth along Σb, nor along any cone where Q = 0 (recall

Remark 7.1.2). The fluid density ρ is unbounded along Σb and the number current N = ρk is

discontinuous across Σb.
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3. Null dust is ill-posed once the dust reaches the center of symmetry [Mos17].

Nevertheless, we will show in Chapter 8 that the bouncing charged null dust model can be well-

approximated (near Σb), in a precise manner, by smooth solutions of the Einstein–Maxwell–Vlasov

system. See already Section 8.10.

7.6 The formal radial charged null dust system in double null

gauge

In order to precisely phrase the manner in which Einstein–Maxwell–Vlasov approximates bouncing

charged null dust, as well as to motivate the choice of Vlasov initial data, we now reformulate Ori’s

model in double null gauge. Following Moschidis [Mos17; Mos20], we reformulate the system by

treating N and T as the fundamental variables. By eliminating the fluid variables k and ρ, we can

view the ingoing and outgoing phases as two separate well-posed initial value problems, with data

posed along the bounce hypersurface. This helpfully suppresses the issue of blowup of ρ on Σb.

Definition 7.6.1. The spherically symmetric formal outgoing charged null dust model for particles

of fundamental charge e ∈ R \ {0} consists of a smooth spherically symmetric charged spacetime

(Q, r,Ω2, Q) and two nonnegative smooth functions Nv and T vv on Q.

The system satisfies the wave equations

∂u∂vr = − Ω2

2r2

(
m− Q2

2r

)
, (7.6.1)

∂u∂vlog Ω
2 =

Ω2m

r3
− Ω2Q2

r4
, (7.6.2)

the Raychaudhuri equations

∂u

(
∂ur

Ω2

)
= − 1

4rΩ
2T vv, (7.6.3)

∂v

(
∂vr

Ω2

)
= 0, (7.6.4)

and the Maxwell equations

∂uQ = − 1
2er

2Ω2Nv, (7.6.5)

∂vQ = 0. (7.6.6)
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The number current satisfies the conservation law

∂v(r
2Ω2Nv) = 0 (7.6.7)

and the energy-momentum tensor satisfies the Bianchi equation

∂v(r
2Ω4T vv) = +eΩ4QNv. (7.6.8)

In the outgoing model, we may think of Nu, Tuu, and Tuv to just be defined as identically zero.

From (7.6.1) and (7.6.3)–(7.6.6) one easily derives

∂um = − 1
2r

2Ω2T vv∂vr +
Q2

2r2
∂ur, ∂vm =

Q2

2r2
∂vr, (7.6.9)

∂uϖ = − 1
2r

2Ω2T vv∂vr − 1
2erΩ

2QNv, ∂vϖ = 0. (7.6.10)

Furthermore, if we set kv
.
= T vv/Nv, then

kv∂vk
v + ∂vlog Ω

2(kv)2 = +e
Q

r2
kv, (7.6.11)

which is the spherically symmetric version of (7.1.3) for the vector field k
.
= kv∂v. The energy

density of the fluid is defined by ρ
.
= (Nv)2/T vv whenever the denominator is nonvanishing.

Definition 7.6.2. The spherically symmetric formal ingoing charged null dust model for particles

of fundamental charge e ∈ R \ {0} consists of a smooth spherically symmetric charged spacetime

(Q, r,Ω2, Q) and two nonnegative smooth functions Nu and Tuu on Q. The system satisfies the

same equations as the ingoing system with u↔ v and the opposite sign in front of Nu.

In the ingoing case, ku
.
= Tuu/Nu and ρ

.
= (Nu)2/Tuu.

Remark 7.6.3. By (7.6.11), these formal systems define solutions of the Einstein–Maxwell–charged

null dust system (see Definition 7.1.1) whenever k and ρ are well-defined.

Remark 7.6.4. Inspection of (7.6.8) reveals that T vv can reach zero in finite backwards time. If

one were to continue the solution further, T vv could become negative, which shows that the formal

system actually reproduces the old “standard interpretation” of the charged Vaidya metric discussed

in [Ori91]. As we will see, because the dominant energy condition holds in the Einstein–Maxwell–

Vlasov model, only dust solutions with Tuu, T vv ≥ 0 will arise as limiting spacetimes, confirming

Ori’s heuristic picture discussed in [Ori91].
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7.6.1 The Cauchy problem for outgoing formal charged null dust

Mirroring the treatment of time-symmetric2 seed data for the Einstein–Maxwell–Vlasov system in

Section 3.2.3, we make the following definition:

Definition 7.6.5. A time-symmetric seed data set Sd
.
= (N̊ v, T̊ vv, r2, e) for the spherically sym-

metric formal outgoing charged null dust system consists of real numbers r2 ∈ R>0 and e ∈ R \ {0},

together with nonnegative compactly supported smooth functions N̊ v and T̊ vv with support con-

tained in (0, r2].

In the dust case, we define m̊ and Q̊ on [0, r2] with m̊(0) = Q̊(0) = 0 by solving

d

dr
m̊ =

r2

4

(
1− 2m̊

r

)−2

T̊ vv +
Q̊2

2r2
, (7.6.12)

d

dr
Q̊ =

1

2
er2
(
1− 2m̊

r

)−2

N̊ v, (7.6.13)

provided 2m̊ < r on [0, r2]. The remaining definitions from the Vlasov case, in particular Defini-

tion 3.2.10, can be carried over to dust with the obvious modification that Nv = T vv = 0 along

Γ.3

Proposition 7.6.6. Let Sd be an untrapped time-symmetric seed data set for outgoing dust. Then

there exists a unique global smooth solution (r,Ω2, Q,Nv, T vv) of the formal outgoing charged null

dust system on Cr2 attaining the seed data.

Remark 7.6.7. Let r1
.
= inf(spt N̊ v ∪ spt T̊ vv). Then (r,Ω2, Q) is isometric to Minkowski space for

u ≥ −r1.

Proof. This can be proved by applying a suitable coordinate transformation to a suitable outgoing

charged Vaidya metric. However, it is instructive to give a direct proof using the evolution equations.

We pose initial data

r̊(r) = r, Ω̊2(r) =

(
1− 2m̊

r

)−1

, Q̊(r) =

∫ r

0

1

2
er2
(
1− 2m̊

r

)−2

N̊ v dr′,

and for derivatives according to Definition 3.2.10, for the equations (7.6.1), (7.6.2), and (7.6.6). By

a standard iteration argument, this determines the functions (r,Ω2, Q) uniquely. The existence of a

2In the Vlasov case, time symmetry referred to both the geometry of the spacelike part of the initial data hyper-
surface and the matter configuration. Since purely outgoing dust is clearly not time symmetric, it refers here only to
the geometry of the spacelike part of the initial data hypersurface.

3Since the dust here is purely outgoing, we do not have to be concerned about dust going into Γ.
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global development is strictly easier than the corresponding proof in Proposition 8.2.3 once the rest

of the system has been derived and is omitted. We now define

Nv .
= − 2

er2Ω2
∂uQ, T vv

.
= − 4

rΩ2
∂u

(
∂ur

Ω2

)

and aim to show that the rest of the equations in Definition 7.6.1 are satisfied.

To prove (7.6.7), simply rearrange the definition of Nv and use (7.6.6). Note that the definition

of Nv is consistent with N̊ v = Ω̊−2N̊v by (7.6.13).

Using (7.6.1), (7.6.2), and (7.6.6), a tedious calculation yields

∂u(r∂
2
vr − r∂vr∂vlog Ω

2) = 0. (7.6.14)

Arguing as in Proposition 3.2.12, we see that (7.6.4) holds on initial data and is therefore propagated

by (7.6.14). This proves the evolution equation ∂vm = ∂vrQ
2/(2r2) and by using (7.6.1) once more,

we see that

∂um = −2r∂vr∂u

(
∂ur

Ω2

)
+
Q2

2r2
∂ur.

Comparing this with (7.6.12) and the definition of T vv yields T̊ vv = Ω̊−2T̊ vv, as desired. Finally,

(7.6.8) is proved by directly differentiating the definition of T vv and using (7.6.1), (7.6.2), and

(7.6.5).

7.6.2 Outgoing charged Vaidya as formal outgoing dust

We now want to represent the outgoing portion of a regular center bouncing charged null dust beam

given by Proposition 7.2.3 in terms of the outgoing formal system. Let α ∈ PΓ, ς(α) = (α, ϖ̌, Q̌)

be given by Proposition 7.2.4, and consider the time-symmetric dust seed data Sd,α
.
= (N̊ v

d , 0, r2, e),

where

N̊ v
d
.
=

2

er2

(
1− 2ϖ̌

r
+
Q̌2

r2

)2

Q̌′. (7.6.15)

For this choice of seed, the constraints (7.6.12)–(7.6.13) read

d

dr
m̊ =

Q̊2

2r2
, (7.6.16)

d

dr
Q̊ =

(
1− 2m̊

r

)−2(
1− 2m̌

r

)2

Q̌′. (7.6.17)
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Figure 7.4: An outgoing charged null dust beam obtained by applying Proposition 7.6.6 to the seed
Sd,α for parameters α = (r1, r2, 0, ϖ2, 0, Q2). The electrovacuum boundary C⋆ can be attached to a
Reissner–Nordström spacetime with parameters ϖ2 and Q2.

Therefore, by (7.2.6), m̊ = m̌ and Q̊ = Q̌, where m̌
.
= ϖ̌− Q̌2/(2r). It follows that the outgoing for-

mal dust solution (rd,Ω
2
d, Qd, N

v
d , T

vv
d ) provided by Proposition 7.6.6 on Cr2 is indeed the same as the

outgoing charged Vaidya metric provided by the radial parametrization method, Proposition 7.2.3.

See Fig. 7.4.
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Chapter 8

Extremal black hole formation as a

critical phenomenon

In this section, we prove Theorem 1.2.1 by constructing bouncing charged Vlasov beams as in Fig. 1.5

and Fig. 1.6 with prescribed final parameters. This is achieved by a very specific choice of time-

symmetric Vlasov seed data and global estimates for the resulting developments. We give a detailed

outline of the proof in Section 8.1 and the proof itself occupies Sections 8.2 to 8.9. In Section 8.10,

we show as a consequence of the estimates in the previous sections that these bouncing charged

Vlasov beams weak* converge to the bouncing charged null dust spacetimes of Proposition 7.2.3 in

a hydrodynamic limit of the beam parameters. Finally, in Section 8.11 we disprove the third law in

Einstein–Maxwell–Vlasov and construct examples of “event horizon jumping.”

8.1 A guide to the proof of Theorem 1.2.1

8.1.1 The heuristic picture

The essential idea in the proof of Theorem 1.2.1 is to “approximate” the bouncing radial charged

null dust solutions from Theorem 7.3.2 and Fig. 7.2 by smooth families of smooth Einstein–Maxwell–

Vlasov solutions. Indeed, at least formally, dust can be viewed as Vlasov matter f(x, p) concentrated

on a single momentum p = k(x) at each spacetime point x. One is faced with having to perform

a global-in-time desingularization of families of dust solutions which are singular in both the space

and momentum variables.

Assuming that this can be done, the heuristic picture is that of a focusing beam of Vlasov
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matter coming in from infinity with particles of mass m = 0 or m ≪ 1 (so that the particles look

almost massless for very large time scales) and very small angular momentum 0 < ℓ≪ 1, which are

decelerated by the electromagnetic field that they generate. Then, along some “approximate bounce

hypersurface,” the congruence smoothly “turns around” and becomes outgoing, escaping to infinity

if a black hole has not yet formed. Along the way, the particles do not hit the center of symmetry.

By appropriately varying the beam parameters, we can construct families of spacetimes as depicted

in Fig. 1.5 or Fig. 1.6.

As should be apparent from the treatment of the Cauchy problem for the Einstein–Maxwell–

Vlasov system in Section 3.2.3 and for charged null dust in Section 7.6, we want to pose Cauchy

data on (what will be) the approximate bounce hypersurface for the desingularized Vlasov solutions.

We will choose the initial data for f to be supported on small angular momenta ℓ ∼ ε and so that

the charge Q̊ and Hawking mass m̊ profiles closely approximate the initial data for dust as described

in Section 7.6.2. The Vlasov beam which is intended to approximate charged null dust is called the

main beam.

As we will see, desingularizing bouncing charged null dust requires an ansatz for f̊ which nec-

essarily degenerates in ε. Closing estimates in the region of spacetime where Q ≲ ε is then a

fundamental issue because the repulsive effect of the electromagnetic field is relatively weak there.

We overcome this issue by adding an auxiliary beam to the construction, which stabilizes the main

beam by adding a small amount of charge on the order of η ≫ ε. This beam is not dust-like, consists

of particles with angular momentum ∼ 1, and is repelled away from the center by the centrifugal

force.

The goal will be to construct a smooth family of Vlasov seeds λ 7→ Sλ for λ ∈ [−1, 2] such

that S−1 is trivial (i.e., evolves into Minkowski), S2 forms a subextremal Reissner–Nordström black

hole with charge to mass ratio ≈ 1
2 , and λ∗ ≈ 1 is the critical parameter for which an extremal

Reissner–Nordström black hole with mass M forms. For λ ∈ [0, 2], the Vlasov development Dλ

closely approximates the dust developments from Theorem 7.3.2 (in a sense to be made precise in

Section 8.10 below) and λ ∈ [−1, 0] smoothly “turns on” the auxiliary beam. At the very end of the

proof, λ is simply rescaled to have range [0, 1].

In fact, our methods allow us to desingularize any bouncing charged null dust beam given by

Proposition 7.2.4. Adding dependence on λ is then essentially only a notational hurdle. We now

highlight specific aspects of the construction in more detail.
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8.1.2 Time symmetry and reduction to the outgoing case

λ > λ∗
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ĩ−

ĩ+
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Figure 8.1: Penrose diagrams of the “maximal time-symmetric doubled spacetimes” used in the
proof of Theorem 1.2.1 when m > 0. When λ ≥ λ∗, these spacetimes are evidently not globally
hyperbolic, but one can easily observe that the globally hyperbolic spacetimes depicted in Fig. 1.5
when λ ≥ λ∗ are simply the above spacetimes restricted to the past of CH+ ∪ {i+} ∪ I+. The
exterior region is isometric to a subset of the maximally extended Reissner–Nordström solution with
parameters depending on λ.

The starting point of the construction of bouncing charged Vlasov beams is the prescription

of Cauchy data on an approximate bounce hypersurface Σb, using the radial parametrization of

bouncing charged null dust as a guide. We can now see the utility of the time-symmetric ansatz

in Section 3.2.3: it reduces the problem to constructing an outgoing beam, which is then reflected

and glued to maximally extended Reissner–Nordström to construct a time symmetric spacetime

as depicted in Fig. 8.1 below. These “maximal time-symmetric spacetimes” are constructed in

Section 8.9.1. The globally hyperbolic developments in Theorem 1.2.1 are obtained by taking ap-

propriate subsets and identifying suitable Cauchy hypersurfaces.

The problem now reduces to constructing the region bounded to the past by C⋆, Σb, and the

center in Fig. 8.1. In this region, the solution is always dispersive. Therefore, we can actually treat

the subextremal, extremal, and superextremal cases at once. Detection of whether a black hole

forms in the doubled spacetime takes place on the level of initial data and we heavily exploit the
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global structure of the Reissner–Nordström family itself in this process. Note that while we prescribe

data in the black hole interior when λ ≤ 0, there clearly exist Cauchy surfaces lying entirely in the

domain of outer communication. In fact, the solutions are always past complete and disperse to the

past. See already Proposition 8.9.9.

8.1.3 The choice of seed data

We now describe our desingularization procedure for bouncing charged null dust on the level of

initial data. Consider the outgoing portion of a charged null dust beam (rd,Ω
2
d, Qd, N

v
d , T

vv
d ) as

in Section 7.6.2, with Cauchy data posed along the bounce hypersurface Σb. The geometry of the

outgoing dust beam is entirely driven by the choice of renormalized number current N̊ v
d in (7.6.15).

Importantly, the energy-momentum tensor of dust vanishes identically along Σb.

Since radial charged null dust has ℓ = 0, we wish to approximate dust with Vlasov matter

consisting of particles with angular momentum ℓ ∼ ε, where 0 < ε ≪ 1 is a small parameter to be

chosen. We want to choose the initial distribution function f̊ so that

N̊ u + N̊ v = N̊ v
d =

1

er2

(
1− 2ϖ̌

r
+
Q̌2

r2

)2
dQ̌

dr
, (8.1.1)

Q̊ ≈ Q̌, ϖ̊ ≈ ϖ̌, T̊ uu, T̊ uv, T̊ vv ≈ 0 (8.1.2)

on Σb, as ε→ 0. These conditions are satisfied if we choose

f̊ α,εmain(r, p
u, pv)

.
=

c

er2ε

(
1− 2ϖ̌

r
+
Q̌2

r2

)2
dQ̌

dr
δε(p

u)δε(p
v) (8.1.3)

for r ∈ [r1, r2], where δε are approximations of the identity with support [ε, 2ε] and c is a normal-

ization constant that depends on the precise choice of the family δε. In order for the mass shell

inequality Ω2pupv ≥ m2 to hold on the support of f̊ α,εmain, (8.1.3) forces us to choose m ∈ [0,m0] with

0 < m0 ≪ ε.

Remark 8.1.1. In the full bouncing null dust model, N is discontinuous across Σb. Indeed, to the

past of Σb, N points in the u-direction and has a nonzero limit along Σb, but to the future points

in the v-direction and also has a nonzero limit. In the Vlasov case, time symmetry demands N be

smooth across, and orthogonal to, Σb. By comparing (3.2.30) with (7.6.13), we see that N̊ u + N̊ v

in Vlasov takes the role of N̊ v in dust.

Observe directly from (8.1.3) that f̊ α,εmain behaves pointwise like ε−3 and therefore pointwise

208



r
=

0

v
=
v̆

C ⋆

I +

i+

Σb totally geodesic

Rv̆
main

Rv̆
aux

R∞,v̆
far

auxiliary beam

main beam
r
=

0
v
=
v̆

C ⋆

I +

i+

Σb totally geodesic

Rv̆
main

Rv̆
aux

R∞,v̆
far

auxiliary beam

main beam

m = 0 m > 0

Figure 8.2: Penrose diagram of outgoing charged Vlasov beams (evolution of the seed data Sα,η,ε).
Note that the beams do not intersect when m = 0. When m > 0, one can show that they do, but it
is not necessary to do so for our purposes here.

estimates for N and T in evolution must utilize precise estimates of the electromagnetic flow to

cancel factors of ε. Closing estimates independently of ε is the main challenge of this scheme and

we directly exploit the null structure of the spherically symmetric Einstein–Maxwell–Vlasov system

in the proof. The main mechanisms ensuring boundedness of N and T in the main beam are:

1. The angular momentum ℓ is conserved, so that ℓ ∼ ε throughout the main beam.

2. If γ is an electromagnetic geodesic arising from the support of f̊ α,εmain, then p
v should rapidly

increase due to electromagnetic repulsion. Dually, pu should rapidly decrease, which ought

to suppress the ingoing moments Nu, Tuu, and Tuv. This should be compared with the

vanishing of Nu, Tuu, and Tuv in outgoing null dust. We say that the main beam bounces due

to electromagnetic repulsion.

As is apparent from (2.1.22), the magnitude of the repulsive effect is proportional to Q. If we were

to evolve the seed f̊ α,εmain on its own, the inner edge of the beam would experience less electromagnetic

repulsion since Q is potentially quite small in the inner region.

In order to reinforce the repulsive effect of the electric field in the main beam and get a consistent

hierarchy of powers of ε, we introduce an auxiliary beam on the inside of the main beam which bounces

due to the centrifugal force associated to electromagnetic geodesics with large angular momentum.

The initial data for the auxiliary beam is chosen to be

f̊ r1,ηaux (r, pu, pv)
.
= η φ(r, pu, pv), (8.1.4)
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where η ≫ ε is a constant determining the amplitude, φ is a cutoff function supported on the set

[ 13r1,
2
3r1] × [Λ − 1,Λ + 1] × [Λ − 1,Λ + 1], and Λ is a fixed large constant that determines the

strength of the centrifugal force felt by the auxiliary beam. The auxiliary beam ensures that the

main beam always interacts with an electric field of amplitude ≳ η, which acts as a crucial stabilizing

mechanism.

8.1.4 The near and far regions and the hierarchy of scales

The total seed for an outgoing Vlasov beam is taken to be Sα,η,ε
.
= (f̊ α,η,εtot , r2,m, e), where

f̊ α,η,εtot
.
= f̊ r1,ηaux + f̊ α,εmain, (8.1.5)

the fundamental charge e > 0 is fixed, the mass m lies in the interval [0,m0], and η, ε, and m0 need

to be chosen appropriately small.

To study the evolution of Sα,η,ε, depicted in Fig. 8.2, we distinguish between the near region

{v ≤ v̆} and the far region Rv̆,∞
far = {v ≥ v̆}, where v̆ is a large advanced time to be determined.

Roughly, the ingoing cone {v = v̆} is chosen so that the geometry is very close to Minkowskian and

the Vlasov field is “strongly outgoing” and supported far away from the center, i.e.,

pu

pv
≲ r−2 ≪ 1 (8.1.6)

for every pu and pv such that f( · , v̆, pu, pv) ̸= 0. The near region is further divided into the main

and auxiliary regions, corresponding to the physical space support of the main and auxiliary beams

and denoted by Rv̆
main and Rv̆

aux, respectively.
1

The beam parameters η, ε,m0 and the auxiliary parameter v̆ satisfy the hierarchy

0 < m0 ≪ ε≪ η ≪ v̆−1 ≪ 1. (8.1.7)

To prove the sharp rate of dispersion when m > 0, we augment this hierarchy with

0 < v−1
# ≪ m,

where v# is a very large time after which the additional dispersion associated to massive particles

1For reasons of convenience, Rmain is defined slightly differently in the actual proof than the region depicted in
Fig. 8.2, but this is inconsequential at this level of discussion.
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kicks in.

The proof of Theorem 1.2.1 proceeds by showing that if (8.1.7) holds, then the solution exists,

with certain properties, in the regions Rv̆
main, Rv̆

aux, and Rv̆,∞
far , in that order. The sharp decay rates

of N and T are then shown a posteriori by re-analyzing the electromagnetic geodesic flow in the far

region.

Remark 8.1.2. The final Reissner–Nordström parameters of the total Vlasov seed (8.1.5) depend

on the approximation parameters η and ε, but are O(η)-close to (ϖ2, Q2). Therefore, in order to

reach any fixed set of parameters, the background dust seed has to be appropriately modulated. See

already Section 8.9.5.

8.1.5 Outline of the main estimates

The main beam in the near region: In this region, the main goal is proving smallness (in ε) of Nu,

Tuu, and Tuv, which are identically zero in the background dust solution. We define the phase space

volume function V : Q → R≥0 by

V (u, v)
.
= Ω2(u, v)|{(pu, pv) : f(u, v, pu, pv) ̸= 0}|, (8.1.8)

where | · | is the Lebesgue measure on R2
pu,pv . The function V is invariant under gauge transfor-

mations of u and v. Using the mass shell relation (2.3.12) and the change of variables formula, we

find

V (u, v) =
2

r2

∫ ∞

0

∫
{pv :f(u,v,pu,pv )̸=0}

dpv

pv
ℓ dℓ, (8.1.9)

where we view pu as a function of pv and ℓ. Because of the addition of f̊ r1,ηaux to the seed data

and the good monotonicity properties of (2.3.24) and (2.3.25), it holds that Q ≳ η in Rv̆
main.

Under relatively mild bootstrap assumptions, any electromagnetic geodesic γ in the main beam is

accelerated outwards at a rate ≳ η, i.e.,

pv ≳ ε+ ηmin{τ, 1}, pu ≲
ε2

r2(ε+ ηmin{τ, 1})
,

where τ
.
= 1

2 (u+ v) is a “coordinate time.” We also show that if γ1 and γ2 are two electromagnetic
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geodesics in the main beam which reach the same point (u, v) ∈ Rv̆
main, then

|pv1 − pv2| ≲
ε

η2

at (u, v). Using these estimates, conservation of angular momentum, and the hierarchy (8.1.7), we

show that

V (u, v) ≲η
ε3

ε+ ηmin{τ, 1}
,

where the notation A ≲η B means A ≤ CB, where C is a constant depending on η. Then, simply

using the transport nature of the Vlasov equation, we obtain the estimates

Tuu(u, v) ≲ ε1/2, Tuv(u, v) ≲ ε1/2,

∫ v

−u
Nu(u, v′) dv′ ≲ ε1/2,

which capture the fundamental characteristic of outgoing null dust. These estimates allow us to

control the geometry at C1 order, which is more than enough to use the generalized extension

principle, Proposition 3.2.4, to extend the solution. For details, see Section 8.4. When λ ∈ [−1, 0]

and the main beam has not yet been turned on, constructing the solution in this region is trivial

since the solution is electrovacuum.

The auxiliary beam in the near region: Since the auxiliary beam is genuinely weak (f̊ r1,ηaux ≲ η

pointwise), the bootstrap argument in Rv̆
aux is a standard Cauchy stability argument, perturbing off

of Minkowski space. We use explicit knowledge of the impact parameter and asymptotics of null

geodesics with angular momentum ∼ Λ on Minkowski space and treat the charge as an error term

in this region. For details, see Section 8.5.

Existence in the far region: The argument in this region is a refinement of Dafermos’ proof of the

stability of Minkowski space for the spherically symmetric Einstein–massless Vlasov system [Daf06]

(see also [Tay15, Chapter 4]). Because of the singular nature of fmain in powers of ε, it seems difficult

to obtain uniform in ε pointwise decay estimates for Tuv by the usual method of estimating decay

of the phase space volume of the support of f at late times. Fortunately, we are able to exploit the

a priori energy estimates

∫
r2Ω2Tuv∂ur du

′ ≲ 1,

∫
r2Ω2Tuv∂vr dv

′ ≲ 1 (8.1.10)

coming from the monotonicity of the Hawking mass when ∂vr > 0 and ∂ur < 0 (see [Daf05b]). It is

important to note that these energy estimates are independent of initial data and are a fundamental
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feature of the spherically symmetric Einstein equations. Under the bootstrap assumption that the

electromagnetic geodesics making up the support of f are “outgoing” for v ≥ v̆, the energy estimates

(8.1.10) imply decay for the unweighted fluxes of Tuv. This shows that the geometry remains close

to Minkowski in C1 and recovering the bootstrap assumption on the support of f follows from

good monotonicity properties of the electromagnetic geodesic flow when close to Minkowski. We

also note that this approach using energy estimates allows us to treat the cases m = 0 and m > 0

simultaneously. For details, see Section 8.6.

Dispersion in the far region: Once the solution has been shown to exist globally, we prove sharp

(in coordinate time τ) pointwise decay statements for N and T (see [RR92; Nou05; Tay15]). As the

decay rates differ when m = 0 or m > 0, these two cases are treated separately.

The massless case. It follows immediately from the mass shell relation (2.3.12) that pu ≲ r−2 in

the far region. Since this is integrable, the beams are confined to null slabs and can even be shown

to be disjoint as depicted in Fig. 8.2. Since each pu contributes a factor of r−2 and our solutions

have bounded angular momentum, we obtain the sharp dispersive hierarchy

Nv + T vv ≤ C(1 + τ)−2, Nu + Tuv ≤ C(1 + τ)−4, Tuu ≤ C(1 + τ)−6,

where the constant C depends on α, η, and ε. For details, see Section 8.7.

The massive case. When m > 0, pu does not decay asymptotically. After a very late time

v# ≫ m−1, pu ∼η m2, which drives additional decay of the phase space volume. We prove this by a

change of variables argument, turning volume in pu at later times v ≥ v# into physical space volume

of the support of f at time v = v#. This leads to the sharp isotropic decay rate

M ≤ C(1 + τ)−3

for any moment M of f , where C depends on α, η, ε, and a lower bound for m. For details, see

Section 8.8.

8.2 Outgoing charged Vlasov beams

8.2.1 The beam parameters, fixed constants, and conventions

First, we fix once and for all the fundamental charge e ∈ R \ {0}. Without loss of generality, we

may take e > 0, as all of the arguments and definitions in the remainder of the present chapter
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require only minor cosmetic modifications to handle the case e < 0. Next, we fix an even function

φ ∈ C∞
c (R) satisfying sptφ = [−1, 1], φ ≥ 0, and

∫ 1

−1

φdx = 1.

Let θ ∈ C∞(R) be a nondecreasing function such that θ(λ) = 0 for λ ≤ −1 and θ(λ) = 1 for λ ≥ 0.

Let ζ ∈ C∞(R) be a nondecreasing function such that ζ(λ) = 0 for λ ≤ 0, ζ(λ) = λ for λ ≥ 1
2 , and

ζ ′(λ) > 0 for λ ∈ (0, 12 ]. Finally, we fix a large2 number Λ ≥ 1, such that

min
p1,p2∈[Λ−1,Λ+1]

p1p2
(p1 + p2)2

≥ 81
400 . (8.2.1)

We emphasize that:

The quintuple (e, φ, θ, ζ,Λ) is fixed for the remainder of the chapter.

Recall the set PΓ of regular center admissible parameters of the form α = (r1, r2, 0, ϖ2, 0, Q2)

which was defined in Section 7.2. Let η, ε, and m0 be positive real numbers. In the course of the

proofs below, the particle mass m will be restricted to satisfy 0 ≤ m ≤ m0.

Definition 8.2.1. Let α = (r1, r2, 0, ϖ2, 0, Q2) ∈ PΓ, η > 0, and ε > 0. The time-symmetric

outgoing charged Vlasov beam seed Sα,η,ε is given by (f̊ r1,ηaux + f̊ α,εmain, r2,m, e), where

f̊ r1,ηaux (r, pu, pv)
.
= η φ

(
6

r1
r − 3

)
φ(pu − Λ)φ(pv − Λ), (8.2.2)

and

f̊ α,εmain(r, p
u, pv)

.
=

8

3πeε3r2

(
1− 2ϖ̌(r)

r
+
Q̌2(r)

r2

)2

Q̌′(r)φ

(
2pu

ε
− 3

)
φ

(
2pv

ε
− 3

)
, (8.2.3)

where ϖ̌ and Q̌ are taken from ς(α), where the map ς was defined in Proposition 7.2.4 (cf. Re-

mark 7.2.5).

Definition 8.2.2. Let M > 0, let 0 < r1 < r2, and let {αλ,M ′} (with |M −M ′| ≤ δ) be as in (7.3.1)

in the proof of Theorem 7.3.2. For λ ∈ [−1, 2], η > 0, ε > 0, m0, we define

Sλ,M ′,η,ε
.
= Sαζ(λ),M′ ,θ(λ)η,ε (8.2.4)

2Large relative to the other beam parameters. For instance, Λ = 20 suffices.
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for particles of mass 0 ≤ m ≤ m0. For λ ≤ 0, the ϖ̌ and Q̌ components of ς(αζ(λ),M ′) are interpreted

as identically zero, in correspondence with the proof of Theorem 7.3.2.

Throughout the present chapter, the notation A ≲ B means that there exists a constant C > 0,

which only depends on e, φ, θ, ζ, Λ, M , r1, and r2 such that A ≤ CB. The notation A ≳ B is

defined similarly and A ∼ B means A ≲ B and A ≳ B. Moreover, we use the convention that all

small (large) constants in “sufficiently small (large)” may depend on e, φ, θ, ζ, Λ, M , r1, and r2. In

Section 8.7, we will also use the notation A ≲η B (resp., A ≲η,ε B), in which we allow the constants

to also depend on η (resp., η and ε). The relations A ∼η B and A ∼η,ε B are defined in the obvious

way.

For the evolution problem, we will introduce a large parameter v̆ to separate Cr2 into the “near”

and “far” regions. We will always assume that the parameter hierarchy

0 < m0 ≪ ε≪ η ≪ v̆−1 ≪ 1 (8.2.5)

holds, by which we mean that any given statement holds for v̆ sufficiently large, η sufficiently small

depending on v̆, ε sufficiently small depending on v̆ and η, and m0 sufficiently small depending on

v̆, η, and ε. To prove dispersion in the massive case, we introduce an even larger parameter v#

satisfying

0 < v−1
# ≪ m ≤ m0,

so that v# is chosen sufficiently large depending on v̆, η, ε, and m.

8.2.2 The global structure of outgoing charged Vlasov beams

Proposition 8.2.3. Fix a fundamental charge e > 0, cutoff functions φ, θ, and ζ as in Section 8.2.1,

a number Λ ≥ 1 satisfying (8.2.1), M > 0, and 0 < r1 < r2 < r−(4M, 2M). Let δ > 0 be as in the

statement of Theorem 7.3.2 and define Sλ,M ′,η,ε as in Definition 8.2.2 for λ ∈ [−1, 2], |M ′−M | ≤ δ,

η > 0, ε > 0, and for particles of mass 0 ≤ m ≤ m0, where m0 > 0.

If η is sufficiently small, ε is sufficiently small depending on η, and m0 is sufficiently small

depending on η and ε, then for any λ ∈ [−1, 2] and |M ′ −M | ≤ δ, the seed Sλ,M ′,η,ε is untrapped

and consistent with particles of mass m. There exists a unique maximal normalized development

(U , r,Ω2, Q, f) of Sλ,M ′,η,ε for particles of charge e and mass m with the following properties.3 If

3Here, uniqueness is in the class of normalized developments as in Definition 3.2.10. We have not shown an
unconditional existence and uniqueness statement for maximal developments for the Einstein–Maxwell–Vlasov model
in this dissertation (although this can be done) and will therefore infer uniqueness directly in the course of the
construction.
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m > 0:

1. The development is global in the normalized double null gauge, i.e., U = Cr2 .

2. The (3 + 1)-dimensional spacetime obtained by lifting (U , r,Ω2) is future causally geodesically

complete and satisfies globally the estimates

∂vr ∼ 1, |∂ur| ≲ 1, Ω2 ∼ 1, (1 + u2)|∂uΩ2|+ (1 + v2)|∂vΩ2| ≲ 1. (8.2.6)

3. Define the final Reissner–Nordström parameters M̃ and ẽ of Sλ,M ′,η,ε to be the constant val-

ues of ϖ and Q, respectively, on the cone C−r2 . Then M̃ and ẽ are smooth functions of

(λ,M ′, η, ε,m), satisfy the estimate

|M̃ − ζ(λ)2M ′|+ |ẽ− ζ(λ)M ′| ≲ η, (8.2.7)

and extend smoothly to η = ε = 0, where they equal ζ(λ)2M ′ and ζ(λ)M ′, respectively. The

spacetime (U , r,Ω2) contains antitrapped surfaces (symmetry spheres where ∂ur ≥ 0) if and

only if ẽ ≤ M̃ and r2 < r−, where r±
.
= M̃ ±

√
M̃2 − ẽ2. In this case, we nevertheless have

∂ur ∼ −1 for v sufficiently large and the antitrapped surfaces are restricted to lie in the slab

{2r− − r2 ≤ v ≤ 2r+ − r2}.

4. The Vlasov distribution function f is quantitatively supported away from the center,

inf
π(spt f)

r ≥ 1
6r1, (8.2.8)

and the beam asymptotes to future timelike infinity i+ in the sense that

π(spt f) ⊂ {C1v ≤ u ≤ C2v}, (8.2.9)

where C1 and C2 are positive constants that may additionally depend on η, ε,m, and λ. The

connected component of U \ π(spt f) containing the center is isometric to Minkowski space.

The connected component of U \ π(spt f) containing future null infinity I+ is isometric to

an appropriate neighborhood of future null infinity in the Reissner–Nordström solution with

parameters M and e.
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5. The Vlasov matter disperses in the sense that the macroscopic observables decay pointwise:

M ≤ C(1 + τ)−3, (8.2.10)

where M ∈ {Nu, Nv, Tuu, Tuv, T vv, S} and the constant C may additionally depend on η, ε,m,

and λ.

The same conclusions hold if m = 0, but points 4. and 5. are improved to:

4.′ The estimate (8.2.8) still holds but (8.2.9) is improved to

π(spt f) ⊂ {−r2 ≤ u ≤ 1
3r1}, (8.2.11)

i.e., the beam is confined to a null slab. The spacetime is isometric to Minkowski space for

u ≥ r1.

5.′ The Vlasov matter disperses in the sense that the macroscopic observables decay pointwise:

Nv + T vv ≤ C(1 + τ)−2, (8.2.12)

Nu + Tuv ≤ C(1 + τ)−4, (8.2.13)

Tuu ≤ C(1 + τ)−6, (8.2.14)

where the constant C may additionally depend on η, ε, and λ.

Remark 8.2.4. An analogous version of Proposition 8.2.3 may be proved for any set of regular center

parameters α = (r1, r2, 0, ϖ2, 0, Q2) ∈ PΓ or even α = (r1, r2, 0, 0, 0, 0) by evolving the seed data

Sα,η,ε given by Definition 8.2.1. In that case, (8.2.7) becomes

|M̃ −ϖ2|+ |ẽ−Q2| ≲ η. (8.2.15)

Remark 8.2.5. The decay rate τ−3 in (8.2.10) is sharp for massive particles [RR92; Nou05]. The

hierarchy of decay rates in (8.2.12)–(8.2.14) is sharp for massless particles [Tay15].

8.3 Estimates on the initial data

For the remainder of this chapter, we assume the notation and hypotheses of Proposition 8.2.3.
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Lemma 8.3.1. For η, ε, and m0 sufficiently small and any λ ∈ [−1, 2] and |M ′−M | ≤ δ, Sλ,M ′,η,ε

is untrapped and consistent with particles of mass 0 ≤ m ≤ m0. Let (U , r,Ω2, Q, f) be a development

of Sλ,M ′,η,ε, such as the one obtained from Proposition 3.2.12. Then the following holds:

1. The set U can be assumed to contain the corner Cr2 ∩ {v ≤ 1
3r1}. The solution is equal to

Minkowski space in this region in the sense that

r = 1
2 (v − u),

Ω2 = 1,

Q = f = 0

on Cr2 ∩ {v ≤ 1
3r1}.

2. Estimates on the initial data for the auxiliary beam:

f̊ r1,θ(λ)ηaux ≲ θ(λ)η1[ 13 r1,
2
3 r1]×[Λ−1,Λ+1]×[Λ−1,Λ+1], (8.3.1)

sup
v∈[ 13 r1,r1]

|(Ω2 − 1, ∂ulog Ω
2, ∂vlog Ω

2, Q,m)(−v, v)| ≲ θ(λ)η, (8.3.2)

Q(− 2
3r1,

2
3r1) ≳ θ(λ)η, (8.3.3)

ℓ(−v, v, pu, pv) ≈ 1 for every (v, pu, pv) ∈ spt(f̊ r1,θ(λ)ηaux ). (8.3.4)

3. Estimates on the initial data for the main beam:

f̊
αζ(λ),M′ ,θ(λ)η,ε

main ≲ ε−31[r1,r2]×[ε,2ε]×[ε,2ε] ·


1 if λ > 0

0 if λ ≤ 0

, (8.3.5)

sup
v∈[ 23 r1,r2]

|(Ω2, ∂ulog Ω
2, ∂vlog Ω

2, Q,m)(−v, v)− (Ω̌2, ω̌, ω̌, Q̌, m̌)(v)| ≲ θ(λ)η, (8.3.6)

inf
v∈[ 23 r1]

Q(−v, v) ≳ θ(λ)η, (8.3.7)

ℓ(−v, v, pu, pv) ≈ ε for every (v, pu, pv) ∈ spt(f̊
αζ(λ),M′ ,θ(λ)η,ε

main ), (8.3.8)

where

m̌(v)
.
= ϖ̌(v)− Q̌2(v)

2v
, Ω̌2(v)

.
=

(
1− 2m̌(v)

v

)−1

, ω̌
.
= −ω̌ .

=
1

2

d

dv
log Ω̌2(v). (8.3.9)

218



4. Estimates on the initial outgoing cone C−r2 :

ϖ(−r2, v) = ϖ(−r2, r2), (8.3.10)

Q(−r2, v) = Q(−r2, r2), (8.3.11)

0 ≤ m(−r2, v) ≤ 10M, (8.3.12)

r(−r2, v) = 1
2v +

1
2r2 (8.3.13)

for v ≥ r2.

Proof. Consistency with particles of mass m ≤ m0 follows immediately from Definition 8.2.1 and

the estimates (8.3.2) and (8.3.6) by taking m0 sufficiently small. We therefore focus on proving the

estimates and as a byproduct infer the untrapped property of Sλ,M ′,η,ε.

Part 1. This is a restatement of Remark 3.2.13.

Part 2. The estimate (8.3.1) follows immediately from the definition (8.2.2). Inserting the ansatz

(8.3.1) into (3.2.26)–(3.2.28), we find

N̊ u(r) = N̊ v(r) = πθ(λ)ηΛφ

(
6

r1
r − 3

)
,

T̊ uu(r) = T̊ vv(r) = πθ(λ)η

(
Λ2 +

∫ 1

−1

x2φ(x) dx

)
φ

(
6

r1
r − 3

)
,

T̊ uv(r) = πθ(λ)ηΛ2φ

(
6

r1
r − 3

)

for r ∈ [ 13r1,
2
3r1]. For η sufficiently small, it then follows readily from the system (3.2.29) and

(3.2.30) that Q̊ and m̊ are nonnegative, nondecreasing functions, and

0 ≤ Q̊(r) + m̊(r) ≲ θ(λ)η

for r ∈ [ 13r1,
2
3r1] and

Q̊( 23r1) ≳ θ(λ)η.

Using the definition of Ω̊2, we infer |Ω̊2 − 1| ≲ θ(λ)η, and to estimate |∂vlog Ω2(−v, v)|, we observe
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that

|∂vlog Ω2(−v, v)| =
∣∣∣∣ ddv log Ω̊2(v)

∣∣∣∣
=

∣∣∣∣Ω̊−2

(
2m̊(v)

v2
− 2

v

d

dv
m̊(v)

)∣∣∣∣
=

∣∣∣∣∣ 2m̊

Ω̊2v2
− 2

Ω̊2v

(
Ω̊4v2

4

(
T̊uu + 2T̊uv + T̊ vv

)
+
Q̊2

2v2

)∣∣∣∣∣
≲ θ(λ)η.

The estimate for ∂ulog Ω
2(−v, v) follows from (3.2.36). This establishes (8.3.2) and (8.3.3). Finally,

(8.3.4) follows from the mass shell relation and (8.3.2), provided m0 is chosen sufficiently small.

Part 3. The estimate (8.3.5) follows immediately from the definition (8.2.3). Inserting the ansatz

(8.2.3) into (3.2.26)–(3.2.28), we find

N̊ u(r) = N̊ v(r) =
1

er2

(
1− 2ϖ̌(r)

r
+
Q̌2(r)

r2

)2

Q̌′(r), (8.3.14)

T̊ uu(r) = T̊ vv(r) =
ε

6er2

(
9 +

∫ 1

−1

x2φ(x) dx

)(
1− 2ϖ̌(r)

r
+
Q̌2(r)

r2

)2

Q̌′(r), (8.3.15)

T̊ uv(r) =
3ε

4er2

(
1− 2ϖ̌(r)

r
+
Q̌2(r)

r2

)2

Q̌′(r), (8.3.16)

where ϖ̌ and Q̌ are obtained from ς(αλ,M ′). Inserting (8.3.14)–(8.3.16) into (3.2.29) and (3.2.30)

yields

d

dr
m̊ =

Q̊2

2r2
+ Err,

d

dr
Q̊ =

(
1− 2m̊

r

)−2(
1− 2m̌

r

)2

Q̌′,

where

|Err| ≲
(
1− 2m̊

r

)−2

ε

and m̊(r1), Q̊(r1) ≲ θ(λ)η. Therefore, by (7.2.6), (7.2.10), and a simple Grönwall and bootstrap

argument, m̊ and Q̊ exist on [r1, r2] and satisfy

sup
r∈[r1,r2]

|(m̊− m̌, Q̊− Q̌)(r)| ≲ θ(λ)η.

This implies the same estimate for |Ω̊2− Ω̌2| by definition. To estimate the other quantities, we may
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now argue as in the proof of Part 2.

Part 4. Equations (8.3.10), (8.3.11), and (8.3.13) follow immediately from the definitions. In-

equality (8.3.12) follows from (8.3.6) provided η is chosen sufficiently small.

8.4 The main beam in the near region

For τ0 > 0, let

Rτ0
main

.
= {0 ≤ τ ≤ τ0} ∩ {− 2

3r1 ≤ u ≤ −r2} ⊂ Cr2 . (8.4.1)

Lemma 8.4.1. For any v̆, η, ε, and m0 satisfying (8.2.5), the following holds. Any normalized

development (U , r,Ω2, Q, f) of Sλ,M ′,η,ε, such as the one obtained from Proposition 3.2.12, can be

uniquely extended to R
1
2 v̆−

1
3 r1

main . Moreover, the solution satisfies the estimates

0 ≤ m ≤ 10M, 0 ≤ Q ≤ 6M, (8.4.2)

r ∼ v, Ω2 ∼ 1, (8.4.3)

∂vr ∼ 1, |∂ur| ≲ 1, (8.4.4)

|∂uΩ2| ≲ 1, |∂vΩ2| ≲ v−3 (8.4.5)

on R
1
2 v̆−

1
3 r1

main and

1
3 ≤ ∂vr ≤ 2

3 , ∂ur ∼ −1 (8.4.6)

on R
1
2 v̆−

1
3 r1

main ∩ C v̆. Finally, the support of the distribution function satisfies

π(spt f) ∩R
1
2 v̆−

1
3 r1

main ⊂ {− 5
6r1 ≤ u ≤ −r2} (8.4.7)

u
=
−r

2τ = τ0

τ = 1
2 v̆ −

1
3r1

u
=
−
2
3
r 1

spt(f̊ α,η,εmain )

u
=
−
5
6
r 1

v
=
v̆

π(spt f)

Rτ0
main

Figure 8.3: Penrose diagram of the bootstrap region Rτ0
main used in the proof of Lemma 8.4.1.
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and if u ∈ [−r2,− 5
6r1], p

u, and pv are such that f(u, v̆, pu, pv) ̸= 0, then

pu

pv
≲ v̆−2,

ℓ2

pv
≲ 1. (8.4.8)

When λ ≤ 0, (8.4.2) reads instead

0 ≤ m ≲ θ(λ)η, 0 ≤ Q ≲ θ(λ)η.

The proof of Lemma 8.4.1 will be given on Page 227. We will make use of a bootstrap argument

in the regions Rτ0
main, where τ0 ranges over [0, 12 v̆−

1
3r1]. For the basic geometric setup of the lemma

and its proof, refer to Fig. 8.3. As the proof is much simpler when λ ≤ 0 (the main beam is absent),

we focus only on the case λ > 0, in which case θ(λ)η = η.

We first make some definitions that will be used to define the bootstrap assumptions. Let C1 > 0

be a constant such that

C−1
1 ≤

(
1− 2m̌(v)

v

)−1

≤ C1

for v ∈ [ 23r1, r2], where m̌ is given by (8.3.9). (Recall that m̌(v) = 0 for v ≤ r1.) We then define

C2
.
= 8C1

(
3r2
2r1

− 1

)(
5M +

18M2

r1

)
,

C3
.
= 2 max

v∈[ 23 r1,r2]
|ω̌(v)|+ 100C1e

C2

(
5M +

27M2

r1

)∫ ∞

2
3 r1

dv

( 23 (1−
1
6e

−C2)r1 +
1
6e

−C2v)3
,

The constants C1, C2, and C3 do not depend on η, ε, or m0.

The quantitative bootstrap assumptions for the proof of Lemma 8.4.1 are

1
6e

−C2 ≤ ∂vr ≤ 3
2e
C2 , (8.4.9)

1
8C

−1
1 ≤ Ω−2∂vr ≤ C1, (8.4.10)

|∂ulog Ω2| ≤ C3, (8.4.11)

ϖ ≤ 5M, (8.4.12)

Nv ≤ AeBτ , (8.4.13)

on Rτ0
main where A ≥ 1 and B ≥ 1 are constants to be determined which may depend on v̆ and η,

but not on ε. We now derive some consequences of the bootstrap assumptions for the geometry of

the solution.
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Lemma 8.4.2. If (8.2.5) holds, τ0 ∈ [0, 12 v̆ − 1
3r1], Rτ0

main ⊂ U , and the bootstrap assumptions

(8.4.9)–(8.4.12) hold on Rτ0
main, then

η ≲ Q ≤ 6M, (8.4.14)

2
3 (1−

1
6e

−C2)r1 +
1
6e

−C2v ≤ r ≤ r2 +
3
2e
C2v, (8.4.15)

Ω2 ≈ 1, (8.4.16)

|∂ur| ≲ 1 (8.4.17)

on Rτ0
main.

We will frequently use that (8.4.15) implies

r ∼ v

on Rτ0
main without further comment.

Proof. For η and ε sufficiently small, η ≲ Q ≤ 6M on {τ = 0} ∩ {−r2 ≤ u ≤ − 2
3r1} and {τ ≥

0} ∩ {v = r2} by Lemma 8.3.1. Since Nv ≥ 0 by definition, Maxwell’s equation (2.3.24) implies

the upper bound in (8.4.14). The lower bound also follows from Maxwell’s equation (2.3.25) and

Nu ≥ 0. The inequality (8.4.15) follows from integrating the bootstrap assumption (8.4.9). The

inequality (8.4.16) follows directly by multiplying the bootstrap assumptions (8.4.9) and (8.4.10). To

estimate ∂ur, we rewrite the definition of the Hawking mass (2.1.2) and the renormalized Hawking

mass (2.1.19) as

∂ur = −1

4

(
1− 2ϖ

r
+
Q2

r2

)
Ω2

∂vr
. (8.4.18)

Now (8.4.17) follows immediately from (8.4.10), (8.4.12), and (8.4.15).

We now use the basic geometric control obtained in Lemma 8.4.2 to obtain crucial control of

the electromagnetic geodesic flow. It is convenient to first introduce some notation. Let Γf denote

the set of maximally extended electromagnetic geodesics γ : I → U , where I is an interval, such

that (γ, p)(I) ⊂ spt f , where p = dγ/ds. If γ passes through the point (u, v), we denote by su,v the

parameter value such that γ(su,v) = (u, v). Let Γf (u, v) denote the subset of Γf consisting of curves

passing through (u, v). Note that every curve in Γf intersects Cr2 ∩ {τ = 0}.

Lemma 8.4.3. If (8.2.5) holds, A is sufficiently large depending only on α, τ0 ∈ [0, 12 v̆ − 1
3r1],
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Rτ0
main ⊂ U , the bootstrap assumptions (8.4.9)–(8.4.13) hold on Rτ0

main, and (u, v) ∈ Rτ0
main, then

V (u, v) ≲
ε3

η(ε+ ηmin{τ, 1})

(
1 +

A

B
eBτ

)
, (8.4.19)

where V is the phase space volume function defined by (8.1.9). Furthermore, if γ ∈ Γf (u, v), then

0 < u− u0 ≲ η−1ε, (8.4.20)

ε+ ηmin{τ, 1} ≲ pv(su,v) ≲ ε+min{τ, 1}. (8.4.21)

where u0 is the retarded time coordinate of the intersection of γ with {τ = 0}.

Proof. Let γ ∈ Γf (u, v). We will use the Lorentz force written in the form of equation (2.1.25) to

estimate pv. Since (u, v) ∈ Rτ0
main, γ intersects {τ = 0} in spt(f̊ α,εmain) and therefore has angular

momentum ℓ ∼ ε. By the bootstrap assumptions and Lemma 8.4.2, it holds that

∣∣∣∣(∂ulog Ω2 − 2∂ur

r

)
ℓ2

r2

∣∣∣∣ ≲ ε2

v2
(8.4.22)

along the entire length of γ. Let (u0, v0) be the coordinate of the intersection of γ with {τ = 0}.

Using (8.4.14)–(8.4.16) and the fact that pv(su0,v0) ∈ [ε, 2ε], we have

e
Q

r2
(Ω2pv)

∣∣∣∣
s=0

≳ ηε.

If ε is sufficiently small (independent of γ, but depending on η), these estimates show that

d

ds
(Ω2pv) ≳ ηε > 0

along γ. Using (8.4.16), we see that

pv ≳ ε (8.4.23)

along γ.

It is now convenient to parametrize γ by the advanced time coordinate v of the spacetime. The
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Lorentz force equation then becomes

dγu

dv
=
pu

pv
=
ℓ2r−2 +m2

Ω2(pv)2
, (8.4.24)

d

dv
(Ω2pv) =

1

pv

(
∂ulog Ω

2 − 2∂ur

r

)
ℓ2

r2
+ e

Q

r2
Ω2, (8.4.25)

where however pv is still given by dγv/ds and we have used the mass shell relation in (8.4.24). By

(8.4.22) and (8.4.23), ∣∣∣∣ 1pv
(
∂ulog Ω

2 − 2∂ur

r

)
ℓ2

r2

∣∣∣∣ ≲ ε

v2

along γ. This implies, using v0 ≥ r1 and hence
∫∞
v0
v′−2 dv′ ≲ 1, that

∣∣∣∣∣Ω2pv
∣∣
(γu(v),v)

−
∫ v

v0

e
Q

r2
Ω2

∣∣∣∣
(γu(v′),v′)

dv′

∣∣∣∣∣ ≲ ε. (8.4.26)

Using Lemma 8.4.2, we readily deduce that

∫ v

v0

e
Q

r2
Ω2

∣∣∣∣
(γu(v′),v′)

dv′ ≲ 1 (8.4.27)

and ∫ v

v0

e
Q

r2
Ω2

∣∣∣∣
(γu(v′),v′)

dv′ ≳ η

(
1

v0
− 1

v

)
≳ ηmin{1, v − v0}.

Combining this with (8.4.23) and (8.4.26), we deduce

ε+ ηmin{1, v − v0} ≲ pv(v) ≲ 1 (8.4.28)

along γ.

We are now able to prove (8.4.20). Since r ≲ v ≲ v̆, r2m2 ≲ ε2 ≲ ℓ2 for m0 sufficiently small

while respecting the hierarchy (8.2.5). Therefore, using also Lemma 8.4.2 and (8.4.28), we find

dγu

dv
≲

ε2

v2(ε+ ηmin{1, v − v0})2
. (8.4.29)

If v ∈ [v0, v0 + 1], we compute

∫ v

v0

ε2

v′2(ε+ η(v′ − v0))2
dv′ ≲

ε(v − v0)

ε+ η(v − v0)
≲ η−1ε
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and if v ∈ [v0 + 1,∞), we compute

∫ v

v0+1

ε2

v′2(ε+ η)2
dv′ ≲ η−2ε2 ≲ η−1ε,

for ε ≤ η. Therefore, integrating (8.4.29), we find

u− u0 = γu(v)− γu(v0) =

∫ v

v0

dγu

dv
dv′ ≲ η−1ε, (8.4.30)

which proves (8.4.20).

Now u0 = −v0, so (8.4.30) implies u+ v0 ≲ η−1ε. Therefore, we have

2τ = v + u = (v − v0) + (u+ v0) ≲ η−1ε+ v − v0

and

ε+ ητ ≲ ε+ η(v − v0) ≲ pv(v)

for τ ≲ 1. This, together with (8.4.26) and (8.4.27), proves (8.4.21).

To prove (8.4.19), we use the approximate representation formula (8.4.26) for pv and the change of

variables formula (8.1.9). Using the bootstrap assumptions, Lemma 8.4.2, the mean value theorem,

Maxwell’s equation (2.3.24), and the estimate (8.4.20), we have

∣∣∣∣∣ Qr2Ω2

∣∣∣∣
(γu(v′),v′)

− Q

r2
Ω2

∣∣∣∣
(u,v′)

∣∣∣∣∣ ≲
(
1 + sup

[γu(v′),u]×{v′}
|∂uQ|

)
(γu(v′)− u) ≲ Aη−1εeB(u+v′)/2

for every v′ ∈ [v0, v] and A sufficiently large depending only on α. Using this and (8.4.26), we find

∣∣∣∣∣Ω2pv
∣∣
(γu(v),v)

−
∫ v

v0

e
Q

r2
Ω2

∣∣∣∣
(u,v′)

dv′

∣∣∣∣∣ ≲
∣∣∣∣∣Ω2pv

∣∣
(γu(v),v)

−
∫ v

v0

e
Q

r2
Ω2

∣∣∣∣
(γu(v′),v′)

dv′

∣∣∣∣∣
+

∫ v

v0

∣∣∣∣∣ Qr2Ω2

∣∣∣∣
(γu(v′),v′)

− Q

r2
Ω2

∣∣∣∣
(u,v′)

∣∣∣∣∣ dv′
≲ ε+

∫ v

v0

Aη−1εeB(u+v′)/2 dv′

≤ ε

(
1 +

A

Bη
eB(u+v)/2

)
. (8.4.31)

Next, we estimate

0 ≤
∫ v0

−u
e
Q

r2
Ω2

∣∣∣∣
(u,v′)

dv′ ≲ v0 + u = u− u0 ≲ η−1ε. (8.4.32)
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Combining (8.4.31) and (8.4.32) yields

∣∣∣∣∣Ω2pv
∣∣
(u,v)

−
∫ v

−u
e
Q

r2
Ω2

∣∣∣∣
(u,v′)

dv′

∣∣∣∣∣ ≲ ε

η

(
1 +

A

B
eB(u+v)/2

)
. (8.4.33)

Therefore, if γ1, γ2 ∈ Γf (u, v) and we parametrize both by advanced time, and denote the v-

momentum of γi by p
v
i for i = 1, 2, we find

|pv1(v)− pv2(v)| ≤

∣∣∣∣∣pv1(v)− 1

Ω2(u, v)

∫ v

−u
e
Q

r2
Ω2

∣∣∣∣
(u,v′)

dv′

∣∣∣∣∣+
∣∣∣∣∣pv2(v)− 1

Ω2(u, v)

∫ v

−u
e
Q

r2
Ω2

∣∣∣∣
(u,v′)

dv′

∣∣∣∣∣
≲
ε

η

(
1 +

A

B
eB(u+v)/2

)
.

Inserting this estimate, (8.4.21), and ℓ ∼ ε in (8.1.9) yields (8.4.19), as desired.

Proof of Lemma 8.4.1. The proof is a bootstrap argument based on the bootstrap assumptions

(8.4.9)–(8.4.13) and continuation criterion given by the extension principle Proposition 3.2.4. Let

A .
= {τ0 ∈ [0, 12 v̆−

1
3r1] : the solution extends uniquely to Rτ0

main and (8.4.9)–(8.4.13) hold on Rτ0
main}.

The set A is nonempty by Proposition 3.2.12 if A is chosen sufficiently large and η, ε, and m0

are sufficiently small. It is also manifestly connected and closed by continuity of the bootstrap

assumptions. We now show that if A and B are sufficiently large depending on η and (8.2.5) holds,

then A is also open.

Let τ0 ∈ A. First, we use Lemmas 8.4.2 and 8.4.3 to estimate Nv and improve (8.4.13). Since

f is transported along electromagnetic geodesics, we have f(u, v, pu, pv) ≲ ε−3 for (u, v) ∈ Rτ0
main.

Using (8.4.19) and (8.4.21), we infer directly from the definition of Nv that

Nv(u, v) ≲ (ε+min{τ, 1})ε−3V (u, v) ≲
ε+min{τ, 1}

η(ε+ ηmin{τ, 1})

(
1 +

A

B

)
eBτ ≲ η−2

(
1 +

A

B

)
eBτ .

Letting C∗ = C∗(e, φ,Λ, α) denote the implicit constant in this inequality, and choosing A = 4C∗η
−2

and B ≥ A, we see that

Nv(u, v) ≤ 1
2Ae

Bτ ,

which improves (8.4.13).

To continue, we now estimate Nu, Tuu, and Tuv in the same fashion, making use now of the

227



strong decay of pu. If γ ∈ Γf (u, v), then

pu(su,v) =
ℓ2r−2 +m2

Ω2pv(su,v)
≲

ε2

ε+ ηmin{τ, 1}

by (8.4.21). Using (8.4.19), we therefore find

Nu ≲
ε2

η

1

(ε+ ηmin{1, τ})2
AeBτ , (8.4.34)

Tuv ≲
ε2

η

ε+min{τ, 1}
ε+ ηmin{1, τ}

AeBτ , (8.4.35)

Tuu ≲
ε4

η

1

(ε+ ηmin{1, τ})3
AeBτ . (8.4.36)

Using the hierarchy (8.2.5), these estimates imply

r2Tuv + r2Tuu +

∫ v

−u
r2Nu(u, v′) dv′ ≲ ε1/2 (8.4.37)

for any (u, v) ∈ Rτ0
main. With these final estimates in hand, we may begin to improve the remaining

bootstrap assumptions (8.4.9)–(8.4.12). We will then carry out the rest of the continuity argument

and prove all of the stated conclusions of the lemma.

Improving (8.4.9): The wave equation (2.3.20) can be rewritten as

∂u∂vr = − 1

2r2
Ω2

∂vr

(
ϖ − Q2

r

)
∂vr +

r

4
Ω4Tuv.

Using an integrating factor, we find

∂u

[
exp

(∫ u

−r2

1

2r

Ω2

∂vr

(
ϖ − Q2

r

)
du′
)
∂vr

]
=
r

4
Ω4Tuv exp

(∫ u

−r2

1

2r

Ω2

∂vr

(
ϖ − Q2

r

)
du′
)
,

(8.4.38)

where the integral is taken over fixed v. The bootstrap assumptions imply

∫ − 2
3 r1

−r2

1

2r

Ω2

∂vr

∣∣∣∣ϖ − Q2

r

∣∣∣∣ du′ ≤ C2.

For ε sufficiently small, the right-hand side of (8.4.38) is pointwise ≤ 1
10 on Rτ0

main, so integrating

this equation yields

2
5e

−C2 ≤ ∂vr(u, v) ≤ 3
5e
C2

for any (u, v) ∈ Rτ0
main, which improves (8.4.9).
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Improving (8.4.10): Raychaudhuri’s equation (2.3.23) can be rewritten as

∂v log

(
∂vr

Ω2

)
= −r

4
∂vrT

uu. (8.4.39)

To improve the upper bound in (8.4.10), note that the right-hand side of (8.4.39) is nonpositive by

(8.4.9) and hence

∂vr

Ω2
(u, v) ≤ ∂vr

Ω2
(−v, v) = 1

2

(
1− 2m̌(v)

v

)
≤ C1

2
.

To improve the lower bound, note that the right-hand side of (8.4.39) is bounded by log 2 in absolute

value for ε sufficiently small and hence

∂vr

Ω2
(u, v) ≥ 1

2

∂vr

Ω2
(−v, v) ≥ 1

4C1
,

which improves (8.4.10).

Improving (8.4.11): The wave equation (2.3.21) can be rewritten as

∂v∂ulog Ω
2 =

Ω2

r3

(
ϖ − 3Q2

2r

)
− 1

2
Ω4Tuv − Ω2S. (8.4.40)

Integrating this equation in v and using the bootstrap assumptions, (8.3.6), and (8.4.37) yields

|∂ulog Ω2| ≤ 3

4
C3

for η and ε sufficiently small, which improves (8.4.11).

Improving (8.4.12): Integrating the evolution equation for the renormalized Hawking mass

(2.3.31) and using (8.4.37), we have

|ϖ(u, v)−ϖ(−v, v)| ≲ ε1/2,

which improves (8.4.12).

We have thus improved the constants in all of the bootstrap assumptions (8.4.9)–(8.4.13). Using

the local existence theory Proposition 3.2.3 and generalized extension principle Proposition 3.2.4,

there exists a τ ′0 > τ0 such that U ⊂ Rτ ′
0

main. Choosing τ ′0 > τ0 perhaps smaller, the bootstrap

assumptions (8.4.9)–(8.4.13) extend to Rτ ′
0

main by continuity. Therefore, A is open and the bootstrap

argument is complete.

We now prove the remaining conclusions of the lemma. First, m(u, v) ≥ 0 for every (u, v) ∈
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R
1
2 v̆−

1
3 r1

main because either ∂ur(u, v) < 0 (and by Raychaudhuri (2.3.22) also for any u′ > u) or

∂ur(u, v) ≥ 0 and thenm(u, v) ≥ 0 directly from the definition (2.1.2). In the first case, the evolution

equation (2.3.29) implies m is nondecreasing along the outgoing cone terminating at (u, v). Since

this cone either intersects {τ = 0}, where m ≥ 0, or a sphere where ∂ur ≤ 0 (and hence m ≥ 0),

we conclude m(u, v) ≥ 0. Now integrating the wave equation (2.3.21) in u and using (8.4.37), we

see that |∂vlog Ω2| ≲ v−3. Together with the bootstrap assumptions and Lemma 8.4.2, this proves

(8.4.2)–(8.4.5). Next, (8.4.6) follows from integrating the wave equation (2.3.20) in u along C v̆ and

taking v̆ ∼ r sufficiently large and similarly in (8.4.18). The inclusion (8.4.7) follows immediately

from the u-deflection estimate (8.4.20) for electromagnetic geodesics in Γf and the hierarchy (8.2.5).

Finally, to prove (8.4.8) we use the mass shell relation, (8.4.21), and the parameter hierarchy to

estimate

r2
pu

pv
=
ℓ2 + r2m2

Ω2(pv)2
≲
ε2

η2
≲ 1,

ℓ2

pv
≲
ε2

η
≲ 1,

which completes the proof.

8.5 The auxiliary beam in the near region

For v0 > 0, let

Rv0
aux

.
= {v ≥ u} ∩ {τ ≥ 0} ∩ {− 2

3r1 ≤ u ≤ 1
3r1} ∩ { 1

3r1 ≤ v ≤ v0}, (8.5.1)

R̃v0
aux

.
= {v ≥ u} ∩ {τ ≥ 0} ∩ {u ≥ − 2

3r1} ∩ {v ≤ v0}. (8.5.2)

Lemma 8.5.1. For any v̆, η, ε, and m0 satisfying (8.2.5), the following holds. The development of

Sλ,M ′,η,ε obtained in Lemma 8.4.1 can be uniquely extended to R̃v̆
aux. The spacetime is vacuum for

u ≥ 1
3r1 and v ≤ v̆. Moreover, the solution satisfies the estimates

0 ≤ m ≲ θ(λ)η, 0 ≤ Q ≲ θ(λ)η,

Ω2 ∼ 1, ∂vr ∼ −∂ur ∼ 1,

(1 + u2)|∂uΩ2|+ (1 + v2)|∂vΩ|2 ≲ 1
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u
=
v

u
=
1
3
r 1

v
=
v̆

v
=
v
0

Rv0
aux

v = 1
3r1 u

=
−
2
3
r 1

π(spt f̊ r1,ηaux )

π(spt f)

Figure 8.4: Penrose diagram of the bootstrap region Rv0
aux used in the proof of Lemma 8.5.1.

on R̃v̆
aux and

1
4 ≤ ∂vr ≤ 3

4

on R̃v̆
aux ∩ C v̆. Finally, the support of the distribution function satisfies

π(spt f) ∩ R̃v̆
aux ⊂ {− 2

3r1 ≤ u ≤ 1
6r1},

inf
spt(f)∩R̃v̆

aux

r ≥ 1
6r1,

and if u ∈ [− 2
3r1,

1
3r1], p

u, and pv are such that f(u, v̆, pu, pv) ̸= 0, then

pu

pv
≲ v̆−2,

ℓ2

pv
≲ 1. (8.5.3)

The proof of Lemma 8.5.1 will be given on Page 234. We will make use of a bootstrap argument

in the regions Rv0
aux, where v0 ranges over [ 13r1, v̆]. The triangle {v ≥ u} ∩ {u ≥ 1

3r1} ∩ {v ≤ v̆} is

Minkowskian and can simply be attached at the very end of the argument, cf. Lemma 3.2.16. For

the basic geometric setup of the lemma and its proof, refer to Fig. 8.4.

For (u, v) ∈ Rv̆
aux, let

r̂(u, v) =
r1
6

− u

2
+

1

2

∫ v

1
3 r1

β(v′) dv′,

Ω̂2(u, v) = β(v),
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where

β(v)
.
=


1 if v < 2

3r1

Ω2(− 2
3r1, v) if v ≥ 2

3r1

.

It is easily verified that (r̂, Ω̂2) is a solution of the spherically symmetric Einstein vacuum equations

and matches smoothly in v with (r,Ω2) from R
1
2 v̆−

1
3 r1

main along C− 2
3 r1

.

The first bootstrap assumption is

|Q|+ |ϖ|+ |∂vr − ∂v r̂|+ |∂ur − ∂ur̂|+ |Ω2 − Ω̂2|+ |∂vΩ2 − ∂vΩ̂
2|+ |∂uΩ2| ≤ Aθ(λ)ηeBτ , (8.5.4)

where A ≥ 1 and B ≥ 1 are constants to be determined that may depend on v̆ but not η. We also

make the following assumption on the electromagnetic geodesic flow. For (v′0, p
u
0 , p

v
0) ∈ spt(f̊

r1,θ(λ)η
aux ),

let γ be an electromagnetic geodesic of mass m for (r,Ω2, Q) starting at (−v′0, v′0, pu0 , pv0), and let

γ̂ be a null geodesic for (r̂, Ω̂2) starting at (−v′0, v′0, pu0 , pv0). Then, assuming both γ and γ̂ remain

within Rv0
aux, we assume that

|Ω2pu − Ω̂2p̂u|+ |Ω2pv − Ω̂2p̂v| ≤ Aθ(λ)ηeB(γv−v′0). (8.5.5)

First, we note the following immediate consequences of the first bootstrap assumption:

Lemma 8.5.2. If (8.2.5) holds, v0 ∈ [ 13r1, v̆], R
v0
aux ⊂ U , the bootstrap assumption (8.5.4) holds on

Rv0
aux, and η is sufficiently small depending on A and B, then on Rvf

aux it holds that

0 ≤ ϖ ≲ θ(λ)η, 0 ≤ Q ≲ θ(λ)η,

|log ∂vr|+ |log(−∂ur)|+ |log Ω2| ≲ 1,

|∂vΩ2|+ |∂uΩ2| ≲ 1.

Next, we use the second bootstrap assumption to obtain

Lemma 8.5.3. If (8.2.5) holds, v0 ∈ [ 13r1, v̆], Rv0
aux ⊂ U , the bootstrap assumptions (8.5.4) and

(8.5.5) hold on Rv0
aux, B is sufficiently large, and η is sufficiently small depending on A and B, then

the following holds. Let γ : [0, S] → Rv0
aux be a future-directed electromagnetic geodesic starting in
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spt(f̊
r1,θ(λ)η
aux ), then

r ≥ 1
6r1,

u ≤ 1
3r1,

r2
pu

pv
≲ 1,

ℓ2

pv
≲ 1

along γ.

Proof. Upon making the coordinate transformation

ũ = u, ṽ = 1
3r1 +

∫ v

1
3 r1

β(v′) dv′, (8.5.6)

the metric (r̂, Ω̂2) is brought into the standard Minkowski form ( 12 (ṽ− ũ), 1). If t̃
.
= 1

2 (ṽ+ ũ), γ̂ is a

null geodesic in Rv̆
aux with respect to (r̂, Ω̂2) intersecting {τ = 0} with momentum (pu0 , p

v
0) = (pũ0 , p

ṽ
0)

at an area-radius of r̂0, then it is easy to check that

r̂2 =

t̃+ sign(pv0 − pu0 )

√
r̂20 −

ℓ̂2

Ê2

2

+
ℓ̂2

Ê2
, (8.5.7)

pũ =


Ê +

√
Ê2 − ℓ̂2/r̂2 if t̃ < − sign(pv0 − pu0 )

√
r̂20 − ℓ̂2/Ê2

Ê −
√
Ê2 − ℓ̂2/r̂2 if t̃ ≥ − sign(pv0 − pu0 )

√
r̂20 − ℓ̂2/Ê2

, (8.5.8)

pṽ =


Ê −

√
Ê2 − ℓ̂2/r̂2 if t̃ < − sign(pv0 − pu0 )

√
r̂20 − ℓ̂2/Ê2

Ê +

√
Ê2 − ℓ̂2/r̂2 if t̃ ≥ − sign(pv0 − pu0 )

√
r̂20 − ℓ̂2/Ê2

(8.5.9)

along γ̂, where ℓ̂2
.
= r̂2pũpṽ and Ê

.
= 1

2 (p
ṽ+pũ) are conserved quantities. If (pu0 , p

v
0) ∈ [Λ−1,Λ+1]2

and Λ satisfies (8.2.1), then

81
100 r̂

2
0 ≤ ℓ̂2

Ê2
≤ r̂20.

From (8.5.7) it is apparent that

min
γ̂
r ≥ ℓ̂

Ê
≥ 9

10 r̂0, (8.5.10)

sup
γ̂
ũ = − sign(pv0 − pu0 )

√
r̂20 −

ℓ̂2

Ê2
≤ 45

100 r̂0, (8.5.11)
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and by inspection of (8.5.8) and (8.5.9) that

r̂2
pũ

pṽ
≲ 1,

ℓ̂2

pṽ
≲ 1 (8.5.12)

along γ̂.

Let γ and γ̂ be as defined before (8.5.5). Parametrize γ and γ̂ by v as in the proof of Lemma 8.4.3.

Then ∣∣∣∣ ddv (γu − γ̂u)

∣∣∣∣ = ∣∣∣∣pupv − p̂u

p̂v

∣∣∣∣ ≲ Aθ(λ)ηeB(v−v′0)

by (8.5.5) and the observation that pv ≳ 1 and pṽ ≳ 1, so that

|γu − γ̂u| ≤ θ(λ)ηeB(v−v′0) (8.5.13)

for B chosen sufficiently large. Therefore, the conclusions of the lemma follow from the estimates

(8.5.10)–(8.5.12) and the fact that r̂0 ∈ [ 13r1,
2
3r1] after undoing the coordinate transformation (8.5.6)

and applying the bootstrap assumptions.

Proof of Lemma 8.5.1. The proof is a bootstrap argument based on the bootstrap assumptions

(8.5.4) and (8.5.5), the continuation criterion Proposition 3.2.4, and Lemma 3.2.16. Define the

bootstrap set

A .
= {v0 ∈ [ 13r1, v̆] : the solution extends uniquely to Rv0

aux and (8.5.4), (8.5.5) hold on Rv0
aux}.

The set A is nonempty by Propositions 3.2.6 and 3.2.12 if A is chosen sufficiently large and is

manifestly closed and connected. We now show that if the parameters satisfy (8.2.5), then A is also

open.

Let v0 ∈ A. Taking m0 sufficiently small and using the formula (8.1.9), the initial data estimate

Lemma 8.3.1, and Lemmas 8.5.2 and 8.5.3, we immediately find

Nu +Nv + Tuu + Tuv + T vv + S ≲ r−2θ(λ)η1{r≥ 1
6 r1}

(8.5.14)

on Rv0
aux. By (8.3.2) and the observation that f = 0 along C− 2

3 r1
∩Rv0

aux, we have

|Q|+ |ϖ|+ |∂vr− ∂v r̂|+ |Ω−2∂vr− Ω̂−2∂v r̂|+ |Ω2 − Ω̂2|+ |∂vΩ2 − ∂vΩ̂
2|+ |∂uΩ2| ≲ θ(λ)η (8.5.15)
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along {τ = 0} and C− 2
3 r1

in Rv0
aux. Then, using (8.5.14) and the Einstein–Maxwell–Vlasov system,

we see that (8.5.15) holds onRv0
aux. This improves (8.5.4) for an appropriate choice of A (independent

of η).

We now improve (8.5.5). Using the Lorentz force equations (2.1.24) and (2.1.25), we have

d

dv
(Ω2pu − Ω̂2p̂u) =

(
∂vlog Ω

2 − 2∂vr

r

)
ℓ2

r2pv

∣∣∣∣
γ

−
(
∂vlog Ω̂

2 − 2∂v r̂

r̂

)
ℓ̂2

r̂2p̂v

∣∣∣∣∣
γ̂

− e
Ω2Q

r2
pu

pv
,

d

dv
(Ω2pv − Ω̂2p̂v) =

(
∂ulog Ω

2 − 2∂ur

r

)
ℓ2

r2pv

∣∣∣∣
γ

+
2∂ur̂

r̂

ℓ̂2

r̂2p̂v

∣∣∣∣∣
γ̂

+ e
Ω2Q

r2
.

Using the parameter hierarchy (8.2.5), the bootstrap assumptions (8.5.4) and (8.5.5), Lemmas 8.5.2

and 8.5.3, and the bound (8.5.13), we can estimate

∣∣∣∣ ddv (Ω2pu − Ω̂2p̂u)

∣∣∣∣+ ∣∣∣∣ ddv (Ω2pu − Ω̂2p̂u)

∣∣∣∣ ≲ θ(λ)η +Aθ(λ)ηeB(v−v0).

Integrating and choosing the constants A and B sufficiently large in terms of the implied constants

and v̆ improves (8.5.5) and shows that the solution extends to Rv̆
aux.

The solution is at once extended to R̃v̆
aux by Lemma 3.2.16. The rest of the conclusions of the

lemma follow immediately from Lemmas 3.2.16, 8.4.1, 8.5.2 and 8.5.3 and (8.5.14).

8.6 The far region

Lemma 8.6.1. For any v̆, η, ε, and m0 satisfying (8.2.5), there exists a constant Cν > 0 such that

the following holds. The development of Sλ,M ′,η,ε obtained in Lemma 8.5.1 can be uniquely extended

u
=
v

v
=
v̆

v
=
v
f

u
=
−
2
3
r 1

π(spt f)

6C
ν
u
=
v

Rv̆,vf
far

Figure 8.5: Penrose diagram of the bootstrap region Rv̆,vf
far used in the proof of Lemma 8.6.1.
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globally to Cr2 . Moreover, the solution satisfies the estimates

0 ≤ m ≤ 10M, 0 ≤ Q ≤ 6M, (8.6.1)

Ω2 ∼ 1, ∂vr ∼ −∂ur ∼ 1, (8.6.2)

(1 + u2)|∂uΩ2| ≲ 1, v2|∂vΩ2| ≲ 1 (8.6.3)

on Cr2 ∩ {v ≥ v̆}, and the distribution function satisfies

π(spt f) ∩ {v ≥ v̆} ⊂ {6Cνu ≤ v}.

We will make use of a bootstrap argument in the regions

Rv̆,vf
far

.
= {v ≥ u} ∩ {τ ≥ 0} ∩ {u ≥ −r2} ∩ {v̆ ≤ v ≤ vf},

where vf ≥ v̆. Refer to Fig. 8.5. The bootstrap assumptions are

−Cν ≤ ∂ur ≤ −C−1
ν , (8.6.4)

1
5 ≤ ∂vr ≤ 1, (8.6.5)

π(spt f) ∩Rv̆,vf
far ⊂ W, (8.6.6)

where

W .
= {6Cνu ≤ v} ∩ {v ≥ v̆}

and the constant 10 ≤ Cν ≲ 1 is chosen so that − 1
2Cν ≤ ∂ur ≤ −2C−1

ν on C v̆. Such a constant

exists by Lemmas 8.4.1 and 8.5.1.

Lemma 8.6.2. If (8.2.5) holds, vf ≥ v̆, Rv̆,vf
far ⊂ U , and the bootstrap assumptions (8.6.4)–(8.6.6)

hold on Rv̆,vf
far , then

0 ≤ m ≤ 10M, 0 ≤ Q ≤ 6M, (8.6.7)

Ω2 ∼ 1, (8.6.8)

∂vlog Ω
2 ≲ v−2, (8.6.9)

1
2 ≤ 1− 2m

r
≤ 1 (8.6.10)
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on Rv̆,vf
far and

r ∼ v, (8.6.11)

∂vlog Ω
2 <

2∂vr

r
(8.6.12)

on W. Furthermore,

m = Q = 0 (8.6.13)

on Rv̆,vf
far \W.

Proof. Proof of (8.6.7) and (8.6.13): The bootstrap assumptions (8.6.4) and (8.6.5) imply ∂ur < 0

and ∂vr > 0. Therefore, (8.6.7) follows from the monotonicity properties of the Einstein–Maxwell–

Vlasov system, Lemmas 8.3.1, 8.4.1 and 8.5.1, and the boundary condition (3.2.42).

Proof of (8.6.11): By the bootstrap assumption (8.6.4),

r(u, v)− r(−r2, v) ≥ −Cν(u+ r2) ≥ − 1
6v − Cνr2

for (u, v) ∈ W. By (8.3.13), the lower bound in (8.6.11) easily follows if v̆ is taken sufficiently large.

Since ∂ur < 0, r(u, v) ≤ r(−r2, v) ≲ v for v ≥ v̆ and v̆ sufficiently large, which proves the upper

bound in (8.6.11).

Proof of (8.6.10): This is immediate for v̆ chosen sufficiently large in light of (8.6.7) and the fact

that

inf
W
r ≳ v̆, (8.6.14)

which follows from (8.6.11).

Proof of (8.6.8): This follows from (2.1.3) by combining the bootstrap assumptions (8.6.4) and

(8.6.5) with (8.6.10).

Proof of (8.6.9): Let (u, v) ∈ W. We will show that

∫ u

−r2
Tuv(u′, v) du′ ≲ v−2, (8.6.15)

which together with (2.3.21), (8.6.7), (8.6.8), and (8.6.11), readily implies (8.6.9). To prove (8.6.15),

we observe that by the bootstrap assumptions (8.6.4) and (8.6.5) and the evolution equation (2.3.28),
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∂um ≤ 0. Using that m ≥ 0 in Rv̆,vf
aux , we therefore infer

∫ u

−r2

[
1
2r

2Ω2(Tuv(−∂ur) + T vv∂vr) +
Q2

2r2
(−∂ur)

]∣∣∣∣
(u′,v)

du′ = m(−r2, v)−m(u, v) ≤ 2ϖ2.

Since all three integrands are nonnegative, this energy estimate, taken together with (8.6.4), (8.6.8)

and (8.6.11) imply

v2
∫ u

−r2
Tuv(u′, v) du′ ≲

∫ u

−r2
r2Ω2Tuv∂vr

∣∣
(u′,v)

du′ ≲ 1

for (u, v) ∈ W, which proves (8.6.15).

Proof of (8.6.12): This follows from the fact that ∂vr/r ≳ v−1 in W by (8.6.5) and (8.6.11).

Proof of Lemma 8.6.1. The proof is a bootstrap argument based on the bootstrap assumptions

(8.6.4)–(8.6.6). Let

A .
= {vf ∈ [v̆,∞) : Rv̆,vf

aux ⊂ U and (8.6.4)–(8.6.6) hold on Rv̆,v0
aux }.

The set A is nonempty by Proposition 3.2.12, Lemma 8.4.1, and Lemma 8.5.1. It is also manifestly

closed by continuity of the bootstrap assumptions. We now show that if (8.2.5) holds, then A is

also open. Let vf ∈ A.

Improving (8.6.5): Let (u, v) ∈ Rv̆,vf
aux . Integrating the wave equation (2.3.20) in u starting at

u′ = −r2 and using the estimates of Lemma 8.6.2 yields

|∂vr(u, v)− 1
2 | ≤

∫ u

−r2

(
Ω2

2r2

(
m+

Q2

2r

)
+ 1

4rΩ
4Tuv

)∣∣∣∣
(u′,v)

du′ ≲ v−1 ≤ v̆−1,

which improves (8.6.5) for v̆ sufficiently large.

Improving (8.6.4): Using (2.3.29), ∂vm ≥ 0, and (8.6.14), we obtain (similarly to (8.6.15))

∫ v2

v1

rTuv|(u,v′) dv
′ ≲ v̆−1 (8.6.16)

for any (u, v1), (u, v2) ∈ Rv̆,vf
aux . Let (u, v) ∈ Rv̆,vf

aux . We integrate the wave equation (2.3.20) in v

starting at C v̆ if u ≤ v̆ and at (u, u) ∈ Γ if u > v̆. In the former case,

|∂ur(u, v)− ∂ur(u, v̆)| ≤
∫ v

v̆

(
Ω2

2r2

(
m+

Q2

2r

)
+ 1

4rΩ
2Tuv

)∣∣∣∣
(u,v′)

dv′ ≲ v̆−1,
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which improves (8.6.4) for v̆ sufficiently large by the definition of Cν . In the latter case, the boundary

condition (3.2.42) implies ∂ur(u, u) = −∂vr(u, u), so

|∂ur(u, v) + ∂vr(u, u)| ≤
∫ v

u

(
Ω2

2r2

(
m+

Q2

2r

)
+ 1

4rΩ
2Tuv

)∣∣∣∣
(u,v′)

dv′ ≲ v̆−1,

which by (8.6.5) improves (8.6.4) for v̆ sufficiently large by the definition of Cν .

Improving (8.6.6): Let γ : [0, S) → Rv̆,vf
aux be an electromagnetic geodesic in the support of f

starting at C v̆ at s = 0. By (2.1.24) and (8.6.12),

d

ds
(Ω2pu) ≤ 0,

so by (8.6.8),

pu(s) ≲ pu(0). (8.6.17)

Using (2.1.22), the signs of ∂ur and Q, and parametrizing γ by v yields

d

dv
log pv ≥ −∂vlog Ω2. (8.6.18)

By (8.6.9), it is easy to see that

∫ v

v̆

|∂vlog Ω2(γu(v′), v′)| dv′ ≲ v̆−1

and therefore

exp

(
−
∫ v

v̆

∂vlog Ω
2(γu(v′), v′) dv′

)
≥ 1

2

for v̆ sufficiently large. It follows from (8.6.18) that

pv(s) ≳ pv(0). (8.6.19)

Combining (8.6.17) and (8.6.19) yields

pu

pv
(s) ≤ 1

7Cν
,

for v̆ sufficiently large by (8.4.8) and (8.5.3). It is then easy to show that γ(s) stays in {7Cνu ≤ v}

for every s ∈ [0, S), which quantitatively improves (8.6.6). The rest of the existence and uniqueness

proof now follows a standard continuity argument using Proposition 3.2.6 and Lemma 3.2.16.
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To estimate |∂uΩ2|, note that |∂uΩ2| ≲ (1 + u2)−1 along C v̆ ∪ Γ by Lemma 8.5.1 and (3.2.44).

Observe that

inf
Cu∩W∩Rv̆,∞

far

r ∼ inf
Cu∩W∩Rv̆,∞

far

v = max{v̆, 6Cνu} ≳ 1 + u,

so the energy estimate (8.6.16) can be improved to

∫ v2

v1

Tuv(u, v′) dv′ ≲ (1 + u)−2

for any u ≤ v1 ≤ v2. Therefore the desired estimate can be propagated to the interior by integrating

the wave equation (2.3.21) in v. Together with the bootstrap assumptions and Lemma 8.6.2, this

completes the proof of the estimates (8.6.1)–(8.6.3).

8.7 The dispersive estimate in the massive case

Let m > 0 and consider the solution (r,Ω2, Q, f) given by Lemma 8.6.1, defined globally on Cr2 . We

augment the hierarchy (8.2.5) with a large parameter v# satisfying

0 < v−1
# ≪ m ≤ m0 (8.7.1)

and aim to prove the following

Lemma 8.7.1. For any v̆, η, ε,m0,m, and v# satisfying (8.2.5) and (8.7.1), we have the decay

M ≤ Cv−3

for v ≥ v# and any M ∈ {Nu, Nv, Tuu, Tuv, T vv, S}, where C may depend on η, ε, m, and v#.

The proof is based on a bootstrap argument for the dispersion of ingoing momentum pu along

spt f as v → ∞, which leads to cubic decay of the phase space volume V , which was defined in

(8.1.8). Using the mass shell relation (2.3.12) and the change of variables formula, we have

V (u, v) =
2

r2

∫ ∞

0

∫
{pu:f(u,v,pu,pv )̸=0}

dpu

pu
ℓ dℓ, (8.7.2)

where we view pv as a function of pu and ℓ. Compare with (8.1.9).

Lemma 8.7.2. If (8.2.5) and (8.7.1) hold and (u, v, pu, pv) ∈ spt f , then pv ≲ 1 if v ≥ v̆ and

pu ∼η m2 if v ≥ v#.
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Remark 8.7.3. The estimate pv ≲ 1 also holds in the massless case. The non-decay of pu for massive

particles drives the decay rate v−3, but only at very late times.

Proof. Let γ ∈ Γf and v ≥ v̆. Parametrizing γ by v and using (8.4.8), (8.4.25), (8.5.3), and the

estimates in Lemma 8.6.1, we infer ∣∣∣∣ ddv (Ω2pv)

∣∣∣∣ ≲ v−2,

which is integrable and hence shows that pv ≲ 1. By (8.4.8) and (8.5.3), we have pv ≳η 1. We then

obtain

pu =
ℓ2r−2 +m2

Ω2pv
∼η

ℓ2

r2
+m2 ∼ m2

for r ≳ v# sufficiently large.

Using this lemma and (8.4.24), we immediately infer:

Lemma 8.7.4. If (8.2.5) and (8.7.1) hold, (u, v, pu, pv) ∈ spt f , and v ≥ v#, then u ∼η m2v. If

γ1, γ2 ∈ Γf (u, v), then we have |γu1 (s1v#)− γu2 (s
2
v#

)|(sv#) ≲η m2(v− v#), where s
i
v#

is the parameter

time for which γvi (s
i
#) = v#.

Let (u0, v0) ∈ Cr2 and let γ ∈ Γf (u0, v0) have ingoing momentum pu0 and angular momentum ℓ

at (u0, v0). We parametrize γ by v going backwards in time and denote this by

γu(v)
.
= γu(v;u0, v0, p

u
0 , ℓ),

pu(v)
.
= pu(v;u0, v0, p

u
0 , ℓ).

We readily derive the equations

d

dv
γu =

(Ω2pu)2

Ω2(ℓ2r−2 +m2)
, (8.7.3)

d

dv
(Ω2pu) =

(
∂vlog Ω

2 − 2∂vr

r

)
ℓ2Ω2pu

r2m2 + ℓ2
− e

Q

r2m2 + ℓ2
(Ω2pu)2. (8.7.4)

Next, we define the variational quantities

u(v;u0, v0, p
u
0 , ℓ)

.
=

∂

∂pu0
γu(v;u0, v0, p

u
0 , ℓ), p(v;u0, v0, p

u
0 , ℓ)

.
=

∂

∂pu0
(Ω2pu)(v;u0, v0, p

u
0 , ℓ),

where we emphasize that the derivative in pu0 is taken with ℓ fixed. From (8.7.3) and (8.7.4) we
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obtain

d

dv
u =

2pu

ℓ2r−2 +m2
p− (pu)2

(ℓ2r−2 +m2)2

[
∂uΩ

2

(
ℓ2

r2
+m2

)
− 2Ω2ℓ2∂ur

r3

]
u, (8.7.5)

d

dv
p =

[(
∂v log Ω

2 − 2∂vr

r

)
ℓ2

r2m2 + ℓ2
− 2eQΩ2pu

r2m2 + ℓ2

]
p

+

[(
∂u∂vlog Ω

2 − 2∂u∂vr

r
+ 2

∂vr∂ur

r2

)
ℓ2Ω2pu

r2m2 + ℓ2
−
(
∂vlog Ω

2 − 2∂vr

r

)
2m2r∂urℓ

2Ω2pu

(r2m2 + ℓ2)2

− e(Ω2pu)2

r2m2 + ℓ2
∂uQ+

2eQm2r∂ur(Ω
2pu)2

(r2m2 + ℓ2)2

]
u. (8.7.6)

Note that u(v0) = 0 and p(v0) = Ω2(u0, v0) ∼ 1.

Lemma 8.7.5. If (8.2.5) and (8.7.1) hold, and v ≥ v#, then

V (u, v) ≲η,ε
v#
v3
. (8.7.7)

Proof. We claim that there exists a constant C∗, depending on η and ε, such that

C−1
∗ ≤ u(v)

v − v0
≤ C∗ (8.7.8)

for any v# ≤ v ≤ v0. To see how this proves (8.7.7), let Φu0,v0,ℓ(p
u
0 )

.
= γu(v#;u0, v0, p

u
0 , ℓ) and

observe that Φ′
u0,v0,ℓ

(pu0 ) = u(v#) < 0. Changing variables in the pu integral in (8.7.2) to γu(v#)

and using Lemma 8.7.4 to estimate the u-dispersion along Cv# , we find

V (u0, v0) ≲η,ε
1

r2m2

C∗

|v# − v0|
min{m2v#,m

2(v0 − v#)} ≲ C∗
v#
v30
. (8.7.9)

We prove (8.7.8) by a bootstrap argument as follows. Let vf ≥ v# and assume (8.7.8) holds for

all (v, u0, v0, p
u
0 , ℓ) with v# ≤ v ≤ v0 ≤ vf . The assumption is clearly satisfied for some choice of C∗

for vf sufficiently close to v# on account of u(v0) = 0.

We now show that for m sufficiently small and v# sufficiently large, we can improve the constant

in (8.7.8). Using (8.7.7), we estimate

Nv ≲η,ε C∗
v#
v3
, Tuv ≲η,ε C∗

m2v#
v3

for v ∈ [v#, vf ]. Using this, as well as (2.3.21), (2.3.24), Lemma 8.6.1, and pu ∼η m2 in (8.7.6) yields

∣∣∣∣ ddv p
∣∣∣∣ ≲η,ε ( 1

m2v3
+

1

v2

)
|p|+

(
1

v4
+

m2

v3
+ C∗

m2v#
v3

)
|u|.
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We use the bootstrap assumption (8.7.8) and (8.7.1) to infer

∣∣∣∣ ddv (p− p(v0))

∣∣∣∣ ≲η,ε 1

v2
|p− p(v0)|+

1

v2
+ C2

∗
m2v#
v3

|v − v0|.

and then use Grönwall’s inequality to obtain

|p(v)− p(v0)| ≲η,ε v−1
# + C2

∗
m2v#
v2

|v − v0|.

Using p(v0) ∼ 1, we therefore have

∫ v0

v

p(v′) dv′ ∼η,ε v0 − v +Oη,ε(C
2
∗m

2|v − v0|) ∼ v0 − v (8.7.10)

for m sufficiently small. Finally, we use (8.6.3) and Lemma 8.7.4 to estimate

∫ v0

v

|∂uΩ2|(γu(v′), v′)
(
ℓ2

r2
+m2

)
dv′ ≲η

∫ γu(v0)

γu(v)

1

1 + u′2
du′ ≲

1

γu(v#)
≲

1

m2v#
. (8.7.11)

Integrating (8.7.5) and using (8.7.10) and (8.7.11) improves the constant in (8.7.8) for m sufficiently

small and v# sufficiently large, which completes the proof.

Proof of Lemma 8.7.1. Immediate from (8.7.7).

8.8 Proof of Proposition 8.2.3

Proof. Part 1. This follows immediately from combining Lemmas 8.4.1, 8.5.1 and 8.6.1.

Part 2. The estimates in (8.2.6) follow directly from the estimates in Lemmas 8.4.1, 8.5.1

and 8.6.1. We will now prove causal geodesic completeness of the spacetime. Let γ be a future-

directed causal geodesic in the (3 + 1)-dimensional spacetime. Then the projection of γ to the

reduced spacetime, still denoted γ, satisfies

d

ds
(Ω2pu) =

(
∂vlog Ω

2 − 2∂vr

r

)
ℓ2

r2
, (8.8.1)

d

ds
(Ω2pv) =

(
∂ulog Ω

2 − 2∂ur

r

)
ℓ2

r2
, (8.8.2)

Ω2pupv =
ℓ2

r2
+m2, (8.8.3)

where s is an affine parameter and γ is continued through the center according to Part 4 of Defini-
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tion 3.2.10. We will show for any future-directed causal geodesic γ : [0, S) → Cr2 , pτ is uniformly

bounded in any compact interval of coordinate time 0 ≤ τ ≤ τ0 along γ. This implies that γ can be

extended to [0,∞) by the normal neighborhood property of the geodesic flow in Lorentzian manifolds

[ONe83].

By (8.8.1)–(8.8.3) and (8.2.6),

∣∣∣∣ dds (Ω2pτ )

∣∣∣∣ ≲ (1 + ∣∣∣∣∂vr + ∂ur

r

∣∣∣∣) (Ω2pτ )2. (8.8.4)

When r ≥ 1
6r1, the term in the absolute value on the right-hand side of this estimate is clearly

bounded by (8.2.6). When r ≤ 1
6r1, the spacetime is Minkowski and the formulas in Lemma 3.2.16

can be used to show that

∂vr + ∂ur ≲ v − u ≲ r. (8.8.5)

Therefore, passing to a τ parametrization of γ, (8.8.4) implies

∣∣∣∣ ddτ (Ω2pτ )

∣∣∣∣ ≲ Ω2pτ ,

and the proof is completed by an application of Grönwall’s lemma.4

Part 3. The estimate (8.2.7) for the final parameters follows from (8.3.6). The remaining claims

in this part follow from the proof of Lemma 8.3.1, (8.4.18) on C− 2
3 r1

, and Lemma 8.6.1.

Part 4. The estimate (8.2.8), the upper bound in (8.2.9), and the claim about the neighborhood

of the center follow from Lemma 8.6.1. The lower bound in (8.2.9) follows from Lemma 8.7.2, which

implies that γu grows linearly in v at very late times for any electromagnetic geodesic γ in the

support of f . Since a neighborhood of I+ is then electrovacuum, it is isometric to an appropriate

Reissner–Nordström solution by Birkhoff’s theorem.

Part 5. This follows immediately from Lemma 8.7.1.

Part 4′. We now take m = 0 and seek to prove the upper bound in (8.2.11), the rest following

immediately from Birkhoff’s theorem. Let γ(s) be an electromagnetic geodesic lying in the support

of f with γv(0) = v̆. When m = 0, the mass shell relation, together with (8.4.8), (8.5.3), and (8.6.19)

gives the estimate

pu

pv
(s) =

r2(0)

r2(s)

Ω2(0)

Ω2(s)

pu(0)

pv(s)

pv(0)

pv(s)
≲ v−2,

4We have based this argument off of a non-gauge-invariant energy Ω2pτ , which is why the estimate (8.8.5) has to
be performed even in the Minkowski region of the spacetime. One could alternatively consider the gauge-invariant
energy (∂vr)pu − (∂ur)pv , which is constant in the Minkowski region, but satisfies a more complicated evolution
equation where f ̸= 0.
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which has integral ≲ v̆−1. Therefore, the upper bound in (8.2.11) follows from (8.4.24) and taking

v̆ sufficiently large.

Part 5′. When m = 0, the mass shell relation implies pu ≲ v−2 for any electromagnetic geodesic

lying in the support of f . The estimates (8.2.12)–(8.2.14) follow from this and the formula (8.1.9).

8.9 Patching together the ingoing and outgoing beams

8.9.1 The maximal time-symmetric doubled spacetime

Let α ∈ PΓ or be of the form (r1, r2, 0, 0, 0, 0). Let η and ε be beam parameters for which the

conclusion of Proposition 8.2.3 holds, recalling also Remark 8.2.4. Let M̃ and ẽ denote the final

Reissner–Nordström parameters of S = Sα,η,ε. We say that S is subextremal if ẽ < M̃ , extremal if

ẽ = M̃ , and superextremal if ẽ > M̃ .5 If S is not superextremal, we may define

r± = M̃ ±
√
M̃2 − ẽ2,

which is the formula for the area radii of the outer and inner horizons in Reissner–Nordström.

The following lemma is an easy consequence of the well-known structure of the maximally ex-

tended Reissner–Nordström solution:

Lemma 8.9.1. For any M̃, ẽ > 0 and 0 < r2 < r− (if ẽ ≤ M̃), there exists a relatively open set

EM̃,ẽ,r2
⊂ {u ≤ −r2} ∩ {v ≥ r2} ⊂ R2

u,v

and an analytic spherically symmetric solution (r,Ω2, Q) of the Einstein–Maxwell equations on

EM̃,ẽ,r2
with the following properties: The renormalized Hawking mass ϖ = M̃ globally, the charge

Q = ẽ globally, r(−r2, r2) = r2, ∂vr(−r2, r2) = −∂ur(−r2, r2) = 1
2 , and Ω2 is constant along the

cones {u = −r2}∩ {v ≥ r2} and {v = r2}∩ {u ≤ −r2}. Moreover, we may choose (EM̃,ẽ,r2
, r,Ω2, Q)

to be maximal with these properties, and it will then be unique.

Remark 8.9.2. The (3 + 1)-dimensional lift of (EM̃,ẽ,r2
, r,Ω2, Q) is isometric to a subset of the

maximally extended Reissner–Nordström solution with parameters M̃ and ẽ. The hypersurface

({τ = 0} ∩ EM̃,ẽ,r2
)× S2 is then totally geodesic.

Remark 8.9.3. If M̃ < ẽ, then EM̃,ẽ,r2
= {u ≤ −r2} ∩ {v ≥ r2}. In the case ẽ ≤ M̃ , EM̃,ẽ,r2

is a

strict subset of {u ≤ −r2} ∩ {v ≥ r2} with this choice of gauge.
5Recall that we are always taking e > 0 and hence ẽ > 0.
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Definition 8.9.4. Let (Cr2 , r,Ω2, Q, f) be the maximal normalized development of S = Sα,η,ε for

particles of mass m with final Reissner–Nordström parameters (M̃, ẽ) for which the conclusion of

Proposition 8.2.3 holds, recalling also Remark 8.2.4. Let

C̃r2
.
= {τ ≤ 0} ∩ {v ≥ u} ∩ {v ≤ r2}

be the time-reflection of Cr2 . For (u, v) ∈ C̃r2 , define

r̃(u, v) = r(−v,−u),

Ω̃2(u, v) = Ω2(−v,−u),

Q̃(u, v) = Q(−v,−u),

f̃(u, v, pu, pv) = f(−v,−u, pv, pu).

Let M
.
= Cr2∪C̃r2∪EM̃,ẽ,r2

and define (r,Ω2, Q, f) on M by simply gluing the corresponding functions

across the boundaries of the sets Cr2 , C̃r2 , and EM̃,ẽ,r2
. (We therefore now drop the tilde notation

on the solution in Cr2 , except for in the proof of Lemma 8.9.5 below.) The tuple (M , r,Ω2, Q, f) is

called the maximal time-symmetric doubled spacetime associated to S.

Lemma 8.9.5. (M , r,Ω2, Q, f) is a smooth solution of the spherically symmetric Einstein–Maxwell–

Vlasov system. The hypersurface {τ = 0} ∩ M is a totally geodesic hypersurface once lifted to the

(3 + 1)-dimensional spacetime by Proposition 2.3.10.

Proof. This is immediate except perhaps across {τ = 0} ∩ {v ≤ r2}. We only have to show that the

solution is C2×C2×C1×C1 regular across this interface by the regularity theory of Proposition 3.2.3.

By Definition 3.2.7 and Definition 3.2.10, the solution is clearly C1 × C1 × C0 × C0 regular. Using

Raychaudhuri’s equations (2.3.22), (2.3.23) and Maxwell’s equations (2.3.24), (2.3.25), it is easy

to see that r is C2 and Q is C1 across {τ = 0}. To check second derivatives of Ω2, differentiate

(∂u + ∂v)Ω
2(−v, v) = 0 in v to obtain ∂2uΩ

2(−v, v) = ∂2vΩ
2(−v, v), which together with the wave

equation (2.3.21) implies C2 matching. The pu and pv derivatives of f are also continuous by

inspection and continuity of spatial derivatives can be proved as follows: On {τ = 0}, ∂vf can be

eliminated in terms of ∂uf and d
dv f̊ by (3.2.37). Then the Maxwell–Vlasov equation (2.3.26) can be

solved for ∂uf . Performing the same calculation for f̃ shows that ∂uf is continuous across {τ = 0}.

The same argument applies for ∂vf and the proof is complete.
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8.9.2 The anchored Cauchy hypersurface

In order to define the family of Cauchy data in Theorem 1.2.1, we need to identify an appropriate

Cauchy hypersurface in each M . Let

v∞
.
=


2r− − r2 if ẽ ≤ M̃

∞ if ẽ > M̃

(8.9.1)

and let Σu : [−50M̃, v∞) → R be the smooth function defined by

Σu(v) = −100M̃ − v

for v ∈ [−50M̃, r1], by solving the ODE

d

dv
Σu(v) =

∂vr

∂ur

∣∣∣∣
(Σu(v),v)

(8.9.2)

with initial condition Σu(r2) = −100M̃ − r2 for v ∈ [r2, v∞), and by applying the following easy

consequence of Borel’s lemma for v ∈ [r1, r2]:

Lemma 8.9.6. Given 0 < r1 < r2, M̃ > 0, and a sequence of real numbers a1, a2, . . . with a1 < 0,

there exists a smooth function Σu : [r1, r2] → [−100M̃ − r2,−100M̃ − r1] such that d
dvΣ

u(v) < 0

for v ∈ [r1, r2], Σ
u has Taylor coefficients (−100M̃ − r1,−1, 0, 0, . . . ) at r1, and Taylor coefficients

(−100M̃ − r2, a1, a2, . . . ) at r2. Moreover, if M̃ and each aj are smooth functions of the parameters

ϖ2, Q2, ε, η, then f can be chosen to depend smoothly on ϖ2, Q2, ε, η.

Remark 8.9.7. For v ≥ r2, the curve Σ : v 7→ (Σu(v), v) ∈ EM̃,ẽ,r2
lies in the domain of outer com-

munication if ẽ ≤ M̃ and is contained in a constant time hypersurface in Schwarzschild coordinates.

Indeed, the time-translation Killing vector field in EM̃,ẽ,r2
is given by the Kodama vector field

K
.
= 2Ω−2∂vr ∂u − 2Ω−2∂ur ∂v,

which is clearly orthogonal to Σ.

8.9.3 Cauchy data for the Einstein–Maxwell–Vlasov system

Let (M, g, F, f) be a solution of the (3+1)-dimensional Einstein–Maxwell–Vlasov system as defined

in Section 2.3.1. Let i : R3 → Σ̃ ⊂ M be a spacelike embedding with future-directed unit timelike
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normal n to Σ̃. As usual, we may consider the induced metric ḡ
.
= i∗g and second fundamental

form k (pulled back to R3 along i) of Σ̃. The electric field is defined by Ē
.
= i∗F (·, n) and the

magnetic field is defined by B̄
.
= (⋆ḡi

∗F )♯, where ♯ is taken relative to ḡ. Since the domain of f is

the spacetime mass shell Pm which is not intrinsic to Σ̃, one first has to define a projection procedure

to T Σ̃ ∼= TR3, after which the restriction of f to Σ̃ can be thought of as a function f̄ : TR3 → [0,∞).

Similarly, the volume forms in the Vlasov energy momentum tensor T and number current N have

to be written in terms of ḡ, after which ρ̄T
.
= i∗T (n, n) , j̄T

.
= i∗T (n, ·) and ρ̄N

.
= i∗N(n) can be

evaluated on Σ̃ only in terms of ḡ and f̄ . For details of this procedure, we refer to [Rin13, Section

13.4].

Definition 8.9.8. A Cauchy data set for the Einstein–Maxwell–Vlasov system for particles of mass

m and fundamental charge e consists of the tuple Ψ = (ḡ, k̄, Ē, B̄, f̄) on R3 satisfying the constraint

equations6

Rḡ − |k̄|2ḡ + (trḡ k̄)
2 = |Ē|2ḡ + |B̄|2ḡ + 2ρ̄T [f̄ ],

divḡ k̄ − d trḡ k̄ = −(⋆ḡ(Ē
♭ ∧ B̄♭))♯ + j̄T [f̄ ]

divḡ Ē = eρ̄N [f̄ ],

divḡ B̄ = 0.

We denote by M∞(R3,m, e) the set of solutions Ψ of the Einstein–Maxwell–Vlasov constraint system

on R3 with the C∞
loc subspace topology.

8.9.4 The globally hyperbolic region

By Proposition 8.2.3, Remark 8.2.4, their time-reversed (u 7→ −v, v 7→ −u) versions, Remark 8.9.7,

and the structure of the Reissner–Nordström family, we have:

Proposition 8.9.9. Let S and (M , r,Ω2, Q, f) be as in Definition 8.9.4 and let Σu(v) be the function

defined in Section 8.9.2. Let

X .
= {v ≥ u} ∩ {v < v∞} ⊂ M

and let Σ = {(Σu(v), v) : v ∈ [−50M̃, v∞)}. Then the following holds:

1. The manifold M .
= ((X\Γ)×S2)∪Γ with metric g = −Ω2 dudv+r2γ, electromagnetic field, and

Vlasov field lifted according to Proposition 2.3.10 is a globally hyperbolic, asymptotically flat

6The particle mass m is implicitly contained in the formulas for T̄ and N̄ .
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spacetime, free of antitrapped surfaces, with Cauchy hypersurface Σ̃
.
= ((Σ \Γ)×S2)∪ (Σ∩Γ).

2. (M, g) possesses complete null infinities I± and is past causally geodesically complete.

3. If ẽ > M̃ , then (M, g) is future causally geodesically complete.

4. If ẽ ≤ M̃ , there are two options. (If Sα,η,ε is to be untrapped, then necessarily r2 /∈ [r−, r+].)

(a) If r2 < r−, then (M, g) is future causally geodesically incomplete. The spacetime contains

a nonempty black hole region, i.e., BH .
= M\ J−(I+) ̸= ∅. The Cauchy hypersurface Σ̃

is disjoint from BH. The event horizon H+ = ∂(BH) is located at u = r2 − 2r+.

(b) If r2 > r+, then (M, g) is future causally geodesically complete.

8.9.5 Proof of the main theorem

Proof of Theorem 1.2.1. Fix a fundamental charge e > 0, cutoff functions φ, θ, and ζ as in Sec-

tion 8.2.1, and a number Λ ≥ 1 satisfying (8.2.1). Fix the extremal black hole target mass M > 0

and let 0 < r1 < r2 and δ > 0 be as in Theorem 7.3.2. Let η0 > 0 be such that Proposition 8.2.3

applies to the multiparameter family of seed data Sλ,M ′,η,ε (which was defined in Definition 8.2.2)

for λ ∈ [−1, 2], |M ′−M | ≤ δ, 0 < η ≤ η0, ε > 0 sufficiently small depending on η, and particle mass

0 ≤ m ≤ m0, where m0 is sufficiently small depending on η and ε.

Let F : [0,∞)2 → [0,∞)2 be defined by F(λ,M ′) = (λ2M ′, λM ′), which is easily verified to

be smoothly invertible on (0,∞)2. Define the function Fη,ε(λ,M
′) = (M̃, ẽ), the final Reissner–

Nordström parameters of Sλ,M ′,η,ε. By (8.2.7), we find

|Fη,ε(λ,M ′)−F(ζ(λ),M ′)| ≲ η (8.9.3)

for λ ∈ [−1, 2], |M ′ −M | ≤ δ, and 0 < η ≤ η0. There exists a constant 0 < λ0 ≪ 1 depending on η0

such that if λ ∈ [−1, λ0], then |Fη,ε(λ,M ′)| < 1
2r1. Also, (8.9.3) implies

sup
λ0≤λ≤2,|M ′−M |≤δ

∣∣∣∣ ẽM̃ − 1

ζ(λ)

∣∣∣∣ ≲λ0 η. (8.9.4)

From smooth convergence of Fη,ε to F as η → 0, we obtain

sup
λ0≤λ≤2,|M ′−M |≤δ

∣∣∣∣ ddλ
(
ẽ

M̃

)
+
ζ ′(λ)

ζ(λ)2

∣∣∣∣ ≲λ0
η. (8.9.5)

It follows that the charge to mass ratio ẽ/M̃ is strictly decreasing as a function of λ, for λ ≥ λ0.
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On any fixed neighborhood of (1,M) ∈ R2, F−1◦Fη,ε converges uniformly to the identity map by

(8.9.3). Therefore, by a simple degree argument7 we find an assignment (η, ε) → (λ(η, ε),M ′(η, ε))

such that Fη,ε(λ(η, ε),M
′(η, ε)) = (M,M). We claim that for η sufficiently small, the family of seed

data λ 7→ Sλ
.
= Sλ,M ′(η,ε),η,ε gives rise to the desired family of spacetimes and Cauchy data:

1. For λ ∈ [−1, λ0], the final Reissner–Nordström parameters of Sλ are < 1
2r1 by definition of

λ0 and hence the globally hyperbolic spacetime Dλ associated to Sλ by Proposition 8.9.9 is

future causally geodesically complete and dispersive. At λ = −1, the seed data is trivial and

hence the development is isometric to Minkowski space.

2. For λ ∈ [λ0, λ(η, ε)), the final charge to mass ratio ẽ/M̃ is strictly decreasing towards 1 by

(8.9.5). Therefore, Dλ is future causally geodesically complete and dispersive. A neighborhood

of spatial infinity i0 is isometric to a superextremal Reissner–Nordström solution.

3. λ = λ(η, ε) is, by construction, critical, with parameter ratio ẽ/M̃ = 1. Dλ contains a

nonempty black hole region and for sufficiently large advanced time, the domain of outer

communication and event horizon are isometric to an appropriate portion of an extremal

Reissner–Nordström black hole.

4. For λ ∈ (λ(η, ε), 2], ẽ/M̃ decreases away from 1 by (8.9.5). By definition of r2, r− > r2 for

η sufficiently small and hence Dλ contains a nonempty black hole region and for sufficiently

large advanced time, the domain of outer communication and event horizon are isometric to an

appropriate portion of a subextremal Reissner–Nordström black hole. By (8.9.4), the charge

to mass ratio at λ = 2 can be made arbitrarily close to 1
2 .

To complete the proof, we assign a smooth family of Cauchy data to Dλ. Let iλ : [0,∞) → Σλ

be the arc length parametrization (with respect to the metric gλ) of the Cauchy surface associated

to Dλ by Proposition 8.9.9. Then we may define the embedding ĩλ = iλ × idS2/∼ : R3 → Σ̃λ ⊂ Mλ

(where the central sphere is collapsed to a point). The natural map λ 7→ Ψλ, where Ψλ is the Cauchy

data induced on Σ̃λ by pullback along ĩλ, is smooth. This completes the proof of the theorem.

8.10 Weak* convergence to dust

In this section, we show that the spacetimes constructed in Proposition 8.9.9 weak* converge in an

appropriate sense to the bouncing charged null dust spacetimes given by Proposition 7.2.3. First,

7Specifically, we use the following statement: Let f : B1 → Rd be a continuous map, where B1 is the closed unit
ball in Rd. If supB1

|f − id| < 1
2
, then the image of f contains B1/2.
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we show convergence of an outgoing Vlasov beam to the underlying outgoing formal dust beam:

Proposition 8.10.1. Let α ∈ PΓ, let {ηi} and {εj} be decreasing sequences of positive numbers

tending to zero, let (r,Ω2, Q, f) be the solution of the Einstein–Maxwell–Vlasov system associated to

(α, ηi, εj) by Proposition 8.2.3 for j ≫ i and arbitrary allowed mass, and let (rd,Ω
2
d, Qd, N

v
d , T

vv
d )

be the outgoing formal dust solution from Section 7.6.2 on Cr2 . Then the following holds for any

relatively compact and relatively open set U ⊂ Cr2 :

1. We have the following strong convergence:

lim
i→∞
j≫i

(
∥r − rd∥C1(U) + ∥Ω2 − Ω2

d∥C1(U) + ∥Q−Qd∥C0(U) + ∥Tuu∥C0(U) + ∥Tuv∥C0(U)

)
= 0,

(8.10.1)

where the limit is to be understood as taking i→ ∞ while keeping j sufficiently large for each

i such that the conclusion of Proposition 8.2.3 applies for Sα,ηi,εj .

2. If U ′ ⊂ U is disjoint from a neighborhood of {τ = 0}, then

lim
i→∞
j≫i

∥Nu∥C0(U ′) = 0. (8.10.2)

3. We have the following weak* convergence: For any φ ∈ C1
c (R2) with sptφ ∩ Cr2 ⊂ U ,

lim
i→∞
j≫i

∫
U

(Nu, Nv, T vv)φdudv =

∫
U

(0, Nv
d , T

vv
d )φdudv. (8.10.3)

4. We have the following weak* convergence: For any φ ∈ L1(U),

lim
i→∞

lim
j→∞

∫
U

(Nu, Nv, T vv)φdudv =

∫
U

(0, Nv
d , T

vv
d )φdudv. (8.10.4)

Proof. It is clear from the estimates used in the proof of Lemma 8.5.1 that the Vlasov solutions con-

verge strongly to Minkowski space in the regions Rv̆
aux. It therefore suffices to prove the proposition

only for the case U = R
1
2 v̆−

1
3 r1

main , where we use the estimates of Lemma 8.4.1.

Part 1. Using Lemma 8.3.1, (2.3.25), and (8.4.37), we already obtain

|Q(u, v)− Q̌(u)| ≲ η

for any (u, v) ∈ U
.
= R

1
2 v̆−

1
3 r1

main and note that Q̌(u) = Qd(u, v) by (7.6.6). Using this estimate,
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Lemma 8.3.1, (8.4.37), and Grönwall’s inequality on the differences of (2.3.20), (2.3.21) and (7.6.1),

(7.6.2), we readily infer

|r − rd|+ |Ω2 − Ω2
d| ≲ η

on U , which completes the proof of (8.10.1).

Part 2. This follows immediately from (8.4.34) since τ is bounded below on U ′.

Part 3. Since φ is bounded,

∣∣∣∣∫
U

Nuφdudv

∣∣∣∣ ≲ ∫ − 2
3 r1

−r2

∫ v̆

−u
Nu dvdu ≲ ε1/2

by (8.4.37). Next, let φ̃
.
= φ/(−er2Ω2), use Maxwell’s equation (2.3.24), and integrate by parts:

∫
U

Nvφdudv =

∫
U

∂uQφ̃ dudv = −
∫
U

Q∂uφ̃ dudv +

∫
∂U

Qφ̃ (8.10.5)

By Part 1, Q∂uφ̃ → Qd∂uφ̃d and Qφ̃ → Qdφ̃d uniformly as i → ∞ and j ≪ i, where φ̃d
.
=

φ/(−er2dΩ
2
d). Therefore, passing to the limit, we have

lim
i→∞
j≫i

∫
U

Nvφdudv = −
∫
U

Qd∂uφ̃d dudv +

∫
U

Qdφ̃d =

∫
U

∂uQdφ̃d =

∫
U

Nv
d dudv,

where we have again integrated by parts and used (7.6.5). A similar argument applies for the

convergence of T vv using the Raychaudhuri equations (2.3.22) and (7.6.3). This completes the proof

of (8.10.3).

Part 4. We first fix i and take j → ∞. By (8.4.34), Nu ≲i 1, for every j ≪ i, where we use the

notation A ≲i B to denote A ≤ CB, where C may depend on i. By the Banach–Alaoglu theorem,

there exists a subsequence jn and an L∞(U) function h such that Nu ∗
⇀ h in L∞(U). However, by

(8.10.2), it is clear that h = 0 almost everywhere. Since the subsequential limit is unique, Nu ∗
⇀ 0

as j → ∞. This completes the proof of (8.10.4) for Nu.

Let m̊V,i and Q̊V,i be the values of m̊ and Q̊ at r = 2
3r1 for the Vlasov seed Sα,ηi,εj . Note

that these numbers do not depend on j. Let m̊i and Q̊i be the solutions of the system (7.6.12) and

(7.6.13) on [ 23r1, r2] with initial conditions m̊V,i and Q̊V,i at r =
2
3r1, current N̊

v given by (7.6.15),

and identically vanishing energy-momentum tensor T̊ vv. Following the proof of Proposition 7.6.6,

we obtain a unique smooth solution (rd,i,Ω
2
d,i, Qd,i, N

v
d,i, T

vv
d,i) of the formal outgoing charged null

dust system on U which attains the initial data just described.
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By repeating the proof of Part 1 of the present proposition, we see that

lim
j→∞

(
∥r − rd,i∥C1(U) + ∥Ω2 − Ω2

d,i∥C1(U) + ∥Q−Qd,i∥C0(U)

)
= 0

for fixed i. Arguing as in Part 2, we then see that

lim
j→∞

∫
U

(Nv, T vv)φdudv =

∫
U

(Nv
d,i, T

vv
d,i)φdudv (8.10.6)

for any φ ∈ C1
c (R2). Since Nv, T vv ≲i 1, a standard triangle inequality argument shows that φ can

be replaced by any L1 function in (8.10.6). Now it follows by construction that

|Nv
d,i −Nv

d |+ |T vvd,i − T vvd | ≲ ηi

on U , so we can safely take i→ ∞ in (8.10.6), which completes the proof of (8.10.4).

In order to globalize this, we must first define bouncing charged null dust in the formal system

in double null gauge. So consider again the outgoing solution (rd,Ω
2
d, Qd, N

v
d , T

vv
d ) on Cr2 with seed

data (N̊ v
d , 0, r2, e) given by (7.6.15). As in Definition 8.9.4, we extend rd, Ω

2
d, and Qd to C̃r2 by

reflection, and set

Nu
d (u, v) = Nv

d (−v,−u),

Tuud (u, v) = T vvd (−v,−u)

for (u, v) ∈ C̃r2 \ {τ = 0}. We extend Nv
d and T vvd to zero in C̃r2 \ {τ = 0} and similarly extend Nu

d

and Tuud to zero in Cr2 . Using Lemma 8.9.1, we attach a maximal piece of Reissner–Nordström with

parameters ϖ2 and Q2 to Cr2 ∪ C̃r2 . Let v∞ be as defined in (8.9.1).

Definition 8.10.2. The globally hyperbolic bouncing formal charged null dust spacetime associated

to a set of parameters α ∈ PΓ is the tuple (Xd, rd,Ω
2
d, Qd, N

u
d , N

v
d , T

uu
d , T vvd ), where Xd

.
= {v ≥

u} ∩ {v < v∞}.

For τ ≥ 0, (rd,Ω
2
d, N

v
d , T

vv
d ) solves the outgoing formal dust system and for τ < 0, (rd,Ω

2
d, N

u
d , T

uu
d )

solves the ingoing formal dust system. The functions rd and Ω2
d are C1 across {τ = 0} and Qd, T

uu
d ,

and T vvd are C0 across {τ = 0}. The currents Nu
d and Nv

d are discontinuous across {τ = 0} (since

we extended by zero), but of course Nu
d = Nv

d at {τ = 0}.

Using this definition and Proposition 8.10.1, we immediately obtain the following
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Theorem 8.10.3. Let α ∈ PΓ, let {ηi} and {εj} be decreasing sequences of positive numbers tend-

ing to zero, let (X , r,Ω2, Q, f) be the globally hyperbolic solution of the Einstein–Maxwell–Vlasov

system associated to (α, ηi, εj) by Proposition 8.9.9 for j ≪ i and arbitrary allowed mass, and let

(Xd, rd,Ω
2
d, Qd, N

u
d , N

v
d , T

uu
d , T vvd ) be the globally hyperbolic bouncing formal charged null dust space-

time associated to α by Definition 8.10.2. Then the following holds for any relatively compact open

set U ⊂ Xd:

1. We have the following strong convergence:

lim
i→∞
j≫i

(
∥r − rd∥C1(U) + ∥Ω2 − Ω2

d∥C1(U) + ∥Q−Qd∥C0(U) + ∥Tuv∥C0(U)

)
= 0.

2. We have the following weak* convergence: For any φ ∈ C1
c (U),

lim
i→∞
j≫i

∫
U

(Nu, Nv, Tuu, T vv)φdudv = lim
i→∞
j≪i

∫
U

(Nu
d , N

v
d , T

uu
d , T vvd )φdudv.

3. We have the following weak* convergence: For any φ ∈ L1(R2) with sptφ ⊂ U ,

lim
i→∞

lim
j→∞

∫
U

(Nu, Nv, Tuu, T vv)φdudv = lim
i→∞
j≪i

∫
U

(Nu
d , N

v
d , T

uu
d , T vvd )φdudv.

Remark 8.10.4. The globally hyperbolic region X depends on ηi and εj , but it always holds that

U ⊂ X for i sufficiently large and j ≫ i.

8.11 The third law in Einstein–Maxwell–Vlasov and event

horizon jumping at extremality

Using the technology of bouncing Vlasov beams developed in the proof of Theorem 1.2.1, we are now

able to quickly prove Theorems 1.2.22 and 1.2.23. As complete proofs would require more lengthy

setup, we only sketch the proofs of these results. We refer the reader back to Section 1.2.7 for the

theorem statements and discussion.

8.11.1 Counterexamples to the third law

Refer to Fig. 8.6 for global Penrose diagrams.
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Figure 8.6: Penrose diagrams of counterexamples to the third law of black hole thermodynamics
in the Einstein–Maxwell–Vlasov model. The disconnected thick black curve denotes the outermost
apparent horizon A′, which jumps outward as the black hole becomes extremal. This behavior is
necessary in third law violating spacetimes which obey the weak energy condition, see Proposi-
tion 1.1.10 and [Isr86].

Proof of Theorem 1.2.22. Let α ∈ P be third law violating dust parameters as in Theorem 7.4.1.

We desingularize this dust beam as in the proof of Theorem 1.2.1, noting that the charge on the

inner edge of the beam is bounded below and hence no auxiliary beam is required. In order to

achieve extremality we must modulate α slightly as in Theorem 1.2.1, but all required inequalities

for this construction are strict, so this can be done. By this procedure we obtain the time-symmetric

solution Dext depicted in Fig. 8.7 below.

Let (ϖ1, Q1) be the initial Reissner–Nordström parameters of α, which will also be the initial

parameters of Dext. Using the same methods as Theorem 1.2.1 and Lemma 7.3.1, we can construct

a solution Dsub of Einstein–Maxwell–Vlasov collapsing to a subextremal Reissner–Nordström black

hole with parameters ϖ1 and Q1. In the case of massless particles, the desired third law violating

spacetime is then obtained by deleting an appropriate double null rectangle from Dsub and gluing

in an appropriate piece of Dext. In the case of massive particles, the beams from Dext and Dsub will

possibly interact in the early past, but as is clear from the proof of Proposition 8.2.3, this happens

in the dispersive region and the proof of Lemma 8.6.1 can be repeated to show global existence and

causal geodesic completeness in the past.
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Figure 8.7: Penrose diagram of the time symmetric Einstein–Maxwell–Vlasov solution Dext interpo-
lating between subextremality and extremality. This diagram is valid for both massive and massless
particles.

8.11.2 (Semi)continuity of the location of the event horizon

8.11.2.1 General results for spherically symmetric event horizons

We now consider general weakly tame spherically symmetric Einstein-matter systems, i.e., those

satisfying the dominant energy condition and the weak extension principle. We refer to [Daf05b;

Kom13] for the precise definition of the weak extension principle, but note that it is a strictly

weaker condition than the generalized extension principle as formulated in Proposition 3.2.4 and

therefore holds for the Einstein–Maxwell–Klein–Gordon, Einstein–Higgs, and Einstein–Maxwell–

Vlasov systems [Chr93; Daf05a; Kom13; DR16].

Let Ψ = (Σ, ḡ, k̄, . . . ) be a spherically symmetric, asymptotically flat Cauchy data set on R3

with a regular center in the given matter model. We will assume that Ψ contains no spherically

symmetric antitrapped surfaces, i.e., that ∂ur < 0 on Σ. This assumption is physically motivated

by the observation that if the maximal Cauchy development D = (Q, r,Ω2, . . . ) does not contain a

white hole, then there are no antitrapped surfaces in the spacetime. Furthermore, by Raychaudhuri’s

equation (2.1.7) and the dominant energy condition, ∂ur < 0 is propagated to the future of the

Cauchy hypersurface Σ.

Under these assumptions, a very general a priori characterization of the boundary of (Q, r,Ω2)

is available due to the work of Dafermos [Daf05b] and we refer to Kommemi [Kom13] for a detailed

account. We will utilize the following two facts:

Fact 1. If (Q, r,Ω2) contains a trapped or marginally trapped surface, i.e., ∂vr(u0, v0) ≤ 0 for
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some (u0, v0) ∈ Q, then the black hole region is nonempty (BH .
= Q \ J−(I+) ̸= ∅), future null

infinity is complete in the sense of Christodoulou [Chr99a], and (u0, v0) ∈ BH.

Fact 2. The Hawking mass m extends to a (not necessarily continuous) nonincreasing and

nonnegative function on future null infinity I+, called the Bondi mass. If the Hawking mass of

Σ is bounded,8 then the Bondi mass is also bounded and the final Bondi mass Mf
.
= infI+ m is

finite. Then the “event horizon Penrose inequality” supH+ r ≤ 2Mf holds and by the no antitrapped

surfaces condition we also obtain

sup
BH

r ≤ 2Mf . (8.11.1)

We wish to consider sequences of initial data and their developments. In order to compare them,

we have to ensure that the double null gauges are synchronized in an appropriate sense. We consider

only developments D = (Q, r,Ω2, . . . ) for which the center Γ is a subset of {u = v} ⊂ R2
u,v and if

i : [0,∞) → Σ denotes the embedding map of the Cauchy hypersurface into Q, we demand that

i(0) ∈ Γ. Clearly, these conditions can always be enforced by an appropriate transformation of the

double null gauge.

Assumption 8.11.1. Let {Ψj} be a sequence of spherically symmetric asymptotically flat Cauchy

data for a weakly tame Einstein-matter system. Let Dj = (Qj , rj ,Ω
2
j , . . . ) denote the maximal

development of Ψj with Cauchy hypersurface Σj ⊂ Qj and embedding map ij : [0,∞) → Σj

normalized as above. We assume that Ψj converges to another data set Ψ∞ and the developments

converge in the following sense:

1. Gauge condition: Let D∞ denote the maximal development of Ψ∞ with Cauchy hypersurface

and embedding map i∞ : [0,∞) → Σ∞. We assume that Dj and D∞ have continuously

synchronized gauges in the sense that (u, v) ◦ ij : [0,∞) → R2 converges uniformly on compact

sets as j → ∞.

2. Cauchy stability of the area-radius: If U ⊂ Q∞ is a relatively compact open set, then U ⊂ Qj

for j sufficiently large and rj → r∞ in C1(U).

Remark 8.11.2. The notion of continuous synchronization also makes sense for continuous one-

parameter families of Cauchy data λ 7→ Ψλ. In this case we require the maps (u, v) ◦ iλ(x) to be

jointly continuous in λ and x ∈ [0,∞).

Remark 8.11.3. The initial data and developments given by Proposition 8.9.9 are continuously

synchronized as functions of the beam parameters (α, η, ε,m).
8This can be regarded as a part of the definition of asymptotic flatness.
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Proposition 8.11.4. Let Ψj → Ψ∞ be a convergent sequence of one-ended asymptotically flat

Cauchy data for a weakly tame spherically symmetric Einstein-matter system, containing no spher-

ically symmetric antitrapped surfaces, and satisfying Assumption 8.11.1. Assume that the sequence

has uniformly bounded Bondi mass and that the development Dj of Ψj contains a black hole for

each j ∈ N. Let rj,H+ denote the limiting area-radius of the event horizon H+
j of Dj and uj,H+ its

retarded time coordinate (also for j = ∞ if D∞ contains a black hole). Then the following holds:

1. If future timelike infinity i+∞ is a limit point of the center Γ in D∞ (in particular, D∞ does

not contain a black hole), then

lim
j→∞

uj,H+ = sup
Q∞

u. (8.11.2)

2. If D∞ contains a black hole, then

(a) The retarded time of the event horizon is lower semicontinuous:

lim inf
j→∞

uj,H+ ≥ u∞,H+ . (8.11.3)

(b) Assume further that there are trapped surfaces asymptoting to i+∞ in the following sense:

Let (u∞,i+ , v∞,i+) denote the coordinates9 of i+∞ and suppose there exist sequences u1 >

u2 > · · · → u∞,i+ and v1 < v2 < · · · → v∞,i+ such that ∂vr∞(ui, vi) < 0 for every i ≥ 1.

Then (8.11.3) is upgraded to

lim
j→∞

uj,H+ = u∞,H+ (8.11.4)

and it additionally holds that

lim inf
j→∞

rj,H+ ≥ r∞,H+ . (8.11.5)

Proof. Part 1: The inequality ≤ in (8.11.2) follows directly from Cauchy stability, which implies the

stronger statement

lim sup
j→∞

sup
Qj

u ≤ sup
Q∞

u.

We now prove the inequality ≥. Let u0 < supQ∞
u and let M be an upper bound for the Bondi

mass of the sequence {Dj}. Since the cone Cu0
in Q∞ reaches future null infinity, we can choose

v0 such that r∞(u0, v0) > 2M . By Cauchy stability, rj(u0, v0) > 2M for j sufficiently large, so

(u0, v0) /∈ BHj by (8.11.1). This implies uj,H+ ≥ u0 which completes the proof.

9u∞,i+ is necessarily finite and equals u∞,H+ , but v∞,i+ could be +∞.
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Part 2 (a): The argument to prove (8.11.3) is the same as the proof of Part 1, since Cu0
reaches

future null infinity in Q∞ for any u0 < u∞,H+ .

Part 2 (b): By (8.11.3) we must now show that for u0 > u∞,H+ , uj,H+ ≤ u0 for j sufficiently

large. Let (ui, vi) be a trapped sphere for D∞ as in the statement, with u0 > ui > u∞,H+ . By

Cauchy stability, (ui, vi) is then trapped in Dj for j sufficiently large and therefore ui > uj,H+ , which

completes the proof of (8.11.4). Using this, we now have by Cauchy stability and monotonicity of

rj along H+
j that

lim inf
j→∞

rj,H+ ≥ lim
j→∞

rj(uj,H+ , v0) = r∞(u∞,H+ , v0)

for any v0 < v∞,i+ . Letting v0 → v∞,i+ completes the proof.

Remark 8.11.5. It is natural to ask if the “reverse” of (8.11.5), i.e.,

lim sup
j→∞

rj,H+ ≤ r∞,H+ , (8.11.6)

holds at this level of generality (even assuming trapped surfaces asymptoting towards i+∞). It turns

out that (8.11.6) is false without additional assumptions. On the one hand, assuming additionally a

strict inequality in (8.11.3), a minor modification of the arguments used to show (8.11.3) can be used

to show (8.11.6).10 On the other hand, without the assumption of a strict inequality in (8.11.3),

using the ingoing (uncharged) Vaidya metric, one can construct a counterexample to (8.11.6) which

moreover satisfies the asymptotic trapped surface assumption of Part 2 (b). One is to imagine

inflating the event horizon of a Schwarzschild black hole by injecting a fixed dust packet at later and

later advanced times v ∼ j. In the limit j → ∞, the dust disappears, and lim sup rj,H+ > r∞,H+ .

Curiously, since black holes in the Vaidya model always have trapped surfaces behind the horizon,

Part 2 (b) of the proposition implies that uj,H+ is actually continuous in this process. This is

because injecting a fixed amount of matter at later and later times causes the horizon to move

outwards less and less (in u), causing it to converge back to the original Schwarzschild horizon as

j → ∞. Therefore, in order for (8.11.6) to hold, one must assume that Ψj converges to Ψ∞ in a

norm that sufficiently respects the asymptotically flat structure. We emphasize at this point that

the conclusions of Proposition 8.11.4 hold only under an assumption of local Cauchy stability—no

asymptotic stability or weighted convergence is required.

10Note that in this case, there cannot be trapped surfaces asymptoting towards i+∞!
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8.11.2.2 Proof of event horizon jumping in the Einstein–Maxwell–Vlasov model

Proof of Theorem 1.2.23. This is proved by following the proof of Theorem 1.2.22 and varying the

final parameters of Dext as in the proof of Theorem 1.2.1.

This theorem shows that it is not always possible to have equality in (8.11.3) when D∞ is

extremal: the event horizon can and does jump as a function of the initial data.
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Part II

Positive mass theorems with black

holes and arbitrary ends
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Chapter 9

Overview of Part II

9.1 Introduction

Let Mn be a smooth manifold, g a complete Riemannian metric on M , and k a symmetric (0, 2)-

tensor on Mn. Such a triple naturally arises as an initial data set1 for the Cauchy problem in

general relativity. We say that (Mn, g, k) is asymptotically flat with compact core if there exists a

compact set K ⊂M such that M \K is diffeomorphic to Rn \B, and in the coordinates xi induced

by this diffeomorphism, gij − δij and kij decay suitably. This definition is intended to capture the

configuration of an isolated system in a Cauchy hypersurface of an asymptotically flat spacetime.

Given an initial data set, the mass density µ (a scalar) and the momentum density J (a vector

field) are defined by

µ = 1
2

(
Rg − |k|2g + (trg k)

2
)
,

J i = (divg k)
i −∇i(trg k).

If (M, g, k) arises as a spacelike hypersurface in a Lorentzian manifold satisfying the Einstein equa-

tions (1.0.1), then µ = T 00 and J i = T 0i, where 0 denotes the timelike direction normal to the

hypersurface. We say that (M, g, k) satisfies the dominant energy condition (DEC ) if µ ≥ |J |g. This

condition is satisfied by reasonable matter systems, such as those considered in Part I of this disser-

tation. As a special case, (M, g, k) is vacuum if µ and J vanish identically.2 In this case, (M, g, k)

1This terminology, though standard, is misleading. The triple (M, g, k) need not solve constraints for any specific
Einstein-matter system to be called an “initial data set” in this part of the dissertation.

2The vacuum constraints have the character of an underdetermined elliptic system. The DEC µ − |J |g ≥ 0 may
be thought of as an underdetermined elliptic inequality.
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can be developed into a globally hyperbolic spacetime satisfying the Einstein vacuum equations

(1.1.6) [Fou52; CG69].

Associated to an asymptotically flat end is the ADM energy-momentum vector (E,P 1, . . . , Pn) ∈

Rn+1, which captures a notion of total energy and momentum of the initial data set at infinity.

The celebrated spacetime positive mass theorem of Schoen and Yau states that the total energy-

momentum of an asymptotically flat data set is nonnegative if the local energy-momentum density

is:

Theorem 9.1.1 (Schoen–Yau [SY81a]). Let (M3, g, k) be a 3-dimensional asymptotically flat initial

data set with compact core and satisfying the dominant energy condition. Then (E,P ) is a future-

directed causal vector, that is, E ≥ |P |. In particular, the total mass E ≥ 0. If E = |P |, then

(M3, g, k) embeds into Minkowski space.

For the history of this theorem, we refer the reader to the excellent textbook [Lee19]. Schoen

and Yau’s proof of Theorem 9.1.1 involves a reduction to the Riemannian positive mass theorem,

which is itself a fundamental result in scalar curvature geometry:3

Theorem 9.1.2 (Schoen–Yau [SY79a]). Let (M3, g) be a 3-dimensional asymptotically flat Rieman-

nian manifold with compact core and nonnegative scalar curvature. Then mADM ≥ 0 and mADM = 0

if and only if g is flat.

In this part of the dissertation, we consider two natural generalizations of Theorem 9.1.1:

1. In Chapter 10, we show that Theorem 9.1.1 holds for asymptotically flat data sets with compact

core and nonempty compact boundary in dimensions 3 through 7.4 The natural boundary

condition is for ∂M to be weakly outer trapped, which means M contains an apparent horizon.

We therefore call this result the spacetime positive mass theorem for black holes. This result

removes the restrictive topological assumption of spin from the theorem of Gibbons, Hawking,

Horowitz, and Perry [GHHP83].

2. In Chapter 11, we show that Theorem 9.1.2 holds for complete asymptotically flat manifolds—

without the compact core assumption. The manifolds considered may have other non-asymptotically

flat ends. We therefore call this result the positive mass theorem with arbitrary ends. This the-

orem was conjectured by Schoen–Yau in [SY88] in connection with conformal geometry, which

3In the context of the Riemannian positive mass theorem, it is customary to denote E by mADM.
4In this part of the dissertation, we always take 3 ≤ n ≤ 7, where n is the dimension of the manifold. The

dimension restriction comes from the regularity theory of minimal hypersurfaces. Removing this bound is a very
difficult open problem, though there have been some attempts and partial results in recent years. The results in this
dissertation can be applied as a black box to the higher dimensional case once the relevant regularity theory has been
developed.
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will be discussed in Section 9.4. Furthermore, our methods imply corollaries for incomplete

manifolds containing a positive scalar curvature shield.

Both of these results also have applications to extremal black hole spacetimes, as these often do

not contain trapped surfaces or asymptotically flat Cauchy hypersurfaces with compact cores.

Density theorems

These main common thread between these two lines of results is the use of density theorems to

perturb the original asymptotically data into something easier to work with. The first result of this

kind was proved by Schoen and Yau in [SY81b], who showed how to perturb an asymptotically flat,

scalar-flat metric

gij(x) = δij +O2(|x|−1), (9.1.1)

to an asymptotically flat, scalar-flat metric satisfying

g̃ij(x) = u4(x)δij (9.1.2)

outside a compact set, where u is a harmonic function with respect to the underlying Euclidean

structure and u(x) → 1 as |x| → ∞. Such a metric has so-called Schwarzschild asymptotics, which

can be seen by expanding u in spherical harmonics, and so may be treated using the methods

of [SY79a]. This result can be generalized to show that an asymptotically flat, nonnegative scalar

curvature metric can also be perturbed so that (9.1.2) holds outside a compact set, while maintaining

nonnegative scalar curvature [LP87; Kuw90]. One may characterize these results as saying that

metrics with asymptotic expansion (9.1.2) are dense among metrics with asymptotic expansion

(9.1.1), either subject to the constraint Rg = 0, or the constraint Rg ≥ 0, where Rg denotes the

scalar curvature of g.

Density theorems of this kind are used in every minimal hypersurface, marginally outer trapped

surface (MOTS), and Jang reduction proof of the positive mass theorem [SY79a; SY81b; SY81a;

Sch89; Loh99; Eic13; EHLS16; Loh16; Loh17; SY19]. The improved asymptotics are crucially used

to construct barriers and perform asymptotic analysis on area-minimizing hypersurfaces (or stable

MOTS) spanning large spheres in the asymptotically flat region. Therefore, most of the analytic

work in proving the positive mass theorem lies in establishing an appropriate density theorem—the

geometric arguments take place on the perturbed, simplified manifold. Most of Chapter 10 and

Chapter 11 is indeed concerned with proving density theorems in the relevant settings.
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9.2 The spacetime positive mass theorem for black holes

In Chapter 10, we settle the full spacetime positive mass theorem with boundary and without a spin

assumption, at least in dimensions where we have regularity of C-minimizing integral currents. This

theorem was proved in joint work with Dan A. Lee and Martin Lesourd [LLU22].

Theorem 9.2.1 (Spacetime positive mass theorem with boundary). Let 3 ≤ n ≤ 7, and let

(Mn, g, k) be a complete asymptotically flat initial data set with compact boundary ∂M such that the

dominant energy condition holds on M , and each component of ∂M is either weakly outer trapped

(θ+ ≤ 0) or weakly inner untrapped (θ− ≥ 0), with respect to the normal pointing into M . Then

E ≥ |P | in each end, where (E,P ) denotes the ADM energy-momentum vector of (g, k).

The quantities θ± are the null expansions of the boundary. The definitions and precise assump-

tions for this theorem will be given in Section 10.2.1.

The ∂M = ∅ case of Theorem 9.2.1 was proved by Eichmair, Huang, Lee, and Schoen in [EHLS16].

The ∂M ̸= ∅ case is desirable from a physical perspective, since it verifies the intuition that the

geometry lying behind an “apparent horizon” cannot influence the asymptotic geometry. In general

relativity, a surface with θ+ ≤ 0 cannot be seen from null infinity, and therefore must lie inside a

black hole [Haw72b]. Previously, the ∂M ̸= ∅ case was only known to be true for spin manifolds,

by work of Gibbons, Hawking, Horowitz, and Perry [GHHP83] (see also [Her98]), who implemented

Witten’s spinor method [Wit81] with a boundary condition. In 3 dimensions, Theorem 9.2.1 also

follows from recent work of Hirsch, Kazaras, and Khuri [HKK21], using an unrelated method. The

short note of Galloway and Lee [GL21] proves Theorem 9.2.1 under the stronger assumption that

each component of ∂M either has θ+ < 0 or θ− > 0.

Despite these advances and the general belief that Theorem 9.2.1 was true, the problem remained

open for a long time. It is natural to adapt the proof of the ∂M = ∅ case in [EHLS16], and in fact,

the proof is essentially unchanged for ∂M ̸= ∅ if one already has so-called harmonic asymptotics,

which is the “initial data set version” of condition (9.1.2). However, it is not clear how to prove a

density theorem to achieve harmonic asymptotics as in [EHLS16, Theorem 18] when a boundary is

present. This is what we accomplish with Theorem 10.1.1, and we explain how Theorem 9.2.1 follows

from Theorem 10.1.1 and [EHLS16] in Section 10.4.1. The reason why Theorem 10.1.1 is a nontrivial

generalization of Theorem 18 of [EHLS16] is that the latter is proved by solving an elliptic system,

and the weakly outer trapped condition on the boundary is not an elliptic boundary condition for

this system. We solve this problem by supplementing the weakly outer trapped condition with other

conditions to create an elliptic boundary condition.
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Since one expects that E = |P | is only possible if the initial data set sits inside Minkowski

space, which does not contain weakly outer trapped surfaces, one should be able to strengthen

Theorem 9.2.1 to conclude that E > |P |. Indeed, we are able to do this if one is willing to make

stronger assumptions about the asymptotics.

Theorem 9.2.2. Assume the hypotheses of Theorem 9.2.1 with ∂M ̸= ∅, and furthermore, assume

that (M, g, k) satisfies the stronger asymptotic assumption appearing in Theorem 10.4.1. Then E >

|P |.

By work of Beig and Chruściel [BC96] (see also [CM06]), this result should also hold for all spin

manifolds, and this argument is sketched5 in [BC03, Remark 11.5] in dimension 3. The 3-dimensional

case was also obtained by [HKK21], and more recently, Hirsch and Yiyue Zhang used this approach

to remove the “stronger asymptotic assumption” in 3 dimensions [HZ23]. In the spin case, Hirsch–

Zhang have characterized E = |P | spacetimes with “weak” decay as “pp wave” spacetimes in the

very recent paper [HZ24].

Our proof of Theorem 9.2.2 follows fairly easily from Theorem 9.2.1 combined with known tech-

niques in the ∂M = ∅ case. Specifically, we break the proof into two parts. In the first part, presented

in Section Section 10.4.2, we suppose that E = |P | and conclude that E = |P | = 0 by adapting

the ∂M = ∅ proof by Huang and the first author [HL20]. This is where the stronger asymptotic

assumption in Theorem 10.4.1 is needed. In the second part, presented in Section Section 10.4.3,

we show that E = 0 is impossible by examining Eichmair’s Jang equation proof (in the ∂M = ∅

case) that E ≥ 0 in [Eic13] (which itself generalized Schoen–Yau’s pioneering result in dimension

3 [SY81b]). Technically, in dimension 3 our argument requires the assumption that trg k = O(|x|−γ)

for some γ > 2, but we choose to leave this assumption out of the statement of Theorem 9.2.2 by

explicitly relying on either [HKK21] or [BC03, Remark 11.5] (both of which require very different

methods than the ones discussed in this dissertation).

Remark 9.2.3. Huang and Lee have given a very beautiful and completely different proof of E = 0

rigidity in [HL23], which makes use of some results from [LLU22].

Remark 9.2.4.

Besides the positive mass theorem, another application of Theorem 10.1.1 concerns the gluing

problem for initial data sets. Indeed, since the gluing-across-annulus theorem of Corvino–Schoen

[CS06] is appropriately local and done in a region where the data is vacuum and has good asymp-

totics, we can combine it with Theorem 10.1.1 to obtain the following.

5Note that this discussion only appears in the arXiv version of the paper.
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Corollary 9.2.5. Let (M, g, k) be an asymptotically flat initial data set satisfying the assumptions

of Theorem 10.1.1, such that E > |P |. Then, for any ε > 0, there is an initial data set (g̃, k̃) with

the following properties:

• (g̃, k̃) satisfies the dominant energy condition,

• the outer null expansion of ∂M with respect to (g̃, k̃) is unchanged, that is, θ̃+ = θ+,

• (g̃, k̃) is ε-close to (g, k) in W 2,p
−q ×W 1,p

−q−1,

• (µ̃, J̃) is ε-close to (µ, J) in L1,

• outside a compact set containing ∂M , (g̃, k̃) is isometric to an initial data set for a Kerr

spacetime6 with ADM energy-momentum (Ẽ, P̃ ), where |Ẽ − E|+ |P̃ − P | < ε.

9.3 The positive mass theorem with arbitrary ends

An interesting geometric feature of extremal black holes is that Cauchy surfaces for their domains

of outer communication can have arbitrary ends. For example, the t = 0 slice of extremal Reissner–

Nordström has one asymptotically flat end as r → ∞ but is actually asymptotically cylindrical as

r → 0. This Cauchy surface does not have a compact core, and therefore Theorem 9.1.2 does not

apply. As it turns out, the arbitrary ends cause difficulties in every step of the proof.

In joint work with Lesourd and Yau [LUY21] and Lee and Lesourd [LLU23], we were able to

remove the compact core assumption on Theorem 9.1.2, while keeping the most general possible

asymotptics on the asymptotically flat end:

Theorem 9.3.1 (The positive mass theorem with arbitrary ends). Let (Mn, g), 3 ≤ n ≤ 7, be

a complete manifold with nonnegative scalar curvature and at least one asymptotically flat end E

of Sobolev type (p, q), where p > n and q > n−2
2 . Then the ADM mass of E is nonnegative.

Furthermore, if the mass is zero, then (M, g) is isometric to Euclidean space.

Remark 9.3.2. In [LUY21], we proved this theorem under a stronger decay assumption on E and

were unable to conclude a rigidty statement. We revisted the problem in [LLU23] with more robust

methods, which resulted in the stronger version of the theorem stated here.

Our proof makes use of Gromov’s µ-bubble technique [Gro96; Gro18] to localize the Schoen–Yau

descent scheme of [SY79b] to the asymptotically flat end (see already Section 9.3.2). Our methods

6More specifically, this Kerr initial data comes from an element of the “reference family” for Kerr, as described
in [CD03].
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actually prove the following stronger result, which is a positive mass analogue of Gromov’s band

width inequality.

Theorem 9.3.3 (Quantitative shielding theorem). Let (Mn, g), 3 ≤ n ≤ 7, be an asymptotically

flat manifold of Sobolev type (p, q), with p > n and q > n−2
2 , not assumed to be complete or to have

nonnegative scalar curvature everywhere. Let U0, U1, and U2 be neighborhoods of an asymptotically

flat end E such that U2 ⊂ U1, U1 ⊂ U0, and U0 \ E is compact, and let

D0 = distg(∂U0, U1) and D1 = distg(U2, ∂U1).

If the following hold:

1. g has no points of incompleteness in U0,

2. Rg ≥ 0 on U0, and

3. the scalar curvature satisfies the largeness assumption

Rg >
4

D0D1
on U1 \ U2, (9.3.1)

then the ADM mass of the asymptotically flat end E is strictly positive.

We call this a shielded version of the positive mass theorem because the positive scalar curvature

band shields E from M \ U0, on which we make no assumption.

Our methods also imply an inextendibility result: Given an asymptotically flat end E with

nonnegative scalar curvature and negative mass, Theorem 9.3.1 tells us that it is impossible to

extend E to be a complete manifold with nonnegative scalar curvature. The following corollary of

Theorem 9.3.3 states that, in fact, there is a fixed distance D that puts a limit on how far we can

extend the metric away from E before hitting either a point of incompleteness or a point of negative

scalar curvature.

Corollary 9.3.4. Let (Mn, g), 3 ≤ n ≤ 7, be a Riemannian manifold, not assumed to be complete,

with an asymptotically flat end E of Sobolev type (p, q), where p > n and q > n−2
2 . IfmADM(E , g) < 0,

then there exists a constant D, depending only on mADM(E , g) and ∥g−δ∥W 2,p
−q (E), with the following

property. In the D-neighborhood ND(E) of E, one or both of the following must be true:

1. Rg < 0 somewhere in ND(E), or
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2. ND(E) contains an incomplete point.

We have given further applications of these techniques to questions about quasilocal mass in

[LLU24].

Remark 9.3.5 (Spinor methods). Using Dirac operators on a space with a strong weight on the

other ends, Bartnik and Chruściel are able to prove a remarkable spacetime positive mass theorem

with arbitary ends under a spin assumption [BC03]. After [LUY21] appeared, Cecchini and Zeidler

revisted the Riemannian positive mass theorem in the spin setting [CZ21]. They use Callias operators

(i.e., Dirac operators with a potential) as a localization tool. They obtain analogues of all our results

stated above, which is not needed for spin arguments. Also, their asymptotics are slightly stronger

than ours, but we do not believe that this is essential to their method. We would also like to point

the reader to the very interesting paper [CZ20].

9.3.1 Outline of the proof of Theorem 9.3.1

An essential ingredient to obtaining the positive mass theorem with the weakest decay assumptions

is a density theorem that reduces the problem to studying an asymptotically flat manifold with har-

monic asymptotics (i.e., of the form (9.1.2)). See already Theorem 11.1.1 for the precise statement.

With such a density theorem in hand, Theorem 9.3.1 can be proved in one of two ways:

Proof 1. Assume for the sake of contradiction that mADM < 0. One now makes a slight confor-

mal change of the metric that makes the scalar curvature strictly positive in an annular region

surrounding the asymptotically flat end E . (This procedure is called “bumping up,” see already

Proposition 11.4.2 below.) The mass is still negative after this perturbation and one has a contra-

diction to Theorem 9.3.3 after choosing U0, U1, and U2 appropriately.

We give the details of this proof in Section 11.5.2 below.

Proof 2. Assume for the sake of contradiction that mADM < 0. Applying the density theorem, we

perturb the metric to be conformally flat far out on E while keeping the mass negative. Lohkamp

[Loh99] observed that one can then deform u to be constant outside of a (possibly very large)

compact set, while staying superharmonic (see also [CP11]).7 This means that the deformed metric

has nonnegative scalar curvature everywhere, and is flat outside of this compact set. By identifying

sides of a cube surrounding the non-flat region, and taking X to be the one-point compactification

7This deformation step uses mADM < 0 crucially and gives the positive mass theorem the flavor of a Liouville
theorem.

269



of M along E , one obtains a complete metric on Xn # Tn with positive scalar curvature.8 When

Xn is compact, a classical result of Schoen and Yau [SY79b] states that Xn # Tn does not admit

a metric of positive scalar curvature, which would give the required contradiction. However, if M

has arbitrary ends, then Xn# Tn is noncompact and the proof of [SY79b] breaks down in a serious

manner. Nevertheless, using Gromov’s µ-bubble technique, Chodosh and Li were able to extend

Schoen and Yau’s result to the complete noncompact case:

Theorem 9.3.6 (Chodosh–Li [CL24]). Let 3 ≤ n ≤ 7 and let Xn be a smooth manifold of dimension

n. Then Xn # Tn does not admit complete a metric of positive scalar curvature.

This gives the required contradiction.

9.3.2 Gromov’s µ-bubble technique

A natural question in scalar curvature geometry is whether minimal hypersurface and Dirac operator

arguments can be effectively localized around a particular geometric feature. This is particularly

important when working in ambient spaces that are noncompact, incomplete, or contain boundaries.

In the case of minimal hypersurfaces, minimizing sequences are susceptible to various problems: they

can escape every compact set and fail to converge, they can degenerate to something noncompact

and unwieldy, or they can hit points of incompleteness and become singular.

To get around these issues, Gromov introduced the technique of µ-bubbles as a way of localizing

the Schoen–Yau minimal hypersurface descent scheme [SY79b] to stay within a well understood and

usually compact region of the ambient space [Gro96; Gro18]. The basic idea is to replace stable

minimal hypersurfaces by stable prescribed mean curvature hypersurfaces (called µ-bubbles), where

the prescription function (called the potential) blows up in the “forbidden” region of the manifold.

There is now a wealth of examples where µ-bubbles have been used to study problems in scalar

curvature curvature which previously seemed out of reach [CL24; Gro23; Gro20; Zhu23; Zhu21;

LUY21; CLSZ21].

To make the idea clear, we give the following definition.

Definition 9.3.7. Let (M, g) be a Riemannian manifold and let h : M → R (called the potential)

be a continuous function with the following properties:

1. h is smooth on the open set {−∞ < h <∞} in M .

8Lohkamp’s work [Loh99] was concerned with asymptotically flat manifolds with compact core. However, his
arguments go through unchanged in the case of arbitrary ends once the density theorem is proved.
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2. Let M0 denote the closure of {−∞ < h < ∞} in M . Then ∂M0 = ∂M+ ∪ ∂M−, where ∂M±

are nonempty smooth closed embedded hypersurfaces and h|∂M± = ±∞.

Let Ω0 be a Caccioppoli set in M0 which contains ∂M+. For Ω another such Caccioppoli set, we

define

F(Ω)
.
= Hn−1

g (∂∗Ω)−
∫
M0

(χΩ − χΩ0
)h dµg.

We say that Ω is a µ-bubble if it is a critical point of this functional under variations satisfying

Ω ∆ Ω0 ⊂⊂ M0, or equivalently, if ∂Ω has prescribed mean curvature h (with the normal oriented

pointing towards ∂M−). Stable and minimizing µ-bubbles are defined in the obvious way.

It is relatively straightforward to show that in the above setting, stable µ-bubbles always exist.

Lemma 9.3.8. If 2 ≤ n ≤ 7, nonempty stable µ-bubbles exist and are smooth.

Sketch of Proof. Let {Ωi} be a minimizing sequence for F . This sequence can be modified to avoid

a neighborhood of ∂M0 and still be minimizing. Since ∂M± are closed, smooth hypersurfaces, any

foliation of a tubular neighborhood has uniformly bounded mean curvature. Therefore, H < h near

∂M+ (with the normal pointing away from ∂M+) and H > h near ∂M− (with the normal pointing

away from ∂M−). These surfaces act as barriers and by performing a suitable replacement, for each

i we can find a Caccioppoli set Ω′
i ⊂ {|h| ≤ C}, where C is a sufficiently large constant independent

of i, satisfying also Ω′
i ∆ Ωi ⊂⊂ M0 and F(Ω′

i) ≤ F(Ωi). For details of this argument, we refer to

[CL24].

SinceM0 is compact and h is bounded on Ω′
i∆Ω0, F(Ω′

i) ≳ −1. We obviously have M(∂∗Ω′
i) ≲ 1

and M(Ω′
i) ≲ 1 by previous observations. So by the BV compactness theorem, there exists a

subsequence of {Ω′
i} converging in the sense of Caccioppoli sets. By standard regularity theory, the

limiting set will have smooth boundary with mean curvature h. As it is F-minmizing, it is also

automatically stable.

The utility of stable µ-bubbles is explained by the following computation:

Lemma 9.3.9. If Ω is a smooth stable µ-bubble with boundary Σ, then Σ = ∂Ω satisfies the stability

inequality ∫
Σ

|∇φ|2 + 1
2RΣφ

2 − 1
2

(
Rg +

n
n−1h

2 + 2ν(h)
)
φ2 dµΣ ≥ 0, (9.3.2)

for every φ ∈ C1(Σ), where ν is the unit normal pointing away from ∂+M .
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Proof. The second variation of the µ-bubble functional is given by (see [LUY21, Proposition 2.3])

∫
Σ

|∇φ|2 − 1
2

(
Rg −RΣ + |A|2

)
φ2 − 1

2

(
h2 + 2ν(h)

)
φ2 dµΣ ≥ 0. (9.3.3)

We then write |A|2 = 1
nH

2 + |Å|2 = 1
nh

2 + |Å|2, insert this into the second variation, and rearrange

to obtain (9.3.2).

Recall that a closed Riemannian manifold (Mn, g) is Yamabe positive (nonnegative) if it contains

a positive (nonnegative) scalar curvature metric in its conformal class. Alternatively, (Mn, g) is

Yamabe positive (nonnegative) if ∫
M

φLφ > 0 (≥ 0) (9.3.4)

for every φ ∈ C1(M), where L is the conformal Laplacian

L
.
= −4

n− 1

n− 2
∆g +Rg. (9.3.5)

From the stability inequality (9.3.2), we see that if

Rg +
n
n−1h

2 − 2|∇h| > 0 (≥ 0), (⋆)

then Σ is Yamabe positive (nonnegative). We will refer to this inequality as condition (⋆).9 There-

fore, µ-bubbles may be used in place of stable minimal hypersurfaces to study scalar curvature as

long as one can construct suitable potential functions. This is exactly how Chodosh and Li proved

Theorem 9.3.6. One of the innovations of [LLU23] is an interpretation of the µ-bubble technique

in terms of marginally outer trapped surfaces (MOTS). See already Section 11.5 and “Proof 2” in

Section 9.3.3 below.

9.3.3 Outline of the proof of Theorem 9.3.3

We now explain two different proofs of Theorem 9.3.3 based on the µ-bubble idea.

Proof 1. Assume for sake of contradiction that mADM < 0. By applying a density theorem, one

can assume harmonic asymptotics on E . Then mADM < 0 implies large cylinders in the asymptotic

region are mean-convex, and one can apply a “Plateau problem” version of the µ-bubble technique

to construct large stable µ-bubbles spanning cross-sectional spheres of these cylinders. Arguing

9In [LUY21], the condition is written as RM + h2 − 2|∇h| > 0. This implies the current condition since n
n−1

> 1.

The difference comes from keeping the trace part of |A|2 versus just throwing it away.
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similarly to [Sch89], one constructs a complete “strongly stable” µ-bubble which can be conformally

deformed to produce a counterexample to the positive mass theorem in dimension n− 1. One then

argues by induction on dimension, with the n = 3 case following from the Gauss–Bonnet theorem

and the logarithmic cutoff trick.

Remark 9.3.10. In [LUY21], we did not have a density theorem available for asymptotically flat

manifolds with arbitrary ends. Therefore, we were not able to obtain Theorem 9.3.3 with the

most general assumptions on E . It turns out that the argument just described works directly for

asymptotically Schwarzschild manifolds with a fair bit of work, without a density theorem.

Proof 2. Using the same µ-bubble potential function h as in Proof 1, define an “auxiliary second

fundamental form” kh by

kh
.
= − h

n− 1
g. (9.3.6)

It follows from a very short computation that (M ′, g, kh) satisfies the hypotheses of Theorem 9.2.2

where M ′ .= {|h| ≤ C} for C chosen sufficiently large. Therefore mADM > 0.

This very short and surprising proof was found in [LLU23]. We give the details in Section 11.5.1

below.

9.4 The Liouville theorem for locally conformally flat mani-

folds

Let (M, g) and (N,h) be two Riemannian manifolds of the same dimension. A smooth map φ :M →

N is said to be conformal if there exists a smooth positive function u on M such that φ∗h = ug. It

is easy to see that any conformal map is an immersion. If φ is in addition a diffeomorphism, we say

that it is a conformal diffeomorphism. An n-dimensional Riemannian manifold (M, g) is said to be

locally conformally flat (LCF) if is it locally conformally diffeomorphic to Sn with the round metric.

A fundamental theorem of Kuiper states that any LCF manifold Mn (n ≥ 3) can be conformally

immersed in Sn [Kui49]. A conformal immersion Φ :Mn → Sn is called a developing map. In [SY88],

Schoen and Yau studied the question of when Φ is injective, as this has implications for the higher

homotopy groups of LCF manifolds. By combining the work of Schoen–Yau in [SY88], the scalar

curvature rigidity theorem of Chodosh–Li (Theorem 9.3.6), and a Lohkamp-type compactification

argument, we were able to prove the following theorem in joint work with Lesourd and Yau [LUY20].
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Theorem 9.4.1 (Liouville theorem for LCF manifolds). Let (Mn, g), n ≥ 3, be a complete locally

conformally flat Riemannian manifold with with nonnegative scalar curvature. If Φ :Mn → Sn is a

conformal map, then Φ is injective and ∂Φ(M) has zero capacity.

This theorem was proved in [SY88] with various additional assumptions (either assuming n ≥ 7

or some global geometric restrictions). The original idea in [SY88] for proving this most general

form of the Liouville theorem was to reduce it to the positive mass theorem. However, when Mn is

noncompact, this requires presisely the positive mass theorem with arbitrary ends. Therefore, given

our Theorem 9.3.1, we are able to carry out the original idea of [SY88] in one stroke. The details of

this argument will be given in Section 11.6 below.

9.A Positive scalar curvature on noncompact surfaces

In this appendix, we prove the n = 2 version of Theorem 9.3.6, which has a cute and elementary

proof. Since the 2-torus has vanishing Euler characteristic, the Gauss–Bonnet theorem immediately

implies:

Proposition 9.A.1. The torus T 2 does not admit a metric of positive scalar curvature.

One can alternatively argue using closed geodesics (which incidentally motivates the stable min-

imal hypersurface technique for studying positive scalar curvature). Indeed, the torus contains a

nontrivial free homotopy class of curves L. Using the Arzela–Ascoli theorem, we may find a closed

geodesic γ ∈ L of minimal length. The second variation formula implies this geodesic is unstable

because of positive curvature, which contradicts its minimality.

The compactness of the torus is used in two places. Firstly, to apply the Arzela–Ascoli theorem

to maps S1 → T 2 and secondly, to ensure the positivity of the convexity radius of (T 2, g) which is

used to conclude that the minimizer is closed. However, the argument actually goes through if we

know that the “relevant” curves all lie in some large ball.

Theorem 9.A.2. Let X2 be a smooth surface. Then X2 # T 2 does not admit a complete metric of

positive scalar curvature.

Proof. Suppose g is a complete metric on X2 # T 2 with positive scalar curvature. Consider a

free homotopy class L corresponding to going once around one of the circular factors in T 2. Let

C ⊂ T 2#X2 be a “surgery circle” associated to the connected sum. Then C /∈ L. In T 2, C bounds

an open disk. Call the complement of this disk K ⊂ X2 # T 2. Let {γi} ⊂ L be a length-minimizing
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sequence of smooth curves. For each i, γi ∩ K ̸= ∅ for otherwise γi would be nullhomotopic in

T 2, contradicting the choice of L. Let ℓ = supi L(γi) < ∞. Then by the triangle inequality, γi is

contained in the 2ℓ-neighborhood of K for i sufficiently large. Since g is complete, this neighborhood

is relatively compact. Now a subsequence of {γi} tends to a closed length-minimizing geodesic which

can be shown to be unstable by the second variation formula, and we have a contradiction.

The topology of X2 # T 2 prevents the minimizing sequence from “escaping off to infinity”—the

compact set K anchors L. In fact, the completeness of g prevented the curves from entering the

noncompact end at all. This is much stronger than what can be expected for minimal hypersurfaces

and in general we will have degeneration of topology at infinity.

275



Chapter 10

The spacetime positive mass

theorem for black holes

10.1 The density theorem for initial data sets

When discussing initial data sets (Mn, g, k), it is often convenient to replace the second fundamental

form kij by the conjugate momentum tensor

πij = kij − (trg k)g
ij ,

and we will also refer to (M, g, π) as an initial data set. Then the formulas for µ and J become

µ =
1

2

(
Rg +

1

n− 1
(trg π)

2 − |π|2g
)

J = divg π.

The first density theorem for initial data sets was proved by Corvino and Schoen [CS06], who

showed that asymptotically flat vacuum initial data sets (g, π) can be approximated by vacuum

initial data satisfying the harmonic asymptotics condition

g̃ij = u4δij , π̃ij = u−6LδY
ij (10.1.1)

outside a compact set, for some function u and vector field Y which have good asymptotic expansions.

The notation L is defined by the formula LgY
ij .

= (LY g)ij − (divg Y )gij for an arbitrary metric g,
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where LY denotes the Lie derivative. In the extension of the positive mass theorem to initial data sets

in higher dimensions [EHLS16], Eichmair, Huang, Lee, and Schoen proved a harmonic asymptotics

density theorem for initial data sets satisfying the dominant energy condition. This theorem also

plays a crucial role in Eichmair’s Jang reduction and rigidity theorems [Eic13], as well as Lohkamp’s

compactification approach to the spacetime positive mass theorem [Loh17].

In this chapter, we generalize the density theorems of Corvino–Schoen [CS06] and Eichmair–

Huang–Lee–Schoen [EHLS16] to allow for initial data sets with compact boundary.

Theorem 10.1.1 (Density theorem for initial data sets with boundary). Let (Mn, g, k) be a com-

plete asymptotically flat initial data set with compact boundary ∂M , such that the dominant energy

condition, µ ≥ |J |g, holds on M . Let p > n and n−2
2 < q < n− 2 such that q is less than the decay

rate of (g, k). Let θ+ denote the outer null expansion of ∂M .

Then for any ε > 0, there exists an asymptotically flat initial data set (g̃, k̃) on M also satsifying

the dominant energy condition such that (g̃, k̃) has harmonic asymptotics in each end of M , (g̃, k̃)

is ε-close to (g, k) in W 2,p
−q ×W 1,p

−q−1, the new constraints (µ̃, J̃) are ε-close to (µ, J) in L1, and the

new outer null expansion θ̃+ is equal to θ+ on ∂M .

Furthermore, we can choose (g̃, k̃) such that the strict dominant energy condition holds, µ̃ > |J̃ |g.

Simultaneously, (µ̃, J̃) may be chosen to decay as fast as we like.

Alternatively, we can choose (g̃, k̃) to be vacuum (that is, µ̃ = |J̃ |g = 0) outside a compact set.

Moreover, if (g, k) is vacuum everywhere, then (g̃, k̃) can be chosen to be vacuum everywhere.

Remark 10.1.2. More generally, we may prescribe θ̃+ to be any function sufficiently close to θ+ in

the fractional Sobolev space W 1− 1
p ,p(∂M). This theorem is more precisely stated as Theorem 10.3.7

below. In particular, θ̃+ may be chosen to be strictly less than θ+ at every point. Moreover, we may

alternatively choose to prescribe the inner expansion θ− (instead of θ+) on any given components

of ∂M .

The proof of the density theorem is given in Section 10.3 and the proof of the spacetime positive

mass theorem with boundary is given in Section 10.4.

10.2 Preliminaries

10.2.1 Notation and definitions

LetMn be a smooth n-dimensional manifold (n ≥ 3) with compact boundary ∂M , and fix a smooth

background metric g which is identically Euclidean on the finitely many noncompact ends of M ,
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which are all diffeomorphic to Rn minus a ball.

Let E denote such an end with coordinates xi. For p ≥ 1 and s ∈ R, we define a weighted Lp

norm by

∥u∥Lp
s(E)

.
=

(∫
E
||x|−su|p dx

|x|n

)1/p

.

For k ∈ N, weighted Sobolev norms on E are defined by

∥u∥Wk,p
s (E)

.
=

k∑
i=0

∥∂iu∥Lp
s−i(E).

Weighted Ck norms are defined by

∥u∥Ck
s (E)

.
=

k∑
i=0

sup
E

||x|i−s∂iu|.

For α ∈ (0, 1), weighted Cα seminorms are defined by

[∂ku]Cα
s (E)

.
= sup

x∈E

(
|x|k+α−s sup

y∈E

|∂ku(x)− ∂ku(y)|
|x− y|α

)
.

Let E1, . . . , EN denote the collection of Euclidean ends ofM and let K denote a compact set such

that M \K =
⋃N
j=1 Ej . The weighted norms on (M, g) are defined by:

∥u∥Wk,p
s (M)

.
= ∥u∥Wk,p

s (E) + ∥u∥Wk,p(K),

∥u∥Ck
s (M)

.
= ∥u∥Ck

s (E) + ∥u∥Ck(K),

∥u∥Ck,α
s (M)

.
= ∥u∥Ck

s (M) + [∂ku]Cα
s (E)

and the corresponding spaces are defined to the corresponding collections of functions (or tensor

fields) for which the norms are well-defined and finite. See [Lee19] for more details.

Definition 10.2.1. We say that an initial data set (Mn, g, k) is asymptotically flat if (g, k) is locally

C2,α×C1,α for some 0 < α < 1, and there exists a compact set K ⊂M such thatM \K is a disjoint

union of Euclidean ends such that in the associated coordinate charts,

gij(x) = δij +O2(|x|−q) (10.2.1)

kij = O1(|x|−q−1) (10.2.2)

for some q > n−2
2 , and also (µ, J) ∈ L1(M). We refer to this q as the asymptotic decay rate of (g, k).
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In this case, the ADM energy-momentum (E,P ) is well-defined. We refer the reader to [Lee19]

for details and references.

Throughout most of this chapter, we will use π in place of k. Given a fixed manifold M , we

define the constraint map Φ by

Φ(g, π)
.
= (2µ, J),

for any initial data (g, π) on M .

Given a hypersurface Σ with unit normal ν in an initial data set (M, g, k), we define the outer

and inner null expansions θ+Σ and θ−Σ , respectively, with respect to (g, π) by

θ±Σ
.
= ±HΣ + trΣ k,

where HΣ is the mean curvature of ∂M with respect to g and ν, and

trΣ k
.
= (gij − νiνj)kij = −πijνiνj

is the trace of k over TΣ. In the case when (M, g, k) sits inside a spacetime, θ±Σ can be interpreted

in terms of Lorentzian geometry, but we shall not need this viewpoint here. In this chapter we will

always choose Σ to be ∂M , and we choose ν to be the unit normal pointing into M . We will want

to prescribe either θ+∂M or θ−∂M on each boundary component, so we make the following definition.

Definition 10.2.2. Let M be a fixed manifold with boundary, and let ∂+M and ∂−M designate

unions of components of ∂M such that ∂M = ∂+M ∪ ∂−M . Given initial data (g, π) on M , define

Θ(g, π) to be the function ∂M that is equal to θ±∂M on ∂±M with respect to the data (g, π) and the

normal pointing into M .

For PDE purposes, it is convenient to slightly enlarge the space of data sets under consideration.

We will consider initial data (g, π), where g− g ∈W 2,p
−q (T

∗M ⊙ T ∗M) and π ∈W 1,p
−q−1(TM ⊙ TM),

where p > n, n−2
2 < q < n− 2, and q is less than the decay rate in Definition 10.2.1. Note that such

a pair (g, π) need not satisfy our definition of asymptotic flatness, and in particular, need not have

well-defined ADM energy-momentum. We define

D .
=
(
g +W 2,p

−q (T
∗M ⊙ T ∗M)

)
×W 1,p

−q−1(TM ⊙ TM), (10.2.3)

so that D is a (affine) Banach space of initial data sets. Note that the tangent space of D at (g, π),
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T(g,π)D, can be identified with W 2,p
−q (T

∗M ⊙ T ∗M)×W 1,p
−q−1(TM ⊙ TM).

Lemma 10.2.3. Let p > n and n−2
2 < q < n − 2. On a fixed asymptotically flat manifold Mn

with compact boundary decomposed as in Definition 10.2.2, the descriptions of Φ and Θ given above

define a smooth map of Banach spaces

(Φ,Θ) : D → L×W 1− 1
p ,p(∂M),

where

L .
= Lp−q−2(M)× Lp−q−2(TM), (10.2.4)

and W 1− 1
p ,p(∂M) is a fractional Sobolev space on ∂M . (See, for example, [Gri85, Section 1.4].)

Proof. The claim about Φ is standard and easy to verify, so we focus on the map Θ. We can realize

∂M as a level set of a smooth function f , which has no critical points in a small neighborhood U of

∂M . Then the formula

νi
.
= gij

∂if

|∇f |g

defines a vector field on U which is the unit normal to the level sets of f in U , and it is has W 2,p

regularity. Next, the formula

Hg
.
= (gij − νjνj)

1

|∇f |g
(∂ijf − Γkij∂kf),

defines a function on U which is equal to the mean curvature of the level sets of f in U . We can

also see that Hg has W 1,p regularity since Γkij ∈ W 1,p and W 1,p is a Banach algebra. Similary, the

quantity −πijνiνj is a W 1,p function on U . More precisely, we observe that we have a bounded

map from from (g, π) ∈ D to ±Hg − πijν
iνj ∈ W 1,p(U). The result follows from viewing Θ as the

composition of this map with the usual bounded trace operator from W 1,p(U) to W 1− 1
p ,p(∂M).

The proof above made use of a trace theorem. Later on, we will need the following sharp trace

theorem.

Lemma 10.2.4. Let (Mn, g) be as above and let g ∈ g+W 2,p
−q (T

∗M ⊙T ∗M). Then, for any s ∈ R,

the weighted Sobolev space W 2,p
s (M) enjoys a bounded trace operator

T g2 :W 2,p
s (M) →W 2− 1

p ,p(∂M)×W 1− 1
p ,p(∂M)
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which is the unique extension of

u 7−→
(
u|∂M ,

∂u

∂νg

∣∣∣∣
∂M

)
for u ∈ C2(M) ∩W 2,p

s (M). The mapping T g2 is surjective and admits a bounded right inverse. The

operator norms of T g2 and its right inverse depend only on ∥g − g∥W 2,p
−q

.

We emphasize that the normal vector field νg is the one corresponding to the metric g.

Proof. The existence and properties of T g2 are easily reduced to the case of bounded domains [Gri85,

Theorem 1.5.1.2] by means of cutoff functions. In particular, we may take elements in the image of

the right inverse to be supported in a neighborhood of ∂M .

10.2.2 “Conformal” initial data sets

Conformal transformations play a special role in the study of mass and the Riemannian positive

mass theorem. The following notion of conformal transformations of initial data sets plays a crucial

role in the density theorem and the positive mass theorem [CS06; EHLS16].

Let

C .
=
(
1 +W 2,p

−q (M)
)
×W 2,p

−q (TM) (10.2.5)

denote the (affine) Banach space of conformal deformations. Note that the tangent space of C at

(1, 0), T(1,0)C, can be identified with W 2,p
−q (M) ×W 2,p

−q (TM). For (g, π) ∈ D fixed and (u, Y ) ∈ C,

we define

g̃
.
= usg,

π̃
.
= u−

3
2 s(π + LgY ),

where s = 4
n−2 is the conformal exponent and LgY was defined in the introduction. We denote

Ψ(g,π) : C → D

(u, Y ) 7→ (g̃, π̃).

Definition 10.2.5. Let (Mn, g, π) be an asymptotically flat initial data set. We say that (M, g, π)

has harmonic asymptotics in a particular end if in the asymptotically flat coordinates, the initial

data takes the form

(g, π) = Ψ(g,0)(u, Y )
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outside a compact set, where u and Y are a function and vector field pair satisfying

u(x) = 1 + a|x|2−n +O2,α(|x|1−n) (10.2.6)

Y i(x) = bi|x|2−n +O2,α(|x|1−n), (10.2.7)

for some α ∈ (0, 1). When the initial data set is of this form, the ADM energy-momentum has a

particularly simple expression: E = 2a and Pi = −n−2
n−1bi.

Initial data sets in the image of Ψ(g,0) have harmonic asymptotics if the constraints decay quickly

enough:

Lemma 10.2.6 ([EHLS16, Proposition 24]). Suppose there exist (u, Y ) ∈ C such that (g, π) =

Ψ(g,0)(u, Y ) outside a compact set. If (µ, J) ∈ C0,α
−n−1−δ for some δ > 0, then u and Y admit the

expansions (10.2.6) and (10.2.7). Hence (g, π) has harmonic asymptotics.

Next we define

P .
= (T,Υ)

.
= (Φ,Θ) ◦Ψ(g,π) : C → L×W 1− 1

p ,p(∂M). (10.2.8)

In the following, we let (µ, J, θ) be the value of (Φ,Θ) on the fixed data set (g, π).

Proposition 10.2.7. The map P is a smooth map of Banach spaces and is explicitly given by

T (u, Y ) =

(
u−s

[
Lgu

u
+ 1

n−1 (trg π + trg LgY )2 − (|π|2g + 2⟨LgY, π⟩+ |LgY |2g)
]
, (10.2.9)

u−
3
2 s

[
(divg LgY + divg π)

i + s(n−1)
2 (π + LgY )ij

∇ju

u
− s

2 trg(π + LgY )gij
∇ju

u

])
Υ(u, Y ) = u−

s
2

(
θ ± s(n−1)

2

∂

∂ν
(log u) + div∂M Y ⊤ +H⟨Y, ν⟩ − ⟨∇νY

⊥, ν⟩+ ⟨Y ⊤,∇νν⟩
)
,

(10.2.10)

where the ± depends on whether the point lies in ∂±M . Here ν is any extension of the g-unit

normal vector field of ∂M (pointing into M), Y ⊥ = ⟨Y, ν⟩ν, and Y ⊤ = Y − Y ⊥. Note that the

quantities ∇νY
⊥ and ∇νν depend on the particular extension chosen, but −⟨∇νY

⊥, ν⟩+ ⟨Y ⊤,∇νν⟩

is an invariant quantity. The linearization of P at (1, 0) is given by

DP(1,0)(v, Z) = (DT |(1,0), DΥ|(1,0))(v, Z),
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where

DT |(1,0)(v, Z) =
(
− s(n− 1)∆gv +

2
n−1 (trg π)(divg Z)− 4π · ∇gZ − 2sµv, (10.2.11)

(divg LgZ)
i + s(n−1)

2 πij∇jv − s
2 (trg π)g

ij∇jv − 3
2sJ

iv
)
,

DΥ|(1,0)(v, Z) = − s
2θv ±

s(n−1)
2

∂v

∂ν
+ div∂M Z⊤ +H⟨Z, ν⟩ − ⟨∇νZ

⊥, ν⟩+ ⟨Z⊤,∇νν⟩. (10.2.12)

Proof. The formula (10.2.9) is given in the erratum for Exercise 9.7 in [Lee19]. To prove (10.2.10),

we first use the standard formula

H̃ = u−
s
2

(
H + s(n−1)

2

∂

∂ν
(log u)

)
. (10.2.13)

Using ν̃ = u−
s
2 ν, we compute

π̃(ν̃, ν̃) = u−
s
2 (π(ν, ν) + LgY (ν, ν)) . (10.2.14)

Finally, extend ν off of ∂M , let Y ⊥ = ⟨ν, Y ⟩ν and Y ⊤ = Y − Y ⊥. Then, on ∂M ,

LgY (ν, ν) = 2⟨∇νY, ν⟩ − divg Y

= ⟨∇νY, ν⟩ − div∂M Y

= −⟨Y ⊤,∇νν⟩+ ⟨∇νY
⊥, ν⟩ − div∂M Y ⊤ −H⟨Y, ν⟩.

Combining these computations gives (10.2.10), and the linearizations are then computed in the

obvious way.

Using the formulas for the linearization and the sharp trace theorem, we can prove the following

crucial result.

Lemma 10.2.8. The maps

DΥ|(1,0) : T(1,0)C →W 1− 1
p ,p(∂M)

and

DΘ|(g,π) : T(g,π)D →W 1− 1
p ,p(∂M)

are surjective and their kernels split.
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Proof. From the formula for DΥ|(1,0), we see that we want to solve the equation

− s
2θv ±

s(n−1)
2

∂v

∂ν
+ div∂M Z⊤ +H⟨Z, ν⟩ − ⟨∇νZ

⊥, ν⟩+ ⟨Z⊤,∇νν⟩ = f,

for any given f ∈W 1− 1
p ,p(∂M). We set Z ≡ 0, reducing this to

− s
2θv ±

s(n−1)
2

∂v

∂ν
= f on ∂M.

By the sharp trace theorem (Lemma 10.2.4), we can find a v ∈W 2,p
−q (M) such that

(
v|∂M ,

∂v

∂ν

∣∣∣∣
∂M

)
=

(
0,

±2f

s(n− 1)

)

and

∥v∥W 2,p
−q (M) ≤ C∥f∥

W
1− 1

p
,p
(∂M)

.

Therefore, DΥ|(1,0)(v, 0) = f as desired, with an estimate, which proves DΥ|(1,0) has a bounded

right inverse. By standard functional analysis [Bre11, Theorem 2.12], this implies that the kernel

splits.

The corresponding statement for DΘ|(g,π) follows by choosing first-order deformations

(h,w) = DΨ(g,π)|(1,0)(v, 0) =
(
svg,− 3

2svπ
)
.

By the definition of Υ and the chain rule,

DΘ|(g,π)(h,w) = f

and

∥(h,w)∥T(g,π)D ≤ C∥v∥W 2,p
−q (M) ≤ C∥f∥

W
1− 1

p
,p
(∂M)

.

The same functional analysis argument as before completes the proof.

Unfortunately, DP|(1,0) does not define an elliptic boundary value problem. This is evident from

the fact that the boundary operator DΥ|(1,0) is a scalar operator while DT |(1,0) describes an elliptic

system of n+ 1 equations. Therefore, we introduce boundary operators describing n+ 1 equations
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on the boundary:

B1(u, Y )
.
= u−

s
2

[
θ ± s(n−1)

2

∂

∂ν
(log u)

]
,

B2(u, Y )
.
= Y ⊤,

B3(u, Y )
.
= H⟨Y, ν⟩ − ⟨∇νY

⊥, ν⟩+ ⟨Y ⊤,∇νν⟩,

where H is the mean curvature of ∂M with respect to g. Altogether, these define a map

B = (B1, B2, B3) : C →W 1− 1
p ,p(∂M)×W 2− 1

p ,p(T (∂M))×W 1− 1
p ,p(∂M). (10.2.15)

Clearly, we have

Υ = B1 + u−
s
2 div∂M B2 + u−

s
2B3

on C. It follows that

DΥ|(1,0) = DB1|(1,0) + div∂M DB2|(1,0) +DB3|(1,0) (10.2.16)

on T(1,0)C, where

DB1|(1,0)(v, Z) = − s
2θv ±

s(n−1)
2

∂v

∂ν

DB2|(1,0)(v, Z) = Z⊤

DB3|(1,0)(v, Z) = H⟨Z, ν⟩ − ⟨∇νZ
⊥, ν⟩+ ⟨Z⊤,∇νν⟩.

For ease of reading, we will remove |(1,0) when there is no risk for confusion.

Proposition 10.2.9. (DT |(1,0), DB|(1,0)) defines an elliptic system in the following sense:

1. There exists a relatively compact set U ⊂M so that the elliptic estimate

∥(v, Z)∥W 2,p
−q

≲ ∥DT (v, Z)∥L + ∥DB(v, Z)∥
W

1− 1
p
,p×W 2− 1

p
,p×W 1− 1

p
,p + ∥(v, Z)∥Lp(U)

holds for every (v, Z) ∈ T(1,0)C, where L and C were defined in (10.2.4) and (10.2.5); and

2. the mapping

(DT,DB) : T(1,0)C → L×W 1− 1
p ,p(∂M)×W 2− 1

p ,p(T (∂M))×W 1− 1
p ,p(∂M)
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is Fredholm.

The proof is unfortunately complicated by some technicalities. In order to apply the theory of

elliptic systems, we have to check that the boundary operator DB is elliptic. However, we defined

B relative to an orthogonal splitting of Y near the boundary. Hence, we must choose coordinates

which respect this splitting. The most natural choice would be Fermi coordinates. However, since

their construction involves solving the geodesic equation, it is well known that the resulting metric

coefficients would only be C0,α [DK81]. This causes problems for the regularity theory, but thankfully

exact Fermi coordinates are not needed. Instead, we use the following:

Definition 10.2.10 (Andersson–Chruściel). Let g be a Ck,α Riemannian metric on a manifold M

with compact smooth boundary ∂M . Let p ∈ ∂M and U be a neighborhood of p in M . We say that

coordinates (x1, . . . , xn) : U → Rn form an almost-Fermi coordinate system at p if

1. Each xi is a Ck+1,α function on U relative to the smooth structure of M ;

2. x1, . . . , xn−1 form a coordinate system for a neighborhood of p in ∂M when restricted to

xn = 0, consequently the coordinate partial derivatives ∂1, . . . , ∂n−1 are a frame for T (∂M)

along ∂M ; and

3. the “bottom row” of metric components satisfy gnn(x) = 1 + O((xn)k+α) and gni(x) =

O((xn)k+α) for i = 1, . . . , n− 1.

The existence of almost-Fermi coordinate systems is proved in [AC96, Appendix B] (where they

are called “almost Gaussian”). Note that the conclusions of (3) are proved directly there for the

inverse metric, but can easily be seen to hold for the metric components themselves by Taylor

expansion of the matrix inverse function. We note three more facts:

4. The metric components are Ck,α up to the boundary;

5. the coordinate vector field ∂n agrees with the g-unit normal vector ν along ∂M ; and

6. the coordinate vector field ∂n satisfies ∇∂n∂n = 0 along ∂M .

Property (4) follows directly from (1) in Definition Definition 10.2.10. Property (5) follows from

(2) and (3), because ∂n has unit length on ∂M and is orthogonal to ∂M . Property (6) follows from

the definition ∇∂n∂n = Γknn∂k and the Christoffel symbols Γ1
nn, . . . ,Γ

n
nn all vanish along ∂M by (3).

With this out of the way, we can prove the proposition.
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Proof of Proposition 10.2.9. We compute the boundary operator DB in almost-Fermi coordinates

x1, . . . , xn. Let the extension of ν be ∂n, so that ∇νν = 0 along ∂M . Then

⟨∇νZ
⊥, ν⟩ = ∇ν⟨Z, ν⟩

along ∂M . We conclude that

DB1(v, Z) = − s
2θv ±

s(n−1)
2

∂v

∂xn
,

DB2(v, Z) =

n−1∑
i=1

Zi∂i,

DB3(v, Z) = HZn − ∂Zn

∂xn
.

We furthermore observe that

∇jLgZ
ij = ∆Zi +∇j∇iZj −∇i∇kZ

k = ∆Zi +RijZ
j , (10.2.17)

so to leading order DT is diagonal and equal to the Laplacian in each component. Moreover, in

these coordinates, up to leading order, DB is diagonal and gives a Dirichlet boundary condition in

the DB2 components, while giving a Neumann boundary condition in the DB1 and DB3 compo-

nents. Therefore it is clear that (DT,DB) is properly elliptic in M and satisfies the complementary

condition of Agmon–Douglis–Nirenberg on ∂M [ADN64]. Therefore we have elliptic boundary es-

timates in addition to interior estimates, which can now be combined with the asymptotic flatness

assumption to obtain the global estimate (1) of Proposition 10.2.9 in routine way. Specifically, we

use a partition of unity and a scaling argument to obtain a global weighted estimate (for exam-

ple, see [Lee19, Theorem A.33]), and then a cutoff argument to replace Lp−q(M) by Lp(U) on the

right-hand side of the global weighted estimate (as in [Bar86, Theorem 1.10], or see [Lee19, Lemma

A.41]).

If the coefficients of (DT,DB) were smooth, then the Fredholm property (2) of Proposition 10.2.9

would also follow, as in [LM85], from the fact that DB is an elliptic boundary condition for DT ,

which is asymptotic to the Laplacian in each component. To account for the lack of smoothness (the

coefficients are C1,α at worst), we adapt an argument of D. Maxwell [Max05]. Although the Fredholm

property does not follow directly from (1), the elliptic estimate (1) combined with compactness of

the map W 2,p
−q (M) → Lp(U) does show that the map (DT,DB) is semi-Fredholm1 via standard

1A bounded linear operator T : X → Y is semi-Fredholm if dimkerT < ∞ and T (X) is closed in Y .
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arguments [Sch02, Theorem 5.21].

Standard smoothing arguments allow us to construct a continuous one-parameter family of initial

data sets in (gµ, πµ) ∈ D for µ ∈ [0, 1], such that (gµ, πµ) ∈ C∞×C∞ for µ > 0, and (g0, π0) = (g, π).

Since the associated operators (DTµ, DBµ) have smooth coefficients for µ > 0, we know that they

are Fredholm on the relevant Sobolev spaces [LM85]. Since the index of semi-Fredholm operators

is a homotopy invariant [Sch02, Theorem 5.22], we have ind(DT0, DB0) = ind(DTµ, DBµ) for any

µ > 0. Since the index for µ > 0 is finite, this implies that (DT,DB) = (DT0, DB0) is itself

Fredholm.

10.3 Density theorems

10.3.1 Prescribed constraint density theorem

Our first density theorem generalizes the vacuum density theorem of Corvino–Schoen [CS06].

Theorem 10.3.1 (Density theorem for prescribed constraints). Let (Mn, g, π) be a complete asymp-

totically flat initial data set with constraints (µ, J) and compact boundary ∂M having outer null ex-

pansion θ on ∂+M and inner null expansion θ on ∂−M . Let p > n and n−2
2 < q < n− 2 be strictly

less than the decay rate of (g, π). Recall the definitions of L and D from (10.2.4) and (10.2.3). There

exist constants δ > 0 and C so that the following is true:

If (µ̃, J̃) ∈ L, θ̃ ∈ W 1− 1
p ,p(∂M), and ∥(µ̃, J̃ , θ̃) − (µ, J, θ)∥

L×W 1− 1
p
,p < δ, then there exists an

asymptotically flat initial data set (g̃, π̃) ∈ D, whose constraints are (µ̃, J̃) and with outer/inner null

expansion θ̃ on ∂±M , which satisfies

∥(g̃, π̃)− (g, π)∥D ≤ C∥(µ̃, J̃ , θ̃)− (µ, J, θ)∥
L×W 1− 1

p
,p .

Furthermore, there exists (u, Y ) ∈ C such that

(g̃, π̃) = Ψ(g,0)(u, Y )

outside a compact set, where (g, 0) is the flat data set on the Euclidean end.

In particular, if (µ̃, J̃) is C0,α
−n−1−ε up to the boundary, and θ̃ ∈ C1,α(∂M) for some α ∈ (0, 1)

and ε > 0, then (g̃, π̃) is C2,α
2−n × C1,α

1−n up to the boundary and has harmonic asymptotics.2

2In this theorem and throughout this chapter, whenever we refer to H’́older spaces on M , we mean that they are
regular up to the boundary.
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Remark 10.3.2. If (g, π) is Ck+2,α ×Ck+1,α up to the boundary, (µ̃, J̃) is Ck,α up to the boundary,

and θ̃ is Ck+1,α on the boundary, then (g̃, π̃) will be Ck+2,α × Ck+1,α up to the boundary.

We fix (g, π) be asymptotically flat according to Definition Definition 10.2.1, with (Φ,Θ)(g, π) =

(2µ, J, θ). We now define the operator used in the proof of Theorem Theorem 10.3.1 and study its

linearization.

Let χ be a smooth nonnegative cutoff function on Rn equal to 1 on B1 and vanishing outside B2.

Define χλ(x) = χ(xλ ). For sufficiently large λ, χλ is defined by extending it to be 1 on the connected

compact subset of M that strictly contains the boundary ∂M . Now define

gλ = χλg + (1− χλ)g

πλ = χλπ

so that gλ = g and πλ = 0 for |x| ≥ 2λ and Θ(gλ, πλ) = Θ(g, π) = θ. It is convenient to set

(g∞, π∞) = (g, π).

The basic idea of the density theorem (going back to [SY81b; CS06; EHLS16]) is to make a

conformal change to (gλ, πλ) in order to reimpose the “constraint” (either prescribed Φ or modified

Φ) lost in the cutoff process by taking λ large and using the inverse function theorem. However,

(DT |(1,0), DB(1,0)) is not necessarily an isomorphism. This issue is also present in [CS06; EHLS16].

The solution is to change the domain of (T,Υ) to create an operator whose differential at (g∞, π∞)

is an isomorphism. The alteration will only introduce “compactly supported” deformations, so that

the final data set will still have harmonic asymptotics.

Lemma 10.3.3. Fix initial data (g, π) as in Theorem 10.3.1. There exists a closed subspace

K1 ⊂ T(1,0)C, a finite dimensional subspace K2 ⊂ T(g,π)D spanned by compactly supported smooth

functions, and constants r0 > 0 and C such that the following holds for all λ sufficiently large:

The differentials of the operators

P̂λ : [(1, 0) +K1]×K2 → L×W 1− 1
p ,p(∂M)

((u, Y ), (h,w)) 7→ (Φ,Θ)[Ψ(gλ,πλ)(u, Y ) + (h,w)]

are isomorphisms at the point ((1, 0), (0, 0)). In fact, we have

∥DP̂λ|−1
((1,0),(0,0))∥op ≤ C (10.3.1)
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and the Lipschitz constant of DP̂λ is bounded by C on Br0((1, 0), (0, 0)).

For λ = ∞, the relevant differential is

DP̂∞|((1,0),(0,0))((v, Z), (h,w)) = (DT,DΥ)|(1,0)(u, Y ) + (DΦ, DΘ)|(g,π)(h,w). (10.3.2)

To construct K1, we will require the following lemma.

Lemma 10.3.4. (DT(1,0), DB1|(1,0)) restricted to kerDB2|(1,0) ∩ kerDB3|(1,0) is Fredholm.

Proof. By Proposition 10.2.9 (1), we have the estimate

∥(v, Z)∥W 2,p
−q

≲ ∥DT (v, Z)∥L + ∥DB1(v, Z)∥
W

1− 1
p
,p + ∥(v, Z)∥Lp(U)

for every (v, Z) ∈ kerDB2 ∩ kerDB3. As mentioned in the proof of Proposition 10.2.9, it fol-

lows from [Sch02, Theorem 5.21] that (DT,DB1) is semi-Fredholm. It remains to show that

(DT,DB1)[kerDB2 ∩DB3] has finite codimension. If not, then there exists an infinite-dimensional

subspace X ⊂ L ×W 1− 1
p ,p(∂M) such that (DT,DB1)[kerDB2 ∩ DB3] ∩ X = 0. But that would

imply that

(DT,DB)[T(1,0)C] ∩ [X × {0} × {0}] = 0,

which is impossible since the full elliptic operator is Fredholm.

To construct K2, we need to know that the lineariation of (Φ,Θ) is surjective, which generalizes

Proposition 3.1 in [CS06]. See also the related work by Zhongshan An [An22].

Proposition 10.3.5. (DΦ, DΘ)|(g,π) : T(g,π)D → L×W 1− 1
p ,p(∂M) is surjective.

Proof. Since DΘ|(g,π) : T(g,π)D → W 1− 1
p ,p(∂M) is surjective (Lemma 10.2.8), it suffices to show

that DΦ|(g,π) : ker(DΘ(g,π)) → L is surjective.

First we claim that

DΦ|(g,π)[kerDΘ|(g,π)] ⊂ L

is closed and has finite codimension. It suffices to observe that

DT |(1,0)[kerDB|(1,0)] ⊂ DΦ|(g,π)[kerDΘ|(g,π)], (10.3.3)

as the former is closed with finite codimension by repeating the argument of Lemma 10.3.4.
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As a consequence of the Hahn–Banach theorem [Bre11, Corollary 1.8], if DΦ|(g,π)[kerDΘ|(g,π)] ̸=

L, there is a nontrivial bounded linear functional (ξ, V ) ∈ L∗ = Lp
′

2+q−n which annihilates it. By

the inclusion (10.3.3), (ξ, V ) annihilates DT |(1,0)(kerDB|(1,0)). By considering arbitrary test data

(h,w) ∈ T(g,π)D compactly supported away from ∂M (whence (h,w) ∈ kerDB|(1,0)), we see that

(ξ, V ) solves the equation

DΦ|∗(g,π)(ξ, V ) = 0 (10.3.4)

in the sense of distributions. Arguing as in [HL20, Appendix B], we conclude that ξ and V are C2

in the interior and hence solve the equation classically. Note that the boundary behavior of (ξ, V )

is not needed for our argument.

The result now follows from arguments in [CS06], as explained in detail in [Lee19, Theorem 9.9].

(The presence of a boundary is irrelevant to this part of the argument.) For the reader’s conve-

nience, we summarize the basic argument: The equations (10.3.4) imply homogeneous Hessian-type

equations for (ξ, V ), with coefficients decaying according to the asymptotic flatness assumption.

Using this Hessian-type system, the Lp
′
decay can be bootstrapped to become pointwise C1 decay.

Next, initial decay of (ξ, V ) then implies Hessian decay that is more than 2 orders faster, which

gives improved decay on (ξ, V ) simply by (twice) integrating along coordinate rays to infinity. Boot-

strapping in this way, (ξ, V ) must have infinite-order pointwise decay. From here, one can use a

unique continuation argument (as in [CS06]) to see that (ξ, V ) vanishes identically, or alternatively,

as explained in the proof of [Lee19, Theorem 9.9], for each p ∈ M one can directly use the second-

order system of ODEs satisfied by (ξ, V ) along a curve from p to infinity to see that infinite-order

decay implies vanishing at p. This ODE argument originated in the work of Huang–Martin–Miao

[HMM18, Lemma B.3].

With our preparatory results in place, we can construct K1 and K2.

Proof of Lemma 10.3.3. Let K1 ⊂ kerDB2∩kerDB3 (note that this intersection is closed in T(1,0)C

and hence is a Banach space) be a complementing subspace for the kernel of (DT,DB1) inside

kerDB2 ∩ kerDB3. This subspace exists because the kernel is finite dimensional (Lemma 10.3.4)

and finite dimensional subspaces are always complemented. We then note that by the formula for

DΥ, for (v, Z) ∈ K1,

DΥ(v, Z) = DB1(v, Z).

It follows that

(DT,DΥ) : K1 → L×W 1− 1
p ,p(∂M)
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is injective. Furthermore, its range R = (DT,DB1)[kerDB2 ∩ kerDB3] is a closed subspace of

L ×W 1− 1
p ,p(∂M) with finite codimension by Lemma 10.3.4.

Let A be a finite-dimensional subspace of L × W 1− 1
p ,p(∂M) which complements R in L ×

W 1− 1
p ,p(∂M). Using Proposition 10.3.5, we can find a finite-dimensional subspace K ′

2 ⊂ T(g,π)D so

that

(DΦ, DΘ)|(g,π)(K2) = A.

Note that smooth, compactly supported sections of (T ∗M ⊙ T ∗M) × (TM ⊙ TM) are dense in

T(g,π)D = W 2,p
−q (T

∗M ⊙ T ∗M)×W 1,p
−q−1(TM ⊙ TM), so we can find a finite-dimensional space K2

made up of smooth, compactly supported sections that closely approximates K ′
2. By choosing a

good enough approximation, the image of K2 will be close enough to A to still be complementary

to R. With this choice of K1 and K2, DP̂∞|((1,0),(0,0)) is an isomorphism.

Since (gλ, πλ) → (g∞, π∞) in D, it follows from (10.A.1) of Lemma 10.A.2 that

DP̂λ|((1,0),(0,0)) → DP̂∞|((1,0),(0,0))

in operator norm as λ → ∞. Therefore DP̂λ|((1,0),(0,0)) is also an isomorphism for sufficiently large

λ, and its inverse satisfies (10.3.1). Finally, the Lipschitz constant bound follows from the Hessian

bound (10.A.2) of Lemma 10.A.2.

We state the relevant standard elliptic regularity fact needed to establish the boundary regularity

in Theorem Theorem 10.3.1. The only subtlety is that we are not assuming u to be C2. The version

here (for Sobolev u) can be read off from [Mor66, Theorem 6.4.8].

Lemma 10.3.6. Let Ω ⊂ Rn be a bounded domain with C2,α boundary, α ∈ (0, 1). Suppose that

aij ∈ C0,α(Ω) is positive definite, and suppose that f ∈ C0,α(Ω) and g ∈ C2,α(∂Ω). If u ∈ W 2,p(Ω)

(p > n) is a strong solution of

aij∂i∂ju = f in Ω,

u = g on ∂Ω,

then u ∈ C2,α(Ω).

If instead βi ∈ C1,α(∂Ω) is an oblique vector field and g ∈ C1,α(∂Ω) and u ∈ W 2,p(Ω) (p > n)
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satisfies

aij∂i∂ju = f in Ω,

βi∂iu = g on ∂Ω,

then u ∈ C2,α(Ω).

We now use the inverse function theorem to prove Theorem 10.3.1. The proof is a boundary

version of the argument given for [Lee19, Theorem 9.10 and Proposition 9.11], which itself is based

on [CS06].

Proof of Theorem Theorem 10.3.1. By Lemma 10.3.3 and the inverse function theorem for Banach

spaces (see in particular the “quantitative” version [Lee19, Theorem A.43]), there exists a constant

C such that for r > 0 sufficiently small and λ sufficiently large, P̂−1
λ exists and maps Br(2µλ, Jλ, θ) ⊂

L×W 1− 1
p ,p(∂M) into BCr((1, 0), (0, 0)) ⊂ [(1, 0) +K1]×K2, where (µλ, Jλ) are the constraints of

(gλ, πλ). So if (µ̃, J̃ , θ̃) satisfy the hypotheses of the theorem with

∥(2µ̃, J̃ , θ̃)− (2µ, J, θ)∥
L×W 1− 1

p
,p <

r

2

and λ is sufficiently large that ∥(2µλ, Jλ)− (2µ, J)∥L < r
2 , then there exist αλ ∈ [(1, 0) +K1]×K2

such that P̂λ(αλ) = (2µ̃, J̃ , θ̃), and

∥αλ − ((1, 0), (0, 0))∥C×T(g,π)D ≤ C∥(2µ̃, J̃ , θ̃)− (2µ, J, θ)∥
L×W 1− 1

p
,p ≤ Cr.

By choosing r smaller (and hence also λ larger) depending on the constant in Morrey’s inequality,

we can ensure |uλ − 1| < 1 everywhere, so that it is a valid conformal factor. Set δ = r
2 .

Having made all of these choices, write αλ = ((u, Y ), (h,w)). We claim that the initial data

(g̃, π̃) = Ψ(gλ,πλ)(u, Y ) + (h,w) is the desired solution in the conclusion of Theorem 10.3.1. By

construction, it has the desired constraints (µ̃, J̃) and outer/inner null expansion θ̃ on ∂±M , and it

satisfies the desired estimate

∥(g̃, π̃)− (g, π)∥D ≤ C∥(µ̃, J̃ , θ̃)− (µ, J, θ)∥
L×W 1− 1

p
,p .
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And since (hλ, wλ) is compactly supported,

(g̃, π̃) = Ψ(g,0)(uλ, Yλ)

for |x| ≥ 2λ, as desired.

It only remains to show that show that if (µ̃, J̃) is C0,α
−n−1−ε up to the boundary and θ̃ is C1,α,

then (g̃, π̃) is C2,α
2−n × C1,α

1−n up to the boundary and has harmonic asymptotics. Since (h,w) is

compactly supported and smooth, it suffices to show that (u, Y ) satisfies the asymptotic expansion

in Definition 10.2.5 and is C2,α up to the boundary. The asymptotic expansion is well-known from

earlier references such as [Lee19, Lemma 9.8], but here we carefully account for the presence of the

(h,w) term and the boundary in order to prove regularity up to the boundary.

To prove the desired result, we re-write

P̂λ((u, Y ), (h,w)) = (2µ̃, J̃ , θ̃)

as a set of linear elliptic equations in (u, Y ), viewing the nonlinearities as either coefficients or

nonhomogenous terms. More precisely, after we choose local coordinates (which is fine since we are

proving a local regularity result now), we will have equations for u, Y1, . . . , Yn of the form described

in Lemma 10.3.6 above. We will now explain this in detail.

By the Morrey embedding theorem, we already know that (u, Y ) ∈ C1,α
loc onM . We first examine

the µ̃ equation as our equation for u. First, the non-scalar curvature terms of µ̃ are C0,α
loc and

therefore can be viewed as part of the C0,α
loc nonhomogenous term. Moreover, using [Lee19, Exercise

1.2] or otherwise, we can re-write

R(usgλ + h) = sus−1(g̃ikg̃jl − g̃ij g̃kl)(gλ)kl∂i∂ju+ (terms in C0,α
loc ) (10.3.5)

Let U be a bounded set large enough so that every element of K2 vanishes outside U . So in the

complement of U , where g̃ is just a conformal change, this becomes

R(usgλ + h) = −s(n− 1)u−s−1(gλ)
ij∂i∂ju+ (terms in C0,α

loc ),

whose coefficient matrix is obviously negative definite. Meanwhile, gλ = g on U for sufficiently large

λ, so for δ sufficiently small, (10.3.5) will be strictly elliptic because |u − 1| and h can be made

uniformly small enough so that the second-order coefficients in (10.3.5) can be made uniformly close
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to

s(gikgjl − gijgkl)gkl = −s(n− 1)gij ,

which we know is negative definite. In either case, u solves an elliptic equation of the type described

in Lemma 10.3.6.

For the J̃ equations, we compute

divg̃ π̃
i = u−

3
2 s

[
− 3

2s
∇ju

u
(πijλ + LgλY

ij) + ∇̃j(π
ij
λ + LgλY

ij + wij)

]
.

Again, the lower order terms are clearly C0,α
loc , so we have

∇̃jLgλY
ij ∈ C0,α

loc . (10.3.6)

Meanwhile, by looking at the first order terms of LgλY , we have

LgλY
ij = gikλ ∂kY

j + gjkλ ∂kY
i − ∂kY

kgijλ + (terms in C0,α
loc ).

By taking ∂j , we can see that

∇̃jLgλY
ij = gikλ ∂j∂kY

j + gjkλ ∂j∂kY
i − ∂j∂kY

kgijλ + (terms in C0,α
loc )

= gjkλ ∂k∂jY
i + (terms in C0,α

loc ).

Combining this with (10.3.6), we see that

gjkλ ∂k∂jY
i ∈ C0,α

loc ,

where gλ is positive definite, so each Y i also satisfies an elliptic equation of the of the type described

in Lemma 10.3.6.

The only thing left to check is that u, Y 1, . . . , Y n satisfy boundary conditions of the type described

in Lemma 10.3.6. We have stipulated that Θ(g̃, π̃) = θ̃, which is only one boundary condition.

However, the space K1 in the definition of P̂ contains the other n boundary conditions we need.
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Indeed, since (u, Y ) ∈ K1, then by definition

Y ⊤ = 0

HY n − ∂Y n

∂xn
= 0,

where we have expressed the second condition in an almost-Fermi coordinate system. (We may do

this since regularity is a local property.) So we see that Y 1, . . . , Y n−1 satisfy the Dirichlet boundary

condition, and we claim that Y n and u satisfy Neumann-type conditions of the type described in

Lemma 10.3.6. For Y n, this is immediate from observing that HY n−1 is C1,α up to the boundary.

Hence Lemma 10.3.6 implies that Y is C2,α up to the boundary.

Using this upgraded regularity for Y , we can interpret Θ(g̃, π̃) = θ̃ as a Neumann-type boundary

condition for u. We clearly have −π̃ij ν̃iν̃j ∈ C1,α(∂M), so we just have to investigate the mean

curvature of ∂M with respect to g̃, which we denote by Hg̃. As in the proof of Lemma 10.2.3, we

write ∂M as a regular level set of a smooth function f , so that

Hg̃ = γij
1

|∇f |g̃
(∂ijf − Γ̃kij∂kf),

where γij = g̃ij − ν̃iν̃j . By focusing only on the terms with derivatives of u (in the Christoffel

symbols), we have

(−2γij g̃kl + γlj g̃ik)ν̃ksu
s−1gjl∂iu ∈ C1,α(∂M),

which is an equation of the form βi∂iu ∈ C1,α(∂M), where each βi ∈ C1,α(∂M) as well. The only

thing left to check is that βi is not tangent to ∂M . To see this, observe that when h = 0, we have

βi = (n− 1)su−1νi, and therefore βi is oblique for sufficiently small h.

10.3.2 Dominant energy condition density theorem

We begin with a precise re-statement of Theorem 10.1.1:

Theorem 10.3.7 (Density theorem for DEC). Let (Mn, g, π) be a complete asymptotically flat

initial data set satisfying the dominant energy condition µ ≥ |J | and with compact boundary ∂M

having outer null expansion θ on ∂+M and inner null expansion θ on ∂−M . Let p > n and

n−2
2 < q < n− 2 be strictly less than the decay rate of (g, π). For any ε > 0 there exists a constant

δ > 0 so that the following is true:

For any θ̃ ∈ C1,α(∂M) satisfying ∥θ̃−θ∥
W

1− 1
p
,p < δ there exists an asymptotically flat initial data
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set (g̃, π̃), C2,α × C1,α-regular up to the boundary, also satisfying the dominant energy condition,

such that (g̃, π̃) has harmonic asymptotics in each end of M , the new outer/inner null expansion on

∂±M is θ̃, and the new data set satisfies

∥(g̃, π̃)− (g, π)∥D < ε and ∥(µ̃, J̃)− (µ, J)∥L1 < ε.

Furthermore, we can choose (g̃, π̃) such that the strict dominant energy condition holds, µ̃ > |J̃ |.

Simultaneously, (µ̃, J̃) may be chosen to decay as fast as we like in the sense that if f is any positive

smooth function, then we can demand µ̃+ |J̃ | ≤ f(|x|) on the end.

Alternatively, we can choose (g̃, π̃) to be vacuum outside a compact set, that is, µ̃ = |J̃ | = 0

outside a compact set.

Given a fixed initial data set (Mn, g, π), the modified constraint operator Φ(g,π) is defined by

Φ(g,π)(γ, τ) = Φ(γ, τ) + (0, 12g
ijγjkJ

k)

for (γ, τ) ∈ D.

Lemma 10.3.8 (Corvino–Huang [CH20]). Let (g, π) and (g̃, π̃) be initial data, and assume that

Φ(g,π)(g̃, π̃)− Φ(g,π)(g, π) = (2ψ, 0)

for some function ψ. If additionally |g̃ − g|g ≤ 3, then

|J̃ |g̃ ≤ |J |g.

The linearization of the modified constraint operator at (g, π) is given by

DΦ(g,π)(h,w) = DΦ|(g,π)(h,w) + (0, 12g
ijhjkJ

k)

The addtional zeroth order term (0, 12g
ijhjkJ

k) does not affect the proof of Proposition 10.3.5, and

so we obtain the surjectivity result.

Proposition 10.3.9. (DΦ(g,π), DΘ)|(g,π) : T(g,π)D → L×W 1− 1
p ,p(∂M) is surjective.

By Proposition 10.3.9, we can use the construction of Lemma 10.3.3 to construct the analogous

subspacesK1,K2. Using this and the inverse function theorem argument in Theorem 10.3.1, we show
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that it is possible to perturb the initial data to strict DEC. Proposition 10.3.10 does not attempt to

produce harmonic asymptotics, which we get to in Theorem 10.3.7.

Proposition 10.3.10 (Perturbing to strict DEC). Let (Mn, g, π) be a complete asymptotically flat

initial data set satisfying the dominant energy condition µ ≥ |J | and with Θ(g, π) = θ. Let p > n

and n−2
2 < q < n−2 be strictly less than the decay rate of (g, π). For any ε > 0 there exist constants

δ > 0 and γ > 0 so that the following is true:

For any θ̃ ∈ C1,α(∂M) satisfying ∥θ̃ − θ∥
W

1− 1
p
,p < δ there exists an asymptotically flat initial

data set (g̃, π̃), C2,α×C1,α-regular up to the boundary, with Θ(g̃, π̃) = θ̃, that satisfies the following

“uniform” strict dominant energy condition

µ̃ > (1 + γ)|J̃ |g̃,

as well as the estimates

∥(g̃, π̃)− (g, π)∥D < ε and ∥(µ̃, J̃)− (µ, J)∥L1 < ε.

Proof. Let f be a smooth positive function on M decaying exponentially at infinity. By essentially

repeating the proof of Lemma 10.3.3, we can construct subspaces K1 ⊂ kerDB2 ∩ kerDB3 and

K2 ⊂ T(g,π)D (consisting of compactly supported smooth functions) to define an operator

P̂ : [(1, 0) +K1]×K2 → L×W 1− 1
p ,p(∂M)

((u, Y ), (h,w)) 7→ (Φ(g,π),Θ)[Ψ(g,π)(u, Y ) + (h,w)]

whose differential at ((1, 0), (0, 0)) is an isomorphism. We now proceed as in the proof of Theo-

rem 10.3.1. In particular, we use the inverse function theorem [Lee19, Theorem A.43] to solve

P̂((ut, Yt), (ht, wt)) =
(
Φ(g,π)(g, π) + (2t(f + |J |g), 0), θ̃

)
(10.3.7)

for ((ut, Yt), (ht, wt)), which is possible for sufficiently small δ > 0 and t > 0.

Arguing as in the proof of Theorem 10.3.1, we can show that (ut, Yt) decays enough so that

(g̃t, π̃t) = Ψ(g,π)(ut, Yt) + (ht, wt) is asymptotically flat, and (ut, Yt) is C
2,α up to the boundary.

We now see about the other claims in the proposition. First, we claim that (g̃t, π̃t) satisfies the

strict DEC for t small enough. By the Sobolev inequality, we may assume g̃t − g is uniformly small
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pointwise. Therefore, by Lemma 10.3.8,

µ̃t = µ+ t(f + |J |g) > µ+ t|J |g ≥ (1 + t)|J |g ≥ (1 + t)|J̃t|g̃t .

Finally, we need to show that (µ̃t, J̃t) → (µ, J) in L1. Since f + |J |g ∈ L1, it is clear from the

equation µ̃t = µ+ t(f + |J |g) that µ̃t → µ. For the momentum we have J̃ it − J i = 1
2g
ij(g̃t − g)jkJ

k,

but g̃t → g uniformly, so J̃t → J . We take γ to be the t satisfying these conditions, which completes

the proof.

Finally, we prove Theorem 10.3.7.

Proof of Theorem 10.3.7. First, perturb the data set according to Proposition 10.3.10 to ensure the

strict DEC holds in the form µ > (1+γ)|J |g everywhere onM . Call the perturbed data set (g, π) for

simplicity. Let χλ be the family of cutoff functions used in Theorem 10.3.1 and f a rapidly decaying

positive function on M . By Theorem 10.3.1, we may construct a data set (g̃λ, π̃λ) with harmonic

asymptotics satisfying

(Φ,Θ)(g̃λ, π̃λ) =
(
χλΦ(g, π) +

2
λ (f, 0), θ̃

)
if λ is large enough and δ is small enough. Note that since we can choose f to decay as rapidly as

we like, our prescribed (µ̃, J̃) will certainly lie in C0,α
−n−1−ε.

The only thing left to check is that the strict DEC is satisfied:

µ̃λ −
1

λ
f = χλµ

≥ χλ(1 + γ)|J |g

≥ χλ

(
|J |g̃λ − |g̃λ − g|

1
2
g |J |g + γ|J |g

)
= |J̃λ|g̃λ + χλ|J |g(γ − |g̃λ − g|

1
2
g ).

For λ large, |g̃λ − g|
1
2
g < γ by the estimates in Theorem 10.3.1, so we then have

µ̃λ − |J̃λ|g̃λ ≥ 1

λ
f,

which implies the strict DEC. Note that f also controls the decay of the DEC scalar µ̃λ − |J̃λ|g̃λ , as

it is identically equal to 1
λf for |x| ≥ 2λ.

If we instead wish to prescribe vacuum outside a compact set, we perform the same argument as

above but with f ≡ 0.
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10.4 Positive mass theorem with boundary

10.4.1 Proof of the inequality E ≥ |P |

In this subsection we explain how Theorem 9.2.1 follows from combining Theorem 10.3.7 with the

proof of the boundaryless case from [EHLS16]. Suppose that there exists a complete asymptotically

flat initial data set (M, g, π) satisfying the DEC, whose compact boundary is made up of components

which are either weakly outer trapped (θ+ ≤ 0) or weakly inner untrapped (θ− ≥ 0) with respect to

the normal pointing into M , such that E < |P |. By Theorem 10.3.7, we can perturb (g, π) to new

initial data (g̃, π̃) that has harmonic asymptotics, satisfies the strict DEC, and has compact boundary

made up of components that have either θ+ < 0 or θ− > 0, while maintaining the inequality Ẽ < |P̃ |.

From here the exact same argument as in [EHLS16] (after the application of the density theorem

there) results in a contradiction. The only thing to note is that the boundary acts as a barrier for

the MOTS (θ+ = 0 hypersurfaces) that are constructed in the proof. This part of the proof is also

identical to the reasoning used in [GL21]. (Note that the H’́older decay assumption on (µ, J) in

[EHLS16] is unnecessary, as can be seen from our proof and was observed in [Lee19; GL21].)

To be more precise, in [EHLS16], one seeks to construct a stable MOTS hypersurface in M with

prescribed boundary equal to a large sphere Γn−2 of constant height on a large cylinder C (with

smoothed corners). Theorem 1.1 of [Eic09] states that this is possible if one can find a compact

Ω such that Γ ⊂ ∂Ω divides ∂Ω into ∂1Ω and ∂2Ω such that θ+∂1Ω > 0 with respect to the normal

pointing out of Ω, and θ+∂2Ω < 0 with respect to the normal pointing into Ω. If M has one end

and no boundary, then we choose Ω to be the region enclosed by C, ∂1Ω to be the part of C lying

above Γ, and ∂2Ω to be the part of C lying below Γ. Harmonic asymptotics guarantee that if C

is big enough, these choices satisfy the hypotheses on θ+ needed to apply [Eic09, Theorem 1.1].

If there are multiple ends, then we choose Ω to be enclosed by C in the end of interest and large

celestial spheres in all other ends. Those celestial spheres have θ+ < 0 with respect to the normal

pointing into Ω, and hence those spheres can be included as part of ∂2Ω. Finally, we come to the

case of interest where M has a boundary. We define Ω the same way, except now we can treat any

θ+ < 0 components of ∂M as part of ∂2Ω while treating any θ− > 0 components of ∂M as part of

∂1Ω, because the condition θ− > 0 with respect to the normal pointing into M is equivalent to the

condition θ+ > 0 with respect to the normal pointing out of Ω.
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10.4.2 The equality case E = |P |

Here we explain how the arguments in [HL20] can be adapted to handle a boundary, using the results

of this chapter. Explicitly, we prove the following theorem, which constitutes the first part of the

proof of Theorem 9.2.2.

Theorem 10.4.1. Let n ≥ 3, p > n, q > n−2
2 , and 0 < α < 1, and assume that

q + α > n− 2. (10.4.1)

Suppose that (Mn, g, π) is a complete asymptotically flat initial data set with boundary (in the sense

defined in Definition 10.2.1) with the stronger decay assumption that

g − g ∈ C2,α
−q (T

∗M ⊙ T ∗M) (10.4.2)

π ∈ C1,α
−1−q(TM ⊙ TM). (10.4.3)

Then if (M, g, π) satisfies the DEC, each component of ∂M is either weakly outer trapped or weakly

inner untrapped, and its ADM energy-momentum satisfies E = |P |, then E = |P | = 0.

As explained in [HL24], in the case without boundary, the theorem is actually false without the

stronger decay assumption.

Proof. Assume that (M, g, π) satisfies the hypotheses of Theorem 10.4.1. The basic strategy is

the following: Using the first part of Theorem 9.2.1, we can see that (g, π) minimizes a “modified

Regge–Teitelboim Hamiltonian” among all nearby initial data sets that have the same values of

(Φ(g,π),Θ). By Proposition 10.3.9, (DΦ(g,π), DΘ)|(g,π) is surjective, and hence we can apply La-

grange multipliers. These Lagrange multipliers give rise to a solution (f,X) of the adjoint equations

DΦ(g,π)|∗(g,π)(f,X) = 0 such that (f,X) is asymptotic to the constant (E,−2P ). Once we have that,

a result of Beig and Chruściel [BC96] (see also [HL20, Theorem A.2]) implies that E = |P | = 0.

For the analysis that follows, select q ∈ (n−2
2 , n − 2) that is smaller than the q in statement of

Theorem Theorem 10.4.1. Let (f0, X0) be a function and a vector field on M such that (f0, X0) is

smooth, supported in the asymptotically flat coordinate chart, and exactly equal to the constant

(E,−2P ) outside some compact set, where (E,P ) denotes the fixed ADM energy-momentum of

(g, π). We define the modified Regge–Teitelboim Hamiltonian H : D → R corresponding to (g, π) by

H(γ, τ) = 2(n− 1)ωn−1 [E · E(γ, τ)− P · P (γ, τ)]−
∫
M

Φ(g,π)(γ, τ) · (f0, X0) dµg, (10.4.4)
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for all (γ, τ) ∈ D, where the volume measure dµg and the inner product in the integral are both

with respect to g. Although E(γ, τ), P (γ, τ), and the integral need not exist for elements (γ, τ) ∈ D

whose constraints are not integrable, the expression H(γ, τ) can be given meaning by using the

alternative formula:

H(γ, τ) =

∫
M

[
(divg[divg γ − d(trgγ)],divg τ)− Φ(γ, τ)−

(
0, 12γ · J

)]
· (f0, X0) dµg

+

∫
M

([divg γ − d(trgγ)], τ) · (∇f0,∇X0) dµg,

(10.4.5)

where g is a globally defined background metric that is Euclidean in the asymptotically flat end. As

in [HL20], we can compute the linearization DH|(g,π) : T(g,π)D → R to be

DH|(g,π)(h,w) = −
∫
M

(h,w) · (DΦ(g,π)|(g,π))∗(f0, X0) dµg, (10.4.6)

for all (h,w) ∈ T(g,π)D. Note that ∂M can be ignored in all of these formulae because (f0, X0)

vanishes near ∂M .

Next we define a constraint space

C(g,π) =
{
(γ, τ) ∈ D : Φ(g,π)(γ, τ) = Φ(g,π)(g, π) and Θ(γ, τ) = Θ(g, π)

}
.

By our assumptions on (g, π), each data set (γ, τ) in C(g,π) has weakly outer trapped or inner un-

trapped boundary components, and thanks to Lemma 10.3.8, it also satisfies the DEC. Moreover,

since (γ, τ) has the same modified constraints as (g, π), it also follows that its constraints are inte-

grable. Then Theorem 9.2.1 implies that if (γ, τ) is near enough to (g, π), then E(γ, τ) ≥ |P (γ, τ)|.

(We will discuss this more below. See Lemma 10.4.2.) From this, we see that (g, π) locally minimizes

H on C(g,π) since

E · E(γ, τ)− P · P (γ, τ) ≥ E · E(γ, τ)− |P ||P (γ, τ)|

= E(E(γ, τ)− |P (γ, τ)|) ≥ 0 = E · E(g, π)− P · P (g, π),

and the integral term in (10.4.4) is constant over C(g,π).

In other words, (g, π) locally minimizes H over a level set of (Φ(g,π),Θ) : D → L×W 1− 1
p ,p(∂M),

so by surjectivity of its linearization (Proposition 10.3.9), there exist Lagrange multipliers (see [HL20,
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Appendix D]) (f1, X1) ∈ L∗, and λ ∈W 1− 1
p ,p(∂M)∗ such that for all (h,w) ∈ T(g,π)D,

DH|(g,π) (h,w) =
∫
M

(f1, X1) ·DΦ(g,π)|(g,π)(h,w) dµg +
∫
∂M

λ ·DΘ|(g,π)(h,w).

Combining this with (10.4.6) and by choosing (h,w) to be arbitrary smooth test data that is com-

pactly supported away from ∂M , we see that (f1, X1) must be a solution (in the distributional sense)

of

DΦ(g,π)|∗(g,π)(f1, X1) = −DΦ(g,π)|∗(g,π)(f0, X0)

in the interior of M . As argued in the proof of Proposition 10.3.5, ellipticity of DT |(1,0) implies that

(f1, X1) is actually smooth in the interior of M . Moreover, using the initial decay from being in

L∗ together with elliptic estimates, it follows that (f1, X1) has C
2,α
−q decay. (See [HL20, Proposition

B.4] for details.) Thus (f,X)
.
= (f0, X0) + (f1, X1) solves

DΦ(g,π)|∗(g,π)(f,X) = 0

in the interior of M , and (f,X)− (E,−2P ) has C2,α
−q decay. The result now follows from Theorem

A.2 of [HL20]. Note that it does not matter what what (f,X) does near the boundary ∂M since

Theorem A.2 of [HL20] is only a statement about asymptotics and makes no global assumptions.

There is one step in the proof above that requires further justification. We claimed that elements

(γ, τ) of C(g,π) must satisfy E(γ, τ) ≤ |P (γ, τ)|, but the problem is that (γ, τ) may only have Sobolev

regularity and decay, but our positive mass theorem (Theorem 9.2.1) requires at least C2,α × C1,α

local regularity as well as pointwise decay. Although we do not have a positive mass theorem for

initial data in D with integrable constraints, we can at least prove it for data that is near the smooth

data (g, π). This is the same idea that was used in [HL20, Theorem 4.1].

Lemma 10.4.2 (Sobolev version of positive mass inequality, with boundary). Let 3 ≤ n ≤ 7,

and let (Mn, g, π) be a complete asymptotically flat manifold, as in Definition 10.2.1, satsifying

the DEC and with compact boundary such that each component is either weakly outer trapped or

weakly inner untrapped. Let p > n and let q ∈ (n−2
2 , n− 2) be smaller than the assumed asymptotic

decay rate of (g, π). Then there is an open ball U ⊂ D containing (g, π) such that if (γ, τ) ∈ U ,

Φ(g,π)(γ, τ) = Φ(g,π)(g, π), and Θ(γ, τ) = Θ(g, π), then

E(γ, τ) ≥ |P (γ, τ)|.
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Proof. The proof is essentially the same as in the proof of [HL20, Theorem 4.1], except that we use our

new results to deal with the boundary. Define K1, K2, and P̂ as in the proof of Proposition 10.3.10.

More generally, for (γ, τ) ∈ D, we define

P̂(γ,τ) : [(1, 0) +K1]×K2 → L×W 1− 1
p ,p(∂M)

((u, Y ), (h,w)) 7→ (Φ(g,π),Θ)[Ψ(γ,τ)(u, Y ) + (h,w)],

so that in particular, P̂(g,π) = P̂. Using similar reasoning as in the proof of Lemma 10.3.3, we can use

the inverse function theorem (together with estimates from Lemma 10.A.2) to see that there exists

open ball U ⊂ D containing (g, π) and constants δ > 0 and C1 > 0 with the property that for all

(γ, τ) in U , P̂(γ,τ) is a diffeomorphism between a neighborhood of ((1, 0), (0, 0)) in [(1, 0)+K1]×K2

and the ball of radius δ around P̂(γ,τ)((1, 0), (0, 0)) in L ×W 1− 1
p ,p(∂M), and

∥((u− 1, Y ), (h,w))∥K1×K2
≤ C1∥P̂(γ,τ)((u, Y ), (h,w))− P̂(γ,τ)((1, 0), (0, 0))∥L×W 1− 1

p
,p .

We claim that the conclusion of Lemma 10.4.2 holds with this choice of U . We now assume

(γ, τ) satisfies the hypotheses described in Lemma 10.4.2, that is, (γ, τ) ∈ U such that Φ(g,π)(γ, τ) =

Φ(g,π)(g, π), and Θ(γ, τ) = Θ(g, π). We want to show that E(γ, τ) ≥ |P (γ, τ)|, and we will do this

by constructing a sequence (γ̄k, τ̄k) that converges to (γ, τ), to which we can apply Theorem 9.2.1).

Select a sequence of smooth asymptotically flat initial data (γk, τk) converging to (γ, τ) in D.

This implies that

P̂(γk,τk)((1, 0), (0, 0)) =
(
Φ(g,π)(γk, τk),Θ(γk, τk)

)
→ P̂(γ,τ)((1, 0), (0, 0)) =

(
Φ(g,π)(γ, τ),Θ(γ, τ)

)
in L ×W 1− 1

p ,p.

In particular, for large enough k, (γk, τk) ∈ U and P̂(γ,τ)((1, 0), (0, 0)) lies in the δ-ball centered

around P̂(γk,τk)((1, 0), (0, 0)), and hence, by our construction of U , there exists ((uk, Yk), (hk, wk)) ∈

[(1, 0) +K1]×K2 such that

P̂(γk,τk)((uk, Yk), (hk, wk)) = P̂(γ,τ)((1, 0), (0, 0))
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and

∥((uk − 1, Yk), (hk, wk))∥K1×K2 ≤ C1∥P̂(γk,τk)((uk, Yk), (hk, wk))− P̂(γk,τk)((1, 0), (0, 0))∥L×W 1− 1
p
,p

= C1∥P̂(γ,τ)((1, 0), (0, 0))− P̂(γk,τk)((1, 0), (0, 0))∥L×W 1− 1
p
,p .

Setting (γ̄k, τ̄k)
.
= Ψ(γk,τk)(uk, Yk) + (hk, wk), the inequality above shows that (γ̄k, τ̄k) converges to

(γ, τ) in D. Note that

(Φ(g,π),Θ)(γ̄k, τ̄k) = P̂(γ,τ)((1, 0), (0, 0)) = (Φ(g,π),Θ)(γ, τ) = (Φ(g,π),Θ)(g, π),

and thus, unlike the arbitrary smoothing (γk, τk), (γ̄k, τ̄k) satisfies the DEC (by Lemma 10.3.8) and

has weakly outer trapped or inner untrapped boundary components. Moreover, by the same regu-

larity argument used in the proof of Theorem 10.3.1, (γ̄k, τ̄k) is smooth enough and decays enough

so that the positive mass inequality (Theorem 9.2.1) applies to (γ̄k, τ̄k), and hence E(γ̄k, τ̄k) ≥

|P (γ̄k, τ̄k)|. Finally, we take the limit as k → ∞ and use continuity of ADM energy-momentum [Lee19,

Lemma 8.4] to conclude that E(γ, τ) ≥ |P (γ, τ)|. (Note that (γ̄k, τ̄k) has the same modified con-

straints as (γ, τ), and thus the constraints of (γ̄k, τ̄k) converge to the constraints of (γ, τ) in L1.)

10.4.3 Embedding in Minkowski space when E = 0

In this section, we use the Jang reduction method to show that if ∂M ̸= ∅, then E > 0. Combined

with Theorem 9.2.1 and Theorem 10.4.1, this implies Theorem 9.2.2. We recall that a function f

defined on an open set U in an initial data set (M, g, k) solves Jang’s equation [Jan78; SY81a] if

Hg(f)− trg(k)(f) = 0, (10.4.7)

where

Hg(f) = divg

(
∇f√

1 + |∇f |2

)

is the mean curvature of the graph of f in the cylinder over (M, g) and

trg(k)(f) = trg k −
k(∇f,∇f)
1 + |∇f |2

is the trace of k (extended trivially in the vertical direction) over the tangent spaces of the graph of

f .
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Jang’s equation (10.4.7) is a quasilinear elliptic equation for f , but the presence of the lower

order term trg k precludes the use of the maximum principle to obtain a supremum estimate for

f .3 The lack of such an a priori estimate is an obstacle for proving solutions of Jang’s equation

exist. Schoen and Yau [SY81a] overcame this by instead considering the capillary regularized Jang’s

equation

Hg(fτ )− trg(k)(fτ ) = τfτ , (10.4.8)

where τ is a positive real parameter which we want to send to zero.

The maximum principle now yields ∥fτ∥L∞ ≲ τ−1, which is singular but suffices to show that

the solutions fτ exist globally. It follows that any global nonparametric estimates (in the sense of

minimal graphs) will grow like τ−1 as τ → 0. However, crucially, in the asymptotically flat setting

fτ (x) is bounded and even decays, uniformly in τ , for |x| sufficiently large in the asymptotically

flat region [Eic13, Proposition 5]. To study the convergence of the fτ ’s in the “core,” Schoen and

Yau considered parametric estimates, i.e. geometric estimates for the graphs of fτ . In fact, these

graphs are C-minimizing for some constant C independent of τ (for this definition we refer to [DS93;

Eic09]). For such hypersurfaces the compactness and regularity theory is essentially the same as for

area minimizing hypersurfaces. It follows that the graphs of fτ converge smoothly as hypersurfaces

in M × R as τ → 0. The components of the limit are either graphs of solutions to Jang’s equation

(10.4.7) or cylinders over MOTS or MITS in the data set (M, g, k).4 Since |fτ (x)| ≲ 1 for |x| ≳ 1, the

limiting hypersurface contains a graphical component, defined over some set U which must contain

a neighborhood of infinity. It is precisely this exterior graphical component that is studied in the

works [SY81a; Eic13]. These basic properties of Jang’s equation are summarized neatly in [Eic13,

Proposition 7].

We can now describe our modification of Eichmair’s argument in the boundary case.

Theorem 10.4.3. Let 3 ≤ n ≤ 7, and let (Mn, g, k) be a complete asymptotically flat initial data

set with nonempty compact boundary ∂M such that the dominant energy condition holds on M and

each component of ∂M is either weakly outer trapped or weakly inner untrapped. In the case n = 3,

we also assume that trg k = O(|x|−γ) for some γ > 2. Then E > 0.

Proof. Let (M, g, k) be as described in the hypotheses. By our DEC density theorem, Theorem

Theorem 10.3.7, there exists a sequence of initial data (gj , kj) → (g, k) on M with harmonic asymp-

totics, satisfying the strict dominant energy condition, θ+j < 0 on ∂+M , θ−j > 0 on ∂−M , and

3In the case when trg k has a good sign, see [Met10, Theorem 3.4].
4The graphical components tend to ±∞ on approach to these cylinders. We say that the Jang graph “blows up”

over the MOTS or MITS.
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| trgj kj | ≤ C|x|−γ uniformly in j when n = 3.5

The strict sign for θ± on ∂M relative to (gj , kj) allows ∂M to act as a barrier for the capillary

regularized Jang equation

Hgj (fτ )− trgj (kj)(fτ ) = τfτ

as in [AM09, Proposition 3.5]. On the asymptotically flat end of M , we prescribe fτ → 0 and

proceed to solve as in [SY81a; AM09; Eic13]. We also obtain the usual parametric and nonparametric

estimates associated to Jang’s equation. Letting τ → 0, we obtain open sets Uj ⊂ M , as described

above, containing {|x| ≥ R0} for some large R0, equipped with a function fj ∈ C3,α
−n+2+η(Uj) for any

fixed η > 0 which solves Jang’s equation and satisfies the properties proved in [Eic13, Proposition

7], with the same proof. The barrier property of ∂M implies that fj is unbounded. In particular, fj

must blow up over some nonempty union of closed MOTS and MITS enclosing ∂M . More specifically,

the graph of fj must have at least one end that is asymptotic to a cylinder [Eic13, Proposition 7

(c)].

Claim 10.4.4. After passing to a subsequence, the graphs of fj converge in C3,α
loc to the graph of a

Jang solution f : U → R, which blows up over some nonempty union of closed MOTS and MITS in

(M, g, k). With its induced metric, the graph of f is asymptotically flat with a nonzero number of

ends that are asymptotically cylindrical.

The main nontrivial claim here is that the property of having an asymptotically cylindrical end

persists in the limit. By the Harnack inequality for Jang’s equation, it suffices to show that the

limiting function f is unbounded. The only thing we must rule out is cylindrical ends collapsing

into the boundary ∂M . To do this, we extend the manifold M to a slightly larger manifold M̃

so that ∂M lies in the interior of M . We extend each metric gj (including g) to M̃ so that on

every compact set, ∥gj − g∥C2,α → 0. Then we apply the compactness and regularity theory for

C-minimizing graphs on the extended manifold. The Jang graphs no longer approach the boundary,

so the cylindrical ends cannot disappear in the limit. The claims about the blow-up locus being a

collection of MOTS/MITS in (M, g, k) and the graph being asymptotically flat follow easily from

[Eic13, Proposition 7]. This proves Claim 10.4.4.

We assume now that E = 0 and work to obtain a contradiction. It follows that Ej → 0, and

arguing as in [Eic13, Proposition 16], we see that the graph of f , which we denote by Σ, is scalar-flat

and has zero mass. (This part of the argument is highly nontrivial but is agnostic to the presence

5The n = 3 claim follows from observing that the only term appearing in trgj kj (when written in terms of g, k,
λ, and the deformations u, Y h,w) that is not directly controlled is the trg k term, which is controlled by assumption.
See [Eic13, Proposition 15].
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of the boundary ∂M ; it only relies on the conclusion of Claim 10.4.4.) Now (Σ, gΣ), viewed as a

time-symmetric initial data set, must be diffeomorphic to Rn. This can be viewed as an extension

of the rigidity of the Riemannian positive mass theorem to manifolds with cylindrical ends. The

argument is outlined in [Eic13], but is a special case of the more recent positive mass theorem with

arbitrary ends [LUY21; LLU23]. One first shows that Σ is Ricci-flat and then has only one end

by the Cheeger–Gromoll splitting theorem. However, Σ having only one end is in contradiction to

Claim 10.4.4.

10.A Second differential of the constraint-null expansion sys-

tem

In this chapter, we utilize the inverse function theorem to perturb families of initial data sets. To

this end, we need to control the constants appearing in the following “quantitative” version of the

inverse function theorem (see [Lee19, Theorem A.43]).

Theorem 10.A.1. Let X and Y be Banach spaces, x0 ∈ X, and r0 > 0. Suppose that F : Br0(x0) →

Y is C1 and that DF is Lipschitz in this ball with constant CL. Assume that DF |x0
is invertible

with inverse bounded in operator norm by CI . Then F−1 is defined on Br∗(y0), where y0 = F (x0)

and r∗ is explicitly determined by r0, CL, and CI . Finally, F−1(Br∗(y0)) ⊂ Br1(x0), where again

r1 is explicitly calculable in terms of r0, CL, and CI .

The estimates we require are as follows:

Lemma 10.A.2. Let (Mn, g, π) be an asymptotically flat data set as in Section 10.2.1. Let K1 ⊂

T(1,0)C be a closed subspace and K2 ⊂ T(g,π)D be a finite-dimensional subspace. There exists a

constant C0 such that for any r0 > 0 sufficiently small, the following is true.

Let (γ, τ) ∈ D with ∥(γ, τ)− (g, π)∥D ≤ r0 and define

P̂(γ,τ) : [(1, 0) +K1]×K2 → L×W 1− 1
p ,p(∂M)

((u, Y ), (h,w)) 7→ (Φ,Θ)[Ψ(γ,τ)(u, Y ) + (h,w)].

Then

∥DP̂(γ,τ)|((1,0),(0,0)) −DP̂(g,π)|((1,0),(0,0))∥
L(K1×K2,L×W 1− 1

p
,p
)
≤ C0r0 (10.A.1)
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and

∥D2P̂(γ,τ)|((u,Y ),(h,w))∥
L2(K1×K2,L×W 1− 1

p
,p
)
≤ C0 (10.A.2)

for any ((u, Y ), (h,w)) ∈ Br0((1, 0), (0, 0)).

This lemma also holds if in the definition of the map P̂, we use the modified constraint operator

Φ(g,π) instead of Φ.

Here L2(X,Y ) refers to the space of bounded multilinear mapsX×X → Y . Note that a Lipschitz

bound for DP̂(γ,τ) follows from the Hessian bound by the mean value theorem in Banach spaces.

The proof proceeds with a computation of DΦ, D2Φ, DΘ, and D2Θ.

Lemma 10.A.3. The first derivative (linearization) of the constraint operator is given by

DΦ|(g,π)(h,w) =
(
−∆g(trg h) + divg(divg h)− ⟨Ricg, h⟩g + 2

n−1 (trg π)
(
πijhij + trg w

)
(10.A.3)

− 2gklπ
ikπjlhij − 2⟨π,w⟩g,

(divg w)
i − 1

2g
ijπkl∇jhkl + gijπkl∇khjl +

1
2π

ij∇j(trg h)

)

Schematically, the second derivative is given by

D2Φ|(g,π)((h1, w1), (h2, w2)) =

( ∑
0≤i1+i2≤2

∇i1h1 ∗ ∇i2h2 +Riem ∗ h1 ∗ h2 (10.A.4)

+ π ∗ π ∗ h1 ∗ h2 + w1 ∗ w2 + π ∗ h1 ∗ w2 + π ∗ h2 ∗ w1,

w1 ∗ ∇h2 + w2 ∗ ∇h1 + π ∗ h1 ∗ ∇h2 + π ∗ ∇h1 ∗ h2
)
.

Here we use the usual schematic notation where A ∗B denotes linear combinations and contractions

of the components of A and B with respect to the metric g.

The schematic notation misses factors of g and g−1 but these are pointwise bounded by Morrey’s

inequality. In the following calculation, we use the shorthand δgF = DF |g(h).

Proof. The formula for DΦ is well known in the literature [FM73]. It depends on the linearization

of the scalar curvature, which can be found in [Lee19], for instance. To obtain the formula for D2Φ,

we simply differentiate (10.A.3), making note of the following rules:

• δg∇T = ∇h2 ∗ T +∇δgT for any tensor T , and

• contractions produce terms of h2 ∗ what was being contracted.
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Finally, we also note that the variation of the Ricci tensor is given by

−2δgRij = ∆Lh2 ij +∇i∇j trg h2 −∇i(divg h2)j −∇j(divg h2)i,

where ∆L is the Lichnerowicz Laplacian. In our schematic notation, this becomes

δgRic = ∇2h2 +Riem ∗ h2.

The variation in π is much more straightforward and (10.A.4) is easily obtained along these lines.

Lemma 10.A.4. The first derivative of the boundary null expansion is given by

DΘ|(g,π)(h,w) = 1
2 tr∂M (∇νh)− div∂M ω − 1

2h(ν, ν)H − h(ν, ν)π(ν♭, ν♭)− w(ν♭, ν♭), (10.A.5)

where ωi = hijν
j−h(ν, ν)νi and ν♭ denotes the 1-form dual to ν. Schematically, the second derivative

is given by

D2Θ|(g,π)((h1, w1), (h2, w2)) =
∑

0≤i1+i2≤1

∇i1h1 ∗ ∇i2h2 + h1 ∗ w2 + h2 ∗ w1 + w1 ∗ w2, (10.A.6)

where schematic notation here is omitting terms like ν and H.

Proof. We first compute the linearization of the normal. Varying g(ν, ν) = 1 gives

h(ν, ν) + 2g(ν, δgν) = 0,

while varying g(X, ν) = 0 for X ∈ TΣ gives

h(X, ν) + g(X, δgν) = 0.

It follows that

δgν
i = −hijνj + 1

2h(ν, ν)ν
i. (10.A.7)

Secondly, we compute the linearization of the second fundamental form. For X and Y tangent

to Σ, we have

A(X,Y ) = −g(ν,∇XY ) = −gijνiXk∇kY
j .
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Taking the variation, we have

δgA(X,Y ) = −hijνiXk∇kY
j − gij

(
−hilνl + 1

2h(ν, ν)ν
i
)
Xk∇kY

j − gijν
iXkδg(∇kY

j)

= 1
2h(ν, ν)

(
−gijνiXk∇kY

j
)
− gijν

iXkδg(∇kY
j)

= 1
2h(ν, ν)A(X,Y )− 1

2gijν
igjm (∇khlm +∇lhkm −∇mhkl)X

kY l

= 1
2 (h(ν, ν)Akl − νm∇khlm − νm∇lhkm + νm∇mhkl)X

kY l.

Now

νm∇khlm = ∇kωl + h(ν, ν)Akl − hlnAk
n,

so that finally

δgA(X,Y ) = 1
2 (∇νhij −∇∂M

i ωj −∇∂M
j ωi + hikAj

k + hjkAi
k − h(ν, ν)Aij)X

iY j . (10.A.8)

The mean curvature of the boundary is given by

H = tr∂M A = (gij − νiνj)Aij ,

so taking the variation and using (10.A.8) yields

δgH = 1
2 tr∂M (∇νh)− div∂M ω − 1

2h(ν, ν)H. (10.A.9)

The formula for DΘ follows easily, where also note that

δgν
♭ = 1

2h(ν, ν)ν
♭.

The schematic computation for D2Θ also follows easily using the rules establised in the proof of

Lemma 10.A.3.

From these formulas, we deduce:

Lemma 10.A.5. There exists a constant C0 such that for any sufficiently small r0 > 0 the following

is true. If (γ, τ) ∈ D satisfies ∥(γ, τ)− (g, π)∥D ≤ r0, then

∥D(Φ,Θ)|(γ,τ) −D(Φ,Θ)|(g,π)∥ ≤ C0r0 (10.A.10)
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and

∥D2(Φ,Θ)|(g,π)∥ ≤ C0. (10.A.11)

Proof. We first remark that the constants appearing in the Sobolev, Morrey, and trace inequalities

associated to the metric γ can be bounded in terms of r0. The first estimate (10.A.10) can be read

off from the explicit formulas (10.A.3) and (10.A.5). For example, consider

gij∂i∂j(g
klhkl)− γij∂i∂j(γ

klhkl).

We rewrite this as

(gij − γij)∂i∂j(γ
klhkl) + gij∂i∂j((g

kl − γkl)hkl)

and from this it is not hard to see that the Lp−q norm can be estimated by ≲ r0∥h∥W 2,p
−q

.

To prove the estimate (10.A.11), we examine the bilinear structure of the schematic formulas

(10.A.4) and (10.A.6). For D2Φ, we put the highest number of derivatives in Lp−q and the lowest

number of derivatives in L∞ using Morrey’s inequality. Special care must be taken with the Riem ∗

h1 ∗h2 term, as the curvature is not assumed to be pointwise bounded. However, it is in Lp−q, so we

just put h1 and h2 in L∞. Altogether, we obtain the estimate

∥D2Φ|(γ,τ)((h1, w1), (h2, w2))∥L ≲ ∥(h1, w1)∥W 2,p
−q ×W 1,p

−q−1
∥(h2, w2)∥W 2,p

−q ×W 1,p
−q−1

.

For D2Θ, we estimate each of the terms appearing in (10.A.6) in W 1− 1
p ,p(∂Ω). Terms with deriva-

tives are handled using Lemma 10.2.4 instead of Morrey’s inequality. Note that our schematic

notation omits the normal νg and mean curvature Hg, however both of these are pointwise bounded

in terms of γ. Therefore, we obtain the estimate

∥D2Θ|(γ,τ)∥
W

1− 1
p
,p ≲ ∥(h1, w1)∥W 2,p

−q ×W 1,p
−q−1

∥(h2, w2)∥W 2,p
−q ×W 1,p

−q−1
,

as desired.

We can now prove the main result of this appendix, Lemma 10.A.2.

Proof of Lemma 10.A.2. We first define a function

Ψ̂(γ,τ) : [(1, 0) +K1]×K2 → D

((u, Y ), (h,w)) 7→ Ψ(γ,τ)(u, Y ) + (h,w),
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so that

P̂(γ,τ) = (Φ,Θ) ◦ Ψ̂(γ,τ).

By the chain rule for functions on Banach spaces,

DP̂(γ,τ)((v1, Z1), (h1, w1)) = D(Φ,Θ) ◦DΨ̂(γ,τ)((v1, Z1), (h1, w1)). (10.A.12)

The second derivative is given by

D2P̂(γ,τ)

(
((v1, Z1), (h1, w1)), ((v2, Z2), (h2, w2))

)
=

D2(Θ,Φ)
(
DΨ̂(γ,τ)((v1, Z1), (h1, w1)), DΨ̂(γ,τ)((v2, Z2), (h2, w2))

)
+D(Θ,Φ) ◦D2Ψ̂(γ,τ)

(
((v1, Z1), (h1, w1)), ((v2, Z2), (h2, w2))

)
. (10.A.13)

The derivatives of Ψ̂(γ,τ) are given by

DΨ̂(γ,τ)((v1, Z1), (h1, w1)) = (sus−1v1γ + h1,− 3
2su

− 3
2 s−1v(τ +LγY ) + u−

3
2 sLγZ1 +w1) (10.A.14)

and

D2Ψ̂(γ,τ)

(
((v1, Z1), (h1, w1)), ((v2, Z2), (h2, w2))

)
= (s(s− 1)us−2v1v2,

3
2s(

3
2s+ 1)u−

3
2 s−2v1v2(τ + LγY )− 3

2su
− 3

2 s−1v2LγZ1 − 3
2su

− 3
2 s−1v1LγZ2). (10.A.15)

In these formulas, the differentials are being evaluated at ((u, Y ), (h,w)) or Ψ̂(γ,τ)((u, Y ), (h,w)),

wherever appropriate.

To prove (10.A.1), we use (10.A.12) for (γ, τ) and (g, π) at ((1, 0), (0, 0)), which yields

DP̂(γ,τ) −DP̂(g,π) = D(Φ,Θ)|(γ,τ)(DΨ̂(γ,τ) −DΨ̂(g,π)) + (D(Φ,Θ)|(γ,τ) −D(Φ,Θ)|(g,π))DΨ̂(g,π).

For (γ, τ) sufficiently close to (g, π), we may evidently estimate both of these terms (in operator

norm) using (10.A.14) and the estimate (10.A.10).
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To prove (10.A.2), we note that (10.A.13) implies

∥D2P̂(γ,τ)|((u,Y ),(h,w))∥ ≤
∥∥∥D2(Θ,Φ)|Ψ̂(γ,τ)((u,Y ),(h,w))

∥∥∥ · ∥∥∥DΨ̂(γ,τ)|((u,Y ),(h,w))

∥∥∥2
+
∥∥∥D(Θ,Φ)|Ψ̂(γ,τ)((u,Y ),(h,w))

∥∥∥ · ∥∥∥D2Ψ̂(γ,τ)|((u,Y ),(h,w))

∥∥∥ .
For ((u, Y ), (h,w)) small, Ψ̂(γ,τ)((u, Y ), (h,w)) is close to (g, π) in D, so we may apply (10.A.10)

and (10.A.11). Furthermore, the same estimates may be derived for DΨ̂ and D2Ψ̂ from (10.A.14)

and (10.A.15). This completes the proof of (10.A.2).
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Chapter 11

The positive mass theorem with

arbitrary ends

11.1 The density theorem

The proofs of the theorems described in Section 9.3 rest on the following density theorem, which

sharpens and generalizes previous results in this direction [SY81b; LP87; Kuw90].

Theorem 11.1.1. Let (Mn, g), n ≥ 3, be a Riemannian manifold, not assumed to be complete,

with an asymptotically flat end E of Sobolev type (p, q), where p > n and q > n−2
2 . For any ε > 0,

n−2
2 < q′ < q, and any compact set K ⊂ M , there exists another asymptotically flat metric g̃ of

Sobolev type (p, q′) on M with the following properties:

1. g̃ is harmonically flat outside a bounded set in E, that is, g̃ = u
4

n−2 g, where g is the Euclidean

metric on E, and u is a g-harmonic function with expansion

u(x) = 1 +
A

|x|n−2
+O∞(|x|−n−1),

2. The ADM mass of g̃ is 2A and we have

∥g̃ − g∥W 2,p

−q′ (K∪E) + ∥Rg̃ −Rg∥L1(K∪E) + |2A−mADM(E , g)| < ε,

3. supK |Rg̃ −Rg| < ε,

4. If Rg(x) ≥ 0 at a point x, then Rg̃(x) ≥ 0, and
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5. The metrics g and g̃ are ε-close as bilinear forms everywhere on M :

(1− ε)g ≤ g̃ ≤ (1 + ε)g.

Remark 11.1.2. It will be clear from the proof of the density theorem that we can also accommodate

the case when M additionally has compact boundary components.

11.2 Asymptotic analysis in the presence of arbitrary ends

We begin this section with a precise statement of our definitions, which are slightly different than

the usual ones because we allow for incompleteness and arbitrary ends.

Definition 11.2.1. Let (X, d) be a metric space and (X, d) be its completion. For example, X can

be constructed by taking appropriate equivalence classes of Cauchy sequences. A point in X \X is

called a called a point of incompleteness for X. A set S ⊂ X is said to be complete if its closure in

X remains closed under the inclusion X → X.

Definition 11.2.2. Let Mn be a noncompact manifold with a distinguished end E . We say that

(M, g) possesses a structure of infinity along E if E possesses no points of incompleteness and there

exists a diffeomorphism

Φ : E → Rn \Br0 (11.2.1)

for some positive number r0 and the coordinate norm |x| diverges as we go out along the end. The

set M̊ =M \E is called the core. Note that in our definition, the core is not assumed to be compact

and (M, g) is not assumed to be complete. We will often identify E with the set {|x| ≥ r0}. The

coordinates xi induce a natural flat metric on E , which we extend arbitrarily to a complete metric

on all of M and denote by g.

We also allow for M to have a boundary, but of course require ∂M to not intersect E .

Definition 11.2.3. Let (Mn, g), E , and Φ be as in the previous definition. Let N be a closed subset

ofM which contains E and such that N \E is compact. (For example, we might take N = E .) Given

k ∈ N, p ≥ 1, and s ∈ R, we define the weighted Sobolev space W k,p
s (N) to be the space of functions

u ∈W k,p
loc (N) with finite norm

∥u∥Wk,p
s (N) = ∥u∥Wk,p(N\E) +

k∑
i=0

∥∂iu∥Lp
s−i(E),
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where the weighted Lp norm is defined by

∥u∥Lp
s(E) =

(∫
E
||x|−su|p dx

|x|n

) 1
p

.

Note that rs /∈ Lps but rs−δ ∈ Lps for any δ > 0. Note also that Lps′ ⊂ Lps if s′ ≥ s. We also remark

that in our definition, the weighted spaces are to be constructed relative to the reference metric g

and do not reference the (later) geometric metric g at all. This is because g will be changing at some

points in the proof and we do not wish to have the norm changing as well. (This is only a minor

point.)

Definition 11.2.4. Let (Mn, g) be a noncompact smooth Riemannian manifold possessing a struc-

ture of infinity Φ along E . Let p > n and q > n−2
2 . We say that E is asymptotically flat (AF) of

Sobolev type (p, q) if in the coordinates xi defined by Φ,

gij − δij ∈W 2,p
−q (E).

Furthermore, we assume that the scalar curvature of g, Rg, lies in L1(E). A (p, q) Sobolev asymp-

totically flat metric is also (p, q′) Sobolev asymptotically flat for any q′ < q.

The ADM mass of E is defined by

mADM(E , g) = lim
r→∞

1

2(n− 1)ωn−1

∫
|x|=r

(gij,i − gii,j)
xj

|x|
dµSr,g. (11.2.2)

The condition Rg ∈ L1(E) guarantees that this is well-defined.

Remark 11.2.5. Our definition of asymptotically flat is the weakest “standard” definition used in

the positive mass literature. A stronger condition would be asymptotically flat with pointwise decay

q, that is,

gij(x) = δij +O2(|x|−q).

This will be of Sobolev type (p, q) for any p > n and q′ < q. Yet another definition would be with

weighted Hölder spaces.

One reason to consider Sobolev decay is that Jang graphs in asymptotically flat initial data sets

with pointwise decay are only Sobolev asymptotically flat [Eic13, Proposition 7].

Since p > n, the weighed Morrey inequality implies gij − δij ∈ C1,α
−q for some α ∈ (0, 1). We
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define the pointwise decay constant Cg <∞ of g by

Cg
.
=
∑
ijk

sup
x∈E

(
|x|q|gij − δij |+ |x|q+1|∂kgij |

)
. (11.2.3)

The following lemma is standard, cf. [Lee19, Lemma 3.35].

Lemma 11.2.6. Suppose that gi is a sequence of (p, q) Sobolev asymptotically flat metrics converging

in W 2,p
−q (N) for N as in Definition Definition 11.2.3. Assume that Rgi → Rg in L1(E). Then

mADM(E , gi) → mADM(E , g).

This motivates the following definition of closeness of asymptotically flat metrics.

Definition 11.2.7. Given ε > 0, we say that two (p, q) Sobolev asymptotically flat metrics g1 and

g2 on M are ε-close in the asymptotic topology if the following inequalities are satisfied:

(i) ∥g1 − g2∥W 2,p
−q (E) < ε,

(ii) ∥Rg1 −Rg2∥L1(E) < ε,

(iii) |mADM(E , g1)−mADM(E , g2)| < ε,

(iv) (1− ε)g1 ≤ g2 ≤ (1 + ε)g1 as bilinear forms, globally.

To begin our construction, we define a distinguished function ρ on M .

Lemma 11.2.8. Let (M, g, E) be asymptotically flat, not assumed to be complete. There exists a

C∞ proper function ρ : M → (0,∞) which equals |x| on E and for every sequence {pi} ⊂ M \ E

which eventually leaves every compact set, ρ(pi) → 0. We may additionally suppose that ρ < r0 on

M \ E.

Proof. By a partition of unity argument, there exists a function σ : M → [1,∞) such that σ → ∞

outside of every compact set. We then interpolate between σ−1 and |x| near |x| = r0 to obtain the

desired function ρ.

We use ρ to construct a “compact” exhaustion of the core which avoids incomplete points: For

σ > 0, let Mσ = {ρ ≥ σ}. For σ a regular value of ρ, ∂Mσ is a smooth hypersurface. Then Mσ is

an asymptotically flat manifold with boundary and containing no incomplete points.

The analytical content of this section is to construct solutions to certain Schrödinger equations

on Mσ and let σ → 0. This is only possible because the potentials will vanish identically away from
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Mσ0
for some fixed σ0 > 0. We will need precise a priori estimates and so work very carefully and

keep track of the constants. First, we note a standard Euclidean-type Sobolev inequality on Mσ.

Lemma 11.2.9 (Sobolev inequality for Mσ). Let (Mn, g, E) be a fixed asymptotically flat manifold,

and define Mσ as above. Let Λ > 0 be a fixed constant, and assume that g is another metric on M

such that Λ−1g ≤ g ≤ Λg. Then for all σ > 0, there exists a constant Cσ depending only on σ and

Λ, such that if u :Mσ → R is a C1 function for which du ∈ L2(Mσ), then u ∈ L
2n

n−2 (Mσ) and

(∫
Mσ

|u|
2n

n−2 dµg

)n−2
n

≤ Cσ

∫
Mσ

|du|2g dµg. (11.2.4)

Proof. For a fixed metric g, this was proved in [SY79a], and then it is clear that one can switch from

g to g simply by multiplying Cσ by a power of the uniform bound Λ.

Remark 11.2.10. It is crucial for the method here that this Sobolev inequality holds without a

“boundary condition” for u on ∂Mσ. Indeed, imposing u→ 0 along E acts like a boundary condition.

We also require a scale-broken weighted elliptic estimate on Mσ.

Lemma 11.2.11. Let (Mn, g, E) be an asymptotically flat manifold of Sobolev type (p, q) and 0 <

δ < σ0. Then there exists a constant C, depending only on n, p, q, δ, and the C1,α
−q (Mσ0/2) norm of

g − g, such that for any u ∈W 2,p
−q (Mσ0),

∥u∥W 2,p
−q (Mσ0

) ≤ C

(
∥∆gu∥Lp

−q−2(Mσ0−δ) + ∥u∥
L

2n
n−2 (Mσ0−δ)

)
. (11.2.5)

We emphasize that this is an “interior-type” estimate since Mσ0
⊂ Mσ0−δ. We also take this

opportunity to define a cutoff function that will be used later as well. Let χ(|x|) be a radial cutoff

in Rn which is one on the ball B1 and zero outside the ball B2. For λ ≥ r0 we define χλ on M by

setting it equal to χ(|x|/λ) on E and extending to the rest of the manifold by one.

Proof of Lemma 11.2.11. Let λ ≥ r0 and set u0 = χλu, u1 = (1− χλ)u, so that u = u0 + u1. Then

u1 ∈W 2,p
−q (Rn), so we have the sharp estimate [McO79, Theorem 0]

∥u1∥W 2,p
−q (Rn) ≤ C∥∆gu1∥Lp

−q−2(Rn).
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Since ∆g −∆g is the zero operator for |x| ≤ λ, we then have

∥∆gu1∥Lp
−q−2(Rn) ≤ ∥(∆g −∆g)u1∥Lp

−q−2(Rn) + ∥∆gu1∥Lp
−q−2(Rn)

≤ Cλ−q∥u1∥W 2,p
−q (Rn) + ∥∆gu1∥Lp

−q−2(Rn).

Choosing λ large enough (depending only on the quantities listed in the statement of the lemma),

we have

∥u1∥W 2,p
−q (Rn) ≤ C∥∆gu1∥Lp

−q−2(Rn).

Inserting the definition of u1 into the right-hand side and carrying out the differentiations, we obtain

error terms over the fixed compact set K = spt∇χλ. Lower order terms are moved to the left-hand

side by interpolation, leaving us with

∥u1∥W 2,p
−q (Rn) ≤ C

(
∥∆gu∥Lp

−q−2(M) + ∥u∥Lp(K)

)
.

If p ≤ 2n
n−2 (only possible when n = 3 since p > n), we use Hölder’s inequality to estimate ∥u∥Lp(K) ≤

C∥u∥
L

2n
n−2 (K)

. If p > 2n
n−2 , we trivially estimate ∥u∥Lp(K) ≤ C∥u∥L∞ and use the De Giorgi–Nash–

Moser theorem to estimate

∥u∥L∞(K) ≤ C

(
∥∆gu∥Lp(K′) + ∥u∥

L
2n

n−2 (K′)

)
,

where K ′ is a slightly larger compact set containing K. The unweighted Lp norm on the right-hand

side can be absorbed into a weighted Lp norm. Altogether, we have proved

∥u1∥W 2,p
−q (Rn) ≤ C

(
∥∆gu∥Lp

−q−2(M) + ∥u∥
L

2n
n−2 (K)

)
. (11.2.6)

The estimate

∥u0∥W 2,p
−q (Mσ0 )

≤ C

(
∥∆gu∥Lp

−q−2(M) + ∥u∥
L

2n
n−2 (Mσ0−δ)

)
. (11.2.7)

for u0 is much simpler since it vanishes on E . It may be achieved by applying the Lp theory for

elliptic equations on the compact set Mσ0−δ \ {|x| ≥ λ}. Combining (11.2.6) and (11.2.7) gives

(11.2.5), as desired.

The following is the main result of this section and can be compared to [SY79a, Lemma 3.2].
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Proposition 11.2.12. Let (Mn, g, E) be a (p, q) asymptotically flat manifold with p > n, q > n−2
2 ,

and σ0 > 0. Let V be a smooth function on M , and let V − denote its negative part. Assume that

spt(V ) ⊂ Mσ0
and ∥V −∥

L
n
2 (Mσ0 )

< C−1
σ0

, where Cσ0
is a constant as in Lemma 11.2.9 that works

for this specific g). Then the Neumann problem

(−∆g + V, νg|∂Mσ ) :W
2,p
−q (Mσ) → Lp−q−2(Mσ)×W 2− 1

p ,p(∂Mσ)

is an isomorphism for any σ ∈ (0, σ0) a regular value of ρ.

There exist constants ε0 > 0 and C, depending only on n, p, q, and the C1,α
−q (Mσ0/2) norm of g−g,

such that if σ ∈ (0, σ0

2 ), f ∈ Lp−q−2(Mσ0
) ∩ L

2n
n+2 (Mσ0

) is also supported in Mσ0
, ∥V −∥

L
n
2 (Mσ0

)
+

∥V ∥Lp
−q−2(Mσ0 )

< ε0, and u ∈W 2,p
−q (Mσ) solves

−∆gu+ V u = f in Mσ (11.2.8)

νg(u) = 0 on ∂Mσ, (11.2.9)

then

sup
Mσ

|u|+ ∥u∥W 2,p
−q (Mσ0

) ≤ C

(
∥f∥Lp

−q−2(Mσ0 )
+ ∥f∥

L
2n

n+2 (Mσ0
)

)
. (11.2.10)

In practice, we will only apply this lemma in the situation where f = −V .

Remark 11.2.13. To get a sense for how we will use this proposition to prove the density theorem,

see the beginning of Section 11.3. Our basic observation is that the equations to be solved have

“small” potentials which are identically zero away from E . (See (11.3.1) below.) The control over

supMσ
|u|, rather than simply supMσ0

|u| in Proposition 11.2.12 comes from the maximum principle.

This addresses the essential issue of completeness because we can make this as small as we like.

Eichmair used a similar observation to prove a version of the positive mass theorem for manifolds

with cylindrical ends [Eic13].

Proof of Proposition 11.2.12. Since the problem is self-adjoint, we only need to show that the oper-

ator has no kernel. Suppose w ∈W 2,p
−q (Mσ) satisfies

−∆gw + V w = 0 in Mσ

νg(w) = 0 on ∂Mσ.

Invoking Lemma 11.2.9 and then integrating by parts (which we justify in Lemma 11.2.14 below),
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we have

(∫
Mσ0

|w|
2n

n−2 dµg

)n−2
n

≤ Cσ0

∫
Mσ

|dw|2g dµg

= Cσ0

∫
Mσ

−(∆gw)w dµg

= Cσ0

∫
Mσ

−V w2 dµg

≤ Cσ0

∫
Mσ0

V −w2 dµg

≤ Cσ0

(∫
Mσ0

|V −|n2 dµg

) 2
n
(∫

Mσ0

w
2n

n−2 dµg

)n−2
n

.

Our hypothesis that ∥V −∥
L

n
2 (Mσ0

)
< C−1

σ0
implies that w vanishes on Mσ0

. But w is harmonic on a

neighborhood of Mσ \Mσ0 in Mσ, so it must vanish on all of Mσ.

Now suppose u satisfies (11.2.8) and (11.2.9). To prove (11.2.10), we first note that since u is

harmonic on Mσ \Mσ0
and satisfies a Neumann condition on ∂Mσ, the Hopf lemma implies

sup
Mσ

|u| = sup
Mσ0

|u|,

and by the weighted Morrey inequality,

sup
Mσ0

|u| ≤ C∥u∥W 1,p
−q (Mσ0

) ≤ C∥u∥W 2,p
−q (Mσ0

),

where C depends only on σ0. We now apply the interior estimate (11.2.5) with δ = σ0/2 and note

that f and V are supported in Mσ0
to obtain

sup
Mσ

|u|+ ∥u∥W 2,p
−q (Mσ0

) ≤ C

(
∥V u∥Lp

−q−2(Mσ0/2) + ∥f∥Lp
−q−2(Mσ0/2) + ∥u∥

L
2n

n−2 (Mσ0/2)

)
≤ C

(
∥V ∥Lp

−q−2(Mσ0
) sup
Mσ

|u|+ ∥f∥Lp
−q−2(Mσ0

) + ∥u∥
L

2n
n−2 (Mσ0/2)

)
.

By choosing ε0 small enough, ∥V ∥Lp
−q−2

(Mσ0
) will be small enough so that we have

sup
Mσ

|u|+ ∥u∥W 2,p
−q (Mσ0 )

≤ 2C

(
∥f∥Lp

−q−2(Mσ0
) + ∥u∥

L
2n

n−2 (Mσ0/2)

)
. (11.2.11)

It only remains to estimate ∥u∥
L

2n
n−2 (Mσ0/2)

. Using the Sobolev inequality and integrating by
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parts as we did for w above,

C−1
σ0/2

(∫
Mσ0/2

|u|
2n

n−2 dµg

)n−2
n

≤
∫
Mσ0/2

(f − V u)u dµg

≤

(∫
Mσ0/2

|f |
2n

n+2 dµg

)n+2
2n
(∫

Mσ0/2

|u|
2n

n−2 dµg

)n−2
2n

+

(∫
Mσ0/2

|V −|n2 dµg

) 2
n
(∫

Mσ0/2

|u|
2n

n−2 dµg

)n−2
n

.

C−1
σ0/2

∥u∥2
L

2n
n−2 (Mσ0/2)

≤ ∥f∥
L

2n
n+2 (Mσ0

)
∥u∥

L
2n

n−2 (Mσ0/2)
+ ∥V −∥

L
n
2 (Mσ0

)
∥u∥2

L
2n

n−2 (Mσ0/2)
.

So long as ε0 <
1
2C

−1
σ0/2

, we can absorb the V − term to obtain

∥u∥
L

2n
n−2 (Mσ0/2)

≤ 2Cσ0/2∥f∥L 2n
n+2 (Mσ0

)
(11.2.12)

and the result follows.

Lemma 11.2.14. Let w ∈ W 2,p
−q (Mσ) for p > n. Then dw ∈ L2(Mσ) and if νg(w) = 0 on ∂Mσ,

then ∫
Mσ

(−∆gw)w dµg =

∫
Mσ

|dw|2g dµg.

Proof. By Morrey’s inequality, w ∈ C1
−q so both sides of the equality are defined. Furthermore,

integrating by parts on the compact domain {σ ≤ ρ ≤ r}, we pick up a boundary term

∫
|x|=r

νg(w)w dµSr,g.

By inspection the integrand is O(r−2q−1), so it must disappear in the limit since q > n−2
2 .

Because we will use them many times, we record some basic facts about conformal metrics

constructed using the previous proposition.

Proposition 11.2.15. Let (Mn, g, E) be a (p, q) asymptotically flat manifold with p > n, q > n−2
2 ,

and σ0 > 0. Let V be a smooth integrable function on M that is compactly supported in Mσ0 . There

exists a constant ε0 > 0, depending only on n, p, q, and the C1,α
−q (Mσ0/2) norm of g − g, such that if

∥V −∥
L

n
2 (Mσ0 )

+ ∥V ∥Lp
−q−2(Mσ0

) + ∥V ∥
L

2n
n+2 (Mσ0

)
< ε0,
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then there exists a globally defined function u on M such that

−a∆gu+ V u = 0,

everywhere, where a = 4n−1
n−2 , such that u − 1 ∈ W 2,p

−q (Mσ0). Moreover, u has positive upper and

lower bounds, and we can define the metric g̃ = u
4

n−2 g. This metric g̃ is asymptotically flat of

Sobolev type (p, q), with scalar curvature

Rg̃ = (Rg − V )u−
4

n−2 (11.2.13)

and ADM mass

mADM(E , g̃) = mADM(E , g)− 1

2(n− 1)ωn−1

∫
M

V u dµg. (11.2.14)

Proof. We first invoke Proposition 11.2.12 with f = −V to see that for any σ ∈ (0, σ0) that is a

regular value of ρ, there exists solution uσ to the problem

−a∆guσ + V uσ = 0 in Mσ (11.2.15)

νg(uσ) = 0 on ∂Mσ, (11.2.16)

uσ − 1 ∈W 2,p
−q (Mσ) (11.2.17)

Using the global estimates (11.2.10) together with local elliptic theory, it follows that for some

sequence of σ’s converging zero, the uσ’s converge locally in W 2,p to some globally define function

u. By (11.2.10) and smallness of ε0, we can ensure that u has a positive upper and lower bound.

(In fact, we can choose 1
2 < u < 3

2 .) The formula (11.2.13) follows from the standard formula for

scalar curvature of a conformal metric.

It is a standard fact that (1 + v)
4

n−2 − 1 ∈ W 2,p
−q if v ∈ W 2,p

−q [Kuw90, Lemma 2.2(i)]. We claim

that (u
4

n−2 − 1)gij ∈W 2,p
−q , for then

g̃ij − δij = (u
4

n−2 gij − 1)gij + (gij − δij) ∈W 2,p
−q .

It is an easy matter to check that the claim is true, and thus g̃ is asymptotically flat of Sobolev type

(p, q).

Since V is integrable, (11.2.13) implies that Rg̃ is as well. To compute the mass of g̃, we compute
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the masses of the metrics g̃σ = u
4

n−2
σ g on Mσ. A standard computation shows that

mADM(E , g̃σ)−mADM(E , g) = lim
r→∞

−2

(n− 2)ωn−1

∫
|x|=r

νg(uσ) dµSr,g

=
−2

(n− 2)ωn−1

∫
Mσ

∆guσ dµg

=
−1

2(n− 1)ωn−1

∫
M

V uσ dµg,

where the inner boundary term of the integration by parts vanishes due to the Neumann condition

for uσ. The formula (11.2.14) now follows because mADM(E , g̃σ) → mADM(E , g̃) by Lemma 11.2.6,

and the corresponding integrals obviously as well since uσ → u uniformly on compact sets.

11.3 Proof of the density theorem, Theorem 11.1.1

Let (Mn, g, E), (p, q), ρ, ε, and K be as in the statement of Theorem 11.1.1 and Section 11.2.

Let χλ(x) = χ(x/λ) be the family of cutoff functions defined below Lemma 11.2.11. Define gλ =

χλg + (1 − χλ)g, where g is the background flat metric on E . We may take σ0 to be any positive

regular value of ρ such that K ⊂Mσ0
.

For 0 < σ < σ0 a regular value of ρ we consider the conformal Laplace-type equation

−a∆λuλ,σ + (Rλ − χλRg)uλ,σ = 0 in Mσ, (11.3.1)

νg(uλ,σ) = 0 on ∂Mσ,

uλ,σ → 1 on E ,

where uλ,σ : Mσ → R and ∆λ and Rλ refer to the Laplacian and scalar curvature of the metric gλ,

respectively. Setting vλ,σ = uλ,σ − 1, we therefore solve

−a∆λvλ,σ + (Rλ − χλRg)vλ,σ = −(Rλ − χλRg) in Mσ, (11.3.2)

νg(vλ,σ) = 0 on ∂Mσ,

vλ,σ ∈W 2,p
−q′(Mσ)

as in Proposition 11.2.12 and Proposition 11.2.15, where q′ ∈ ( 2n
n−2 , q). (The reason for the change

from q to q′ will become apparent in the proof.) To verify the hypotheses of these propositions, we

first require a basic integration lemma.
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Lemma 11.3.1. Let f ∈ Lp−q−2, where p > n and q > n−2
2 . Let Ai denote the dyadic annulus

2i ≤ |x| ≤ 2i+1. For any s ∈ [ 2n
n+2 , p] and i sufficiently large there exists a constant C independent

of f and i such that

∥f∥Ls(Ai) ≤ C2−ηi∥f∥Lp
−q−2

,

where η = q − n−2
2 > 0.

Proof. We first use Hölder’s inequality to estimate

(∫
Ai

|f |s dx
) p

s

≤ vol(Ai)
p
s−1

∫
Ai

|f |p dx

≤ C(2i)n(
p
s−1)

∫
Ai

|f |p dx.

Now

(2i)n(
p
s−1) =

(
(2i)

n
s −(q+2)

)p
·
(
(2i)q+2

)p
(2i)−n,

so that

(2i)n(
p
s−1)

∫
Ai

|f |p dx =
(
(2i)

n
s −(q+2)

)p ∫
Ai

|(2i)q+2f |p dx

(2i)n

≤ C
(
(2i)

n
s −(q+2)

)p ∫
Ai

||x|q+2f |p dx

|x|n

≤ C(2−iη)p∥f∥p
Lp

−q−2
.

Lemma 11.3.2. Assume the hypotheses and notation of Theorem 11.1.1. There exist constants C

and I with the following property. Let λi = 2i. Then for any i ≥ I and σ ∈ (0, σ0

2 ), there exists a

unique solution vλi,σ ∈W 2,p
−q′(Mσ) of (11.3.2) satisfying

lim
i→∞

(
sup
Mσ

|vλi,σ|+ ∥vλi,σ∥W 2,p

−q′ (Mσ0
)

)
= 0.

Proof. We apply Proposition 11.2.12 with g = gλi
and V = −f = Rλi

− χλi
Rg. We only need to

check that the relevant estimates are satisfied. To obtain the required weighted Lp smallness for the

potential V , we will be required to lower the decay rate from q to q′.

First, we claim that the constants in the pointwise decay for gλ, (11.2.3), are uniformly bounded.

Indeed, in coordinates,

gλ ij − δij = χλ(gij − δij)
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and

∂kgλ ij = ∂kχλ(gij − δij) + χλ∂kgij .

We clearly have

|gλ ij − δij | ≤ Cg|x|−q (11.3.3)

independently of λ. For the derivative, note that |∂χλ| ≈ λ−1 ≈ |x|−1 on spt(∂χλ), so

|∂kgλ ij | ≤ C|x|−1 · Cg|x|−q + Cg|x|−q−1, (11.3.4)

which is also uniform in λ.

We now claim that

lim
λ→∞

∥Rλ − χλRg∥Lp

−q′−2
= 0. (11.3.5)

The unweighted estimates for Rλi
− χλi

Rg then follow from Lemma 11.3.1 with s = n
2 and 2n

n+2 :

∥Rλi
− χλi

Rg∥
L

2n
n+2 ∩L

n
2
≤ C2−(q

′−n−2
2 )i∥Rλi

− χλi
Rg∥Lp

−q′−2
→
i→0

0.

A proof of (11.3.5) can be found in [Kuw90], for example, but we give the argument here for

completeness. It is easiest to compute Rλ−χλRg and note that the worst decaying second derivatives

of g cancel out. Indeed, we have

Rλ = ∂j(∂igλ ij − ∂jgλ ii) +O((gλ − δ)∂2gλ) +O((∂gλ)
2),

with summation over i and j implied in the first term on the right. This term can be expanded as

∂j(∂igλ ij − ∂jgλ ii) = χλ∂j(∂igij − ∂jgii) + ∂χλ∂g + ∂2χλ(g − δ)

= χλ∂j(∂igij − ∂jgii) +O(|x|−q−2).

For first derivatives we again have |∂gλ| ≤ C|x|−q and for second derivatives

∂2gλ = ∂2 (χλ(g − δ)) = ∂2χλ(g − δ) + ∂χλ∂(g − δ) + χλ∂
2g

= χλ∂
2g +O(|x|−q−2).

Here all instances of Landau notation occur with implied constants independent of λ. Putting
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everything together, we find that

|Rλ − χλRg| ≤ C|x|−q−2 + C|x|−q|∂2g|

when λ ≤ |x| ≤ 2λ and this difference vanishes everywhere else. For the second term, we have

∥|x|−q∂2g∥Lp
−q−2({λ≤|x|≤2λ}) ≤ Cλ−q → 0,

so the same is true with decay q′ < q. Now q′ becomes crucial for the first term, since we have

∥|x|−q−2∥p
Lp

−q′−2
({λ≤|x|≤2λ}) ≤ C

∫ 2λ

λ

r−p(q−q
′)−1 dr ≤ Cλ−p(q−q

′) → 0.

This completes the proof of the claim and hence the lemma follows.

Proof of Theorem 11.1.1. For λi = 2i, let uλi be the functions whose existence is guaranteed by

applying Proposition 11.2.15 to the metric gλi
with V = Rλ − χλRg, and let g̃i = u

4
n−2

λi
gλi

. By

construction, these are harmonically flat and ε-close to g in the asymptotic topology and on K. We

first check part (i) of Definition 11.2.7. This follows from smallness of gλi − g and uλi − 1 in W 2,p
−q .

As the second claim is a part of the package in Proposition 11.2.15, we only need to prove the first.

First, we observe that

∥gλ − g∥W 2,p
−q

≤ C∥χλ − 1∥C2∥g − δ∥W 2,p
−q

≤ C.

Then we note that spt(gλ − g) ⊂ {|x| ≥ λ}, which implies

∥gλ − g∥p
Lp

−q′−2

=

∫
|x|≥λ

|x|−(q−q′)||x|q|gλ − g|p dx

|x|n
≤ Cλ−(q−q′) → 0.

Similar considerations apply to the derivatives and hence part (i) is proved. By (11.2.13), the scalar

curvature is given by

Rg̃i = χλi
Rgu

4
n−2

λi
.

From this we see that Rg̃i(x) ≥ 0 whenever Rg(x) ≥ 0. We now prove part (ii). We have

Rg̃i −Rg = χλi
Rgu

4
n−2

λi
−Rg

= χλi
(u

4
n−2

λi
− 1)Rg + (χλ − 1)Rg.
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For the first term, we estimate

∫
E
χλi |u

4
n−2

λi
− 1||Rg| ≤ sup |u

4
n−2

λi
− 1|

∫
E
|Rg| → 0.

For the second term, we have

∫
E
|χλ − 1||Rg| ≤

∫
|x|≥λ

|Rg| → 0

by elementary measure theory. Part (iii) now follows from parts (i) and (ii) together with Lemma 11.2.6.

Since K is compact, the cutoff region |x| ≥ 2i misses K for i sufficiently large and there exists

constant C such that supK |Rg| ≤ C. It follows that

sup
K

|Rg̃i −Rg| ≤ C sup
K

|1− u
4

n−2

λi
| = o(1)

as i→ ∞, where o(1) follows from the estimate (11.2.10) for vλ,σ.

11.4 Pushing the scalar curvature up and down

In this section we explicitly describe a well-known mechanism for increasing or decreasing mass

by making appropriate conformal changes. The precise statements, which we prove are valid in

the context of incomplete manifolds, will be required in our proof of rigidity in the positive mass

theorem, and in Corollary 9.3.4.

Proposition 11.4.1 (Pushing down). Let (Mn, g) be an asymptotically flat manifold of Sobolev type

(p, q). Suppose Rg > 0 somewhere on M . For any ε > 0, there exists a (p, q) Sobolev asymptotically

flat metric g̃ on M which is ε-close to g in the asymptotic topology, with spt(R−
g̃ ) = spt(R−

g ) and

mADM(E , g̃) < mADM(E , g).

Proof. Let B be a ball on which Rg > 0. Let η be a smooth cutoff function for B such that 0 < η < 1

on B and η = 0 on M \B. For δ > 0 we now solve the equation

−a∆guδ + δηRguδ = 0

for uδ − 1 ∈ W 2,p
−q (M) in the sense of Proposition 11.2.12 and Proposition 11.2.15. The relevant
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norms are O(δ), so for δ sufficiently small we obtain a unique solution of this equation with the

desired asymptotic behavior. Our previous computation shows that

R(u
4

n−2

δ g) = (1− δη)Rgu
− 4

n−2

δ .

Since 1−δη > 0, the sign of the scalar curvature remains pointwise unchanged. Finally, by (11.2.14),

we have

mADM(E , g̃δ)−mADM(E , g) = − 1

2(n− 1)ωn−1

∫
M

δηRguδ dµg < 0,

so the mass strictly decreases.

Proposition 11.4.2 (Bumping up). Let (Mn, g) be an asymptotically flat manifold of Sobolev type

(p, q) with nonnegative scalar curvature on E. Let f : R → [0, 1] be an exponentially decreasing

smooth function with f(x) > 0 for x > 2r0 and f vanishing on M \ E. For sufficiently small ε > 0,

depending only on f and ∥g − δ∥W 2,p
−q (E), there exists a (p, q) Sobolev asymptotically flat metric g̃

which is ε-close to g in the asymptotic topology and satisfies spt(R−
g̃ ) ⊂ spt(R−

g ) and Rg̃(x) ≥ cf(|x|)

for |x| ≥ 2r0 and a constant c > 0 depending only on ε and the other stated parameters.

Proof. For δ > 0 we solve the equation

−a∆guδ − δfug = 0

in the sense of Proposition 11.2.12 and Proposition 11.2.15. The norms are again O(δ), so we can

solve the equation with the desired asymptotics, for δ small depending on f , the geometry, and ε.

The scalar curvature of the conformal metric is

R(g̃δ) = (Rg + δf)u
− 4

n−2

δ .

For δ small depending only on the allowable parameters, uδ ≤ 2. It follows that R(g̃δ) ≥ δ2−
4

n−2 f .

Finally, we note that the mass strictly increases in this process.
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11.5 Analogy between µ-bubbles and MOTS

Recall from Section 10.2.1 that a hypersurface Σ in an initial data set (Mn, g, k) with distinguished

choice of normal ν is a marginally outer trapped surface (MOTS) if

θ+ = H + P = 0,

where H is the mean curvature and P = trΣ k = (gij − νiνj)kij . MOTS do not satisfy a variational

criterion,1 but there is a naturally associated stability operator [AMS05]

L = −∆φ+ 2⟨WΣ,∇u⟩+ (divΣWΣ − |WΣ|2 +QΣ)φ,

where WΣ = k(ν, ·) restricted to TΣ,

QΣ = 1
2RΣ − µ− ⟨J, ν⟩ − 1

2 |kΣ +A|2,

where kΣ is k restricted to TΣ. A MOTS is stable if λ1(L) ≥ 0.2 Closely related is the symmetrized

MOTS stability operator of Galloway–Schoen [GS06]

Lsym = −∆Σ +QΣ.

Notably, Galloway and Schoen showed that λ1(L) ≤ λ1(Lsym) for any MOTS. We now explain a

relationship between stable MOTS and stable µ-bubbles.

Definition 11.5.1. Given (M, g, h) as in Definition 9.3.7, we define a data set (M ′, g, kh) by taking

M ′ .= {|h| <∞} and setting

kh
.
= − h

n− 1
g.

The first observation is that if Σ is any hypersurface in M ′, then P = −h, so that

θ+ = H − h,

and thus Ω is a µ-bubble with respect to (M, g, h) if and only if ∂Ω is a MOTS with with respect to

(M ′, g, kh). In fact, more is true.

1That is, there is no operator defined on the space of hypersurfaces or boundaries whose critical points are MOTS.
2The operator L is not self-adjoint, but it still has a real principal eigenvalue and an associated real positive

eigenfunction. See [AMS05].
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Proposition 11.5.2. Let (M, g, h) and Σ = ∂Ω smooth be as in Definition 9.3.7. Then:

1. Σ is a stable µ-bubble if and only if Σ is a stable MOTS with respect to (g, kh).

2. (g, h) satisfies condition (⋆),

Rg +
n
n−1h

2 − 2|∇h| ≥ 0,

if and only if (g, kh) satisfies the dominant energy condition.

Proof. The first thing to note is that WΣ = 0 for our choice of k. Therefore, L = Lsym in this

setting. To compute QΣ, we note the following, which the reader may easily verify:

tr k = − n
n−1h,

|k|2 = n
(n−1)2h

2,

∇jkij = − 1
n−1∇ih,

∇i tr k = − n
n−1∇ih.

It follows that

2µ = Rg +
n
n−1h

2

J i = ∇ih.

Putting these together yields

2(µ+ ⟨J, ν⟩) = Rg +
n
n−1h

2 + 2⟨∇h, ν⟩,

2(µ− |J |) = Rg +
n
n−1h

2 − 2|∇h|,

The second equation verifies part (2). To complete the proof of part (1), if Ω is a µ-bubble, then

H = h, and we can see that

|kΣ +A|2 = 1
n−1h

2 − 2
n−1hH + |A|2

= − 1
n−1h

2 + |A|2.

Thus

QΣ = 1
2RΣ − 1

2Rg −
1
2 |A|

2 − 1
2h

2 − ⟨∇h, ν⟩,
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and we can explicitly see that the MOTS stability inequality λ(Lsym) ≥ 0 is the same as the µ-bubble

stability inequality (9.3.3).

Using this, we observe that Lemma 9.3.8 can be seen as a special case of the existence theorem

for stable MOTS.

Proof of Lemma 9.3.8 using MOTS. Since h → ±∞ as we approach ∂±M , hypersurfaces foliating

a small neighborhood of ∂M+ and ∂M− will be strictly trapped and untrapped, respectively. Hence

we may apply the MOTS existence theory of L. Andersson, M. Eichmair, and J. Metzger [Eic09;

AM09; AEM11] to find a nontrivial MOTS in M0. By part (1) of Proposition 11.5.2, this gives us

the desired nontrivial stable µ-bubble.

This is a more complicated proof of the lemma, but it illustrates the general principle of the

analogy.

11.5.1 Proof of the quantitative shielding theorem

We now use this viewpoint to give a very short proof of the quantitative shielding theorem, Theo-

rem 9.3.3, which we restate here for the convenience of the reader.

Theorem 11.5.3 (Quantitative shielding theorem). Let (Mn, g), 3 ≤ n ≤ 7, be an asymptotically

flat manifold of Sobolev type (p, q), with p > n and q > n−2
2 , not assumed to be complete or to have

nonnegative scalar curvature everywhere. Let U0, U1, and U2 be neighborhoods of an asymptotically

flat end E such that U2 ⊂ U1, U1 ⊂ U0, and U0 \ E is compact, and let

D0 = distg(∂U0, U1) and D1 = distg(U2, ∂U1).

If the following hold:

1. g has no points of incompleteness in U0,

2. Rg ≥ 0 on U0, and

3. the scalar curvature satisfies the largeness assumption

Rg >
4

D0D1
on U1 \ U2, (11.5.1)

then the ADM mass of the asymptotically flat end E is strictly positive.
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Proof. We construct a potential function h. Let ε > 0 be small enough so that ε < 1
n−1 and

Rg >
4(1 + ε)

(D0 − 2ε)D1
(11.5.2)

on the compact set U1 \ U2. Let ρ = distg(x, U1) and let ρ̃ be a smoothing of ρ on U0 such that ρ

also vanishes on U1 and the following inequalities hold:

• supU0
|ρ̃− ρ| < ε,

• |∇ρ̃| < 1 + ε.

One can construct ρ̃ by mollifying the Lipschitz distance function from the ε/2-neighborhood of

U1. Also, let ϑ be a smooth cutoff function such that ϑ = 1 on M \ U1, ϑ = 0 on U2, and

|∇ϑ| ≤ (1 + ε)D−1
1 on U1 \U2. To see that such a ϑ exists, first construct a Lipschitz function that

is 1 and 0 on neighborhoods of M \ U1 and U2, respectively, and then mollify.

Now select any α between D0 − 2ε and D0 − ε such that the level set ρ̃−1(α) is smooth. Then

we define

h1(x) =


2

α−ρ̃ if ρ̃(x) < α

+∞ if ρ̃(x) ≥ α

and

h = ϑh1.

We claim that this choice of h satisfies condition (⋆). Note that M0 = {h <∞} is contained

in U0, so there are three regions to analyze: U2, U1 \ U2, and U0 \ U1. The potential h vanishes

identically on U2, so (⋆) is trivially satisfied since Rg ≥ 0 on U2. On the region U1 \ U2, h1 is a

constant equal to 2
α , so we have

n
n−1h

2 − 2|∇h| ≥ −4(1 + ε)

αD1
. (11.5.3)

Combining this with (11.5.2) and the definition of α, we see that condition (⋆) holds in this region

as well. Finally, on U0 \ U1, we have

2|∇h| = 4

(α− ρ̃)2
|∇ρ̃| ≤ 4

(α− ρ̃)2
(1 + ε) = (1 + ε)h21 ≤ n

n−1h
2
1

Since Rg ≥ 0 on U0, we see that (⋆) holds on U0 \ U1, and hence we have shown that it holds

everywhere.
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By Proposition 11.5.2, we observe that (g, kh) defines asymptotically flat initial data on M0 that

satisfies the dominant energy condition, and moreover, since ∂M0 is smooth, the level sets of h near

∂M0, where h is large, must be strictly outer trapped surfaces. The strict positivity of mADM(E , g)

now follows immediately from Theorem 9.2.2.

Finally, we note that Theorem 9.2.2 requires C2
−q decay of the metric rather than the Sobolev

decay as in Definition 11.2.4, but Theorem 11.1.1 can be used to assume we have this decay without

loss of generality when proving the nonnegativity of mass. It is easy to see that strict positivity

follows from nonnegativity using the pushing down technique Proposition 11.4.1.

We can now also prove Corollary 9.3.4, which we restate here for the convenience of the reader.

Corollary 11.5.4. Let (Mn, g), 3 ≤ n ≤ 7, be a Riemannian manifold, not assumed to be complete,

with an asymptotically flat end E of Sobolev type (p, q), where p > n and q > n−2
2 . IfmADM(E , g) < 0,

then there exists a constant D, depending only on mADM(E , g) and ∥g−δ∥W 2,p
−q (E), with the following

property. In the D-neighborhood ND(E) of E, one or both of the following must be true:

1. Rg < 0 somewhere in ND(E), or

2. ND(E) contains an incomplete point.

Proof. Apply Proposition 11.4.2 with an arbitrarily chosen f and with ε sufficiently small that

mADM(E , g̃) < 0. Then we know that the hypotheses of Theorem 9.3.3 are violated in N g̃
D(E) for

g̃, where D is such that (9.3.1) is satisfied on some annular region where f > 0. However, g̃ does

not have any new points of negative scalar curvature and no new incomplete points, so one of

the hypotheses must be violated for g in N g̃
D(E) as well. Since g and g̃ are uniformly equivalent,

N g̃
D(E) ⊂ Ng

D′(E) for some D′ close to D.

11.5.2 Proof of the positive mass theorem with arbitrary ends

We now prove the main theorem of this chapter, Theorem 9.3.1, which we restate here for the

convenience of the reader.

Theorem 11.5.5 (The positive mass theorem with arbitrary ends). Let (Mn, g), 3 ≤ n ≤ 7,

be a complete manifold with nonnegative scalar curvature and at least one asymptotically flat end

E of Sobolev type (p, q), where p > n and q > n−2
2 . Then the ADM mass of E is nonnegative.

Furthermore, if the mass is zero, then (M, g) is isometric to Euclidean space.
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Proof. We first prove the inequality mADM(E , g) ≥ 0. Suppose otherwise. By bumping the scalar

curvature up with Proposition 11.4.2, we obtain a new asymptotically flat metric g̃ with Rg̃ > η for

|x| ∈ [3r0, 4r0] and negative mass. Therefore, taking U0 = {|x| > 4r0}, U1 = {|x| > 3r0}, and U0 a

sufficiently large open set containing U1, we obtain a contradiction to Theorem 9.3.3.

We now prove rigidity, which roughly follows the standard conformal approach, except that we

use our new results from Section 11.2 and Section 11.4. Assume mADM(E , g) = 0. First we claim

that g is scalar-flat. Otherwise we can use Proposition 11.4.1 to obtain a new metric which still has

nonnegative scalar curvature but has negative mass, contradicting the positive mass inequality that

we already proved. Next, we show that g is Ricci-flat as well.

Let η be a compactly supported cutoff function and t ∈ R. We consider the deformed metrics

gt = g + tηRicg. For t sufficiently small, these will indeed be Riemannian metrics and will satsify

the analytic hypotheses of Section Section 11.2 uniformly. We solve the equations

−a∆gtut +Rgtut = 0

to obtain a scalar-flat metric g̃t := u
4

n−2

t gt. One can see that this is possible by Proposition 11.2.12

and Proposition 11.2.15, for |t| sufficiently small. By the positive mass inequality for g̃, we know

that mADM(E,g̃t)
t ≥ 0 for t > 0 and mADM(E,g̃t)

t ≤ 0 for t < 0. Then by (11.2.14), we can see that

− 1

2(n− 1)ωn−1
lim
t→0

1

t

∫
M

Rgtut dµgt = lim
t→0

mADM(E , g̃t)
t

= 0.

Using the dominated convergence theorem and the calculation as in [Lee19, page 96], we can also

see that

lim
t→0

∫
M

Rgt
t
ut dµgt =

∫
M

η|Ricg|2,

Combining the two equalities above, we see that Ricg = 0 on the support of η. Since η was arbitrary,

this implies g is Ricci-flat.

Now we show that (M, g) has only one end. If M has a second end, then it contains a geodesic

line γ which goes out to infinity along the asymptotically flat end [Pet16]. By the Cheeger–Gromoll

theorem, (M, g) splits isometrically along this line as (R×N, dt2+h). Concretely, there is a smooth

function f : M → R whose level sets foliate M and are all isometric to (N,h), the isometry being

the gradient flow of f . If N is not flat, then there exists a ball B ⊂M such that

∫
B

|Rmg|p dµg > 0. (11.5.4)
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We flow B along the gradient flow of f in the direction of the asymptotically flat end. Since the

gradient flow is an isometry, the distance between the ball and γ is unchanged, as is the integral

(11.5.4). But Rmg ∈ Lp(E), so the integral (11.5.4) must limit to zero along a sequence as the ball

goes further and further out, which is a contradiction.

SinceN is flat, it is either isometric to Rn−1 or a nontrivial quotient, in which case π1(N) ̸= 0. We

must rule out the latter case. Let ℓ be a homotopically nontrivial loop in N . Then γ is contained

in some compact ball and we can push it along the line γ. It enters E ≈ R × Sn−1 and can be

contracted, a contradiction.

We conclude that (M, g) cannot have two or more ends. We now show that (Mn, g) is flat. Take

a point p ∈M and consider the volume ratio

V (r) =
volg(Br(p))

αnrn
.

We have

lim
r→0

V (r) = lim
r→∞

V (r) = 1.

The limit as r → 0 is true for any manifold, the limit as r → ∞ is a consequence of one-endedness and

asymptotic flatness. A careful proof can be found in [Li18, Lemma 2.6]. Now the Bishop–Gromov

volume comparison theorem implies V (r) = 1 for any r and hence (M, g) is flat.

11.5.3 A positive mass theorem with a non-mean convex boundary

The second proof has the following immediate application to manifolds with boundary. We assume

that M now has a non-mean convex 3 boundary with respect to the normal pointing out of the

manifold.4

Theorem 11.5.6. Let (Mn, g), 3 ≤ n ≤ 7, be a complete asymptotically flat manifold with nonempty

compact boundary ∂M . Set U0 =M , and let U1, U2, D0, D1 be as in Theorem Theorem 9.3.3, with

the exception of item (3). If we instead assume that

1. Rg > κ on U1 \ U2 for a positive constant κ,

2. the parameters satisfy κ < 4
D0D1

(see Remark Remark 11.5.7 below), and

3Traditionally, the boundary mean curvature in the Riemannian PMT is measured with respect to the outward
normal. However, in view of conventions used in the spacetime positive mass theorem with boundary (see [GL21;
LLU22]), we opt to state Corollary Theorem 11.5.6 with respect to the inner pointing normal.

4The case of mean convex boundaries is already implicitly contained in the original work of Schoen–Yau [SY79a;
SY81b].
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3. the mean curvature of ∂M with respect to the normal pointing into M satisfies

H <
2κD1

4− κD0D1
, (11.5.5)

then the ADM mass is strictly positive.

Remark 11.5.7. Fixing D0 and D1 in (11.5.5) and letting κ → 0 recovers the classical condition

H ≤ 0. If κ ≥ 4
D0D1

, then Theorem Theorem 9.3.3 applies without any consideration of the

boundary mean curvature.

Proof. The goal of this proof is to choose α so that ∂M is outer trapped with respect to the data

set (g, kh), while maintaining the DEC. The result then follows from the spacetime positive mass

theorem with boundary, as above.

According to (11.5.3), we can maintain DEC, which is equivalent to (⋆), by setting

α =
4(1 + ε)

κD1
.

Meanwhile, ∂M being outer trapped means that H < min∂M h, so we compute

min
∂M

h ≥ 2

α−D0 + ε
=

2
4(1+ε)
κD1

−D0 + ε
.

Taking ε→ 0 yields the desired bound appearing in Theorem Theorem 11.5.6.

From here we can now invoke again Theorem 9.2.2. Although that result assumes C2
−q decay, we

can again reduce to this case using Theorem 11.1.1.

11.6 Proof of the Liouville theorem for locally conformally

flat manifolds

In this section, we give a proof of Theorem 9.4.1 using Theorem 9.3.1. This is not excactly how the

original proof in [LUY20] proceeded, but rather follows the original intention of Schoen and Yau in

[SY88].

338



11.6.1 Existence of the conformal Green’s Function

Recall the conformal laplacian

Lu
.
= −a∆u+Rgu,

where a = 4(n − 1)/(n − 2). In this section we prove the existence of a unique minimal Green’s

function for L on certain open manifolds.

Proposition 11.6.1. Let (M, g) be a complete Riemannian manifold of dimension n ≥ 3 which

admits a developing map Φ : M → Sn. For any p ∈ M , there is unique minimal and positive

Green’s function for the conformal Laplacian with pole p. It is C∞ away from p and satisfies

LG = aδp

in the sense of distributions.

Here minimal means that if G′ is any other positive Green’s function for the conformal Laplacian

with pole p, G ≤ G′ on M \ {p}. The proof of Proposition 11.6.1 is outlined in [SY88, Corollary 1.3]

and [SY94, Proposition VI.2.4].

Sketch of Proof. Let Ωi ↗ M be a compact exhaustion with p ∈ Ωi a common point. On each

domain Ωi there is a unique Dirichlet Green’s function Gi for the conformal Laplacian with pole p.

Near p, we have

Gi(x) =
cn
rn−2

(1 + o(1)),

where c−1
n = n(n−1)|Bn1 |. This is classical, but a careful proof can be found in [DHR04, Appendix A].

Since each Gi has the same growth rate at p, the maximum principle shows Gi ≤ Gi+1 pointwise.5

We wish to define G to be the limit of this monotone sequence, but we first need a barrier to prove

that G is finite away from p.

Since Φ : M → Sn is conformal, Φ∗g0 = |dΦ|2g, where g0 is the round metric on Sn. Let

y = Φ(p) and denote by H the conformal Green’s function of (Sn, g0) with pole y. One can check

that

LH =
∑

q∈Φ−1(y)

|dΦ(q)|−
n−2
2 aδq

5This argument is a bit subtle. Since we are not assuming any sign condition on Rg , the operator L does not
actually satisfy the maximum principle. It is a nontrivial theorem that L is a positive operator on Ωi for i sufficiently
large [SY94, Theorem VI.2.2]. Therefore, one can make a conformal change to positive scalar curvature and then
apply the maximium principle, making crucial use of the conformal invariance of the conformal Green’s function.
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in the sense of distributions, where H := |dΦ|n−2
2 H ◦Φ. Rescaling by an overall constant, we obtain

a function G with poles located at every point in Φ−1(y) and such that

LG =
∑

q∈Φ−1(y)

bqaδq, bq > 0, bp = 1.

Using G as a barrier, it can be shown that G < ∞ away from Φ−1(y). That G is bounded near

each point in Φ−1(y) \ {p} follows from the Harnack inequality applied to the sequence {Gi}. Since

the sequence {Gi} converges uniformly away from p, it is not hard to now show that LG = aδp.

Remark 11.6.2. It follows from this construction that

G =
cn
rn−2

(1 + o(1)).

Indeed, G is dominated by G, which has this growth.

11.6.2 Blowing up and finishing the proof

We will use the Green’s function G as a conformal factor to obtain an asymptotically flat manifold.

In the following lemma we establish a precise decay rate.

Lemma 11.6.3. The function v = G/G is a positive harmonic function with respect to the metric

g = G
4

n−2 g, smooth across p, and for any normal coordinate system {xi} centered at p,

v = 1 + crn−2 + o(rn−2)

for some constant c, where r = |x|.

Proof. We outline the steps already contained in [SY88; SY94]. Let π : Sn \ {y} → Rn be the

stereographic projection. Since the Green’s function H on (Sn, g0) is actually just the conformal

factor associated to stereographic projection, π∗δ = H
4

n−2 g0, where δ is the flat metric on Rn. It

follows that Φ∗π∗δ = g.

It is easy to see that v is harmonic with respect to g and also that

v(p) = lim
x→p

G(x)

G(x)
= 1,

see Remark 11.6.2. Setting h = v − 1, L(hG) = 0 since hG = G−G. It follows from the removable

singularities theorem for elliptic equations that hG extends smoothly over p. For convenience we
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set f = hG. Then h = fG−1. Since f is C∞ and we have the expansion G = cnr
2−n + o(r2−n), it

follows that h = crn−2 + o(rn−2).

Proof of Theorem 9.4.1. As shown in [SY88; SY94], Φ is injective and ∂Φ(M) has zero Newtonian

capacity if and only if v ≡ 1. The conformal blowup

g̃ε
.
= (G+ ε)

4
n−2 g,

is a complete metric on M̃ = M \ {p}. The formula for scalar curvature under a conformal defor-

mation implies

R(g̃ε) = (G+ ε)−
n+2
n−2Lg(G+ ε) = (G+ ε)−

n+2
n−2 εR(g) ≥ 0.

In a neighborhood of p,

g̃ε =

(
v +

ε

G

) 4
n−2

g = Φ∗π∗
(
v

4
n−2
ε δ

)
,

where vε : Rn \B → (0,∞) satisfies

vε ◦ π ◦ Φ = v +
ε

G
.

By the expansion of v shown in Lemma 11.6.3 and the expansion G = cnr
2−n + o(r2−n) it follows

(after performing a coordinate inversion) that

vε = 1 + cεr
2−n + o(r2−n)

for a constant cε which is proportional to the ADM mass. By Theorem 9.3.1, cε ≥ 0. Letting ε→ 0

shows that the ADM mass of g̃0 is nonnegative. It then follows immediately from a simple maximum

principle argument (see [SY88, Proposition 4.2]) that v ≡ 1, which completes the proof.
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[Bau+23] T. W. Baumgarte, B. Brügmann, D. Cors, C. Gundlach, D. Hilditch, A. Khirnov, T.

Ledvinka, S. Renkhoff, and I. S. Fernández. “Critical phenomena in the collapse of

gravitational waves”. Physical Review Letters 131.18 (2023), p. 181401.
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