
Extremal black hole formation as a critical phenomenon

Ryan Unger

Stanford University & UC Berkeley

30th SCGAS, UC Irvine, February 2025

joint work with Christoph Kehle (MIT)

1 / 24



Outline

1. Lightning review of general relativity and gravitational collapse

2. Critical phenomena in gravitational collapse

3. A new phenomenon: extremal critical collapse (and a bit of the construction)

4. The conjectured structure of moduli space near extremality

2 / 24



General relativity

Our setting today is Einstein’s theory of general relativity. A spacetime consists of
a 4-manifold M3+1 and a Lorentzian metric g satisfying the Einstein field equations

Ric(g)− 1
2
R(g)g = 2T ,

where T is the energy-momentum tensor of matter (scalar field, perfect fluid, kinetic
model, ...).

Example: Minkowski space. M3+1 = R3+1
t,x,y,z and

g = −dt2 + dx2 + dy2 + dz2

This metric describes the geometry of special relativity with speed of light c = 1.

Given a vector v ∈ TpM:

I g(v , v) < 0, v is timelike

I g(v , v) = 0, v is null

I g(v , v) > 0, v is spacelike

Curves with null or timelike tangent vector let us define causality on a spacetime.
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General relativity is a dynamical theory

Ric(g)− 1
2
R(g)g = 2T (ψ)

In appropriate coordinates, the Einstein equations constitute a system of nonlinear
wave equations for the spacetime metric g and matter fields ψ:

gαβ∂α∂βgµν +N (g , ∂g) = terms involving ψ

& evolution equation for ψ

Theorem (Choquet-Bruhat–Geroch ’52, ’69).
Any Cauchy data set (Σ3, ḡ , k̄, ψ̄) for the Einstein equations coupled to a suitable
matter model extends to a unique maximal “globally hyperbolic” development:

(Σ3, ḡ , k̄, ψ̄)
!
↪→ (M3+1, g , ψ).

Given the state of the universe (the gravitational field and matter fields) at one instant
of time, Einstein’s equations uniquely determine its evolution for all later times.

Example: Minkowski space is the unique evolution of (R3, δ, 0, 0), which is
geodesically complete and dispersive.

In this talk, we consider asymptotically flat data on Σ3 ∼= R3.
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Death of a star in general relativity
Lemâıtre ’33, Oppenheimer–Snyder ’39, Penrose ’65, solution of the

Einstein–Euler equations:

A black hole is a region of spacetime which cannot be seen by ”far away” observers
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Death of a star in general relativity: gravitational collapse
Lemâıtre ’33, Oppenheimer–Snyder ’39, Penrose ’65, solution of the

Einstein–Euler equations:

geodesically incomplete!

A black hole is a region of spacetime which cannot be seen by “far away” observers
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Trapped surfaces and geodesic incompleteness

Definition (Penrose ’65).
A spacelike surface Σ2 ⊂M4 is trapped if its inner and outer null mean curvatures
(null expansions) are negative.

⇐⇒ Any deformation of Σ towards the future strictly decreases its area.

Penrose’s incompleteness theorem.
If an asymptotically flat spacetime contains a trapped surface and satisfies the null
energy condition,

Ric(X ,X ) ≥ 0 ∀X null ⇐⇒ T (X ,X ) ≥ 0 ∀X null,

then it is geodesically incomplete.

The property of having a trapped surface is stable, so this incompleteness is stable!
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Conjectural cartoon picture of moduli space

Critical collapse: study of the black hole formation threshold in moduli space

Minkowski space

future-complete spacetimes C

black hole spacetimes B
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Conjectural cartoon picture of moduli space

Critical collapse: study of the black hole formation threshold in moduli space (∂C/∂B)

Minkowski space

future-complete spacetimes C

black hole spacetimes B
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critical naked
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Extremal critical collapse

Theorem (Kehle–U. ’24).
There exist black hole spacetimes on the black hole formation threshold in the
Einstein–Maxwell–charged Vlasov model (self-gravitating charged collisionless plasma).

Moreover, these black holes are extremal.

This is the first rigorous construction of a critical solution in general relativity.
Curiously, these types of solutions were completely missed in numerical investigations.

I What are extremal black holes?

I What is the Einstein–Maxwell–charged Vlasov model?
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Extremal black holes

I Standard stationary BH solutions characterized by mass M, charge e, specific
angular momentum a

I Extremal BHs have maximal (e, a) given M

The Schwarzschild solution for mass M > 0:

gM = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1

dr2 + r2gS2

I Solves the Einstein vacuum equations

I Describes a static, nonrotating black hole
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Extremal black holes

I Standard stationary BH solutions characterized by mass M, charge e, specific
angular momentum a

I Extremal BHs have maximal (e, a) given M

The Reissner–Nordström solution for mass M > 0 and charge e ∈ R:

gM,e = −
(

1−
2M

r
+

e2

r2

)
dt2 +

(
1−

2M

r
+

e2

r2

)−1

dr2 + r2gS2

I Solves the Einstein–Maxwell equations
I Describes a static, nonrotating, charged black hole if |e| ≤ M

I |e| < M subextremal (includes Schwarzschild!)
I |e| = M extremal
I |e| > M superextremal (not a black hole!)

9 / 24



Extremal black holes and trapped surfaces

Fundamental fact.
The interior of a subextremal stationary black hole is foliated by trapped surfaces.
Extremal stationary black holes do not contain trapped surfaces, but are nevertheless
geodesically incomplete.

Penrose’s incompleteness theorem.
Trapped surfaces + Einstein’s equations =⇒ geodesically incomplete.

Corollary.
Subextremal black holes cannot model critical behavior in gravitational collapse.

Extremality is unavoidable in our theorem.
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Aside: the third law of black hole thermodynamics

I Nernst’s theorem in classical thermodynamics (1912): The temperature T of a
body cannot reach absolute zero in a finite process.

I Bardeen, Carter, and Hawking proposed in 1973 a fundamental analogy
between black hole mechanics and classical thermodynamics.

I Area of the event horizon A ⇐⇒ entropy S

I Surface gravity κ ⇐⇒ temperature T

κ(gM,e) =

√
M2 − e2

(M +
√
M2 − e2)2

The third law would imply that extremal black holes cannot form dynamically.

Theorem (Kehle–U. ’22).
Extremal black holes can form dynamically in the gravitational collapse of spherically
symmetric charged scalar field. The third law of black hole thermodynamics is false.
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The Einstein–Maxwell–charged Vlasov system
I Spacetime (M4, g), electromagnetic field F ∈ Ω2, dF = 0
I Distribution function f (x , p) ≥ 0 defined on

Pm .
= {(x , p) ∈ TM : gx (p, p) = −m2, p future directed},

models a collisionless gas of massive or massless particles with charge e
I GR version of the ubiquitous SR Vlasov–Maxwell model
I Einstein field equations:

Rµν − 1
2
Rgµν = 2

(
Fµ

αFνα − 1
4
gµνFαβF

αβ
)

︸ ︷︷ ︸
TEM
µν

+2

∫
Pm
x

pµpν f dµ︸ ︷︷ ︸
TVlasov
µν

I Maxwell’s equations:

∇αFµα = e

∫
Pm
x

pµf dµ︸ ︷︷ ︸
Nµ

, JEM = eN

I Vlasov equation:(
pµ

∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ
+ eFµαp

α ∂

∂pµ

)
f = 0

I f is constant along trajectories γ : I →M of the Lorentz force

γ̇ν∇ν γ̇µ = eFµν γ̇
ν ,

also known as electromagnetic geodesics
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Precise statement of the theorem

Theorem (Kehle–U. ’24).
There exist C∞ 1-parameter families of spherically symmetric solutions {Dλ}λ∈[0,1] to
the EMV system with the following properties:

1. D0 is Minkowski space.There exists λ∗ ∈ (0, 1) such that for λ < λ∗, Dλ is
geodesically complete and decays to Minkowski space.

2. If λ = λ∗, an extremal Reissner–Nordström black hole forms. The spacetime
contains no trapped surfaces.

3. If λ > λ∗, a subextremal Reissner–Nordström black hole forms. The spacetime
contains an open set of trapped surfaces.

Moreover, for every λ ∈ [0, 1], Dλ is past causally geodesically complete.
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Penrose diagrams of extremal critical collapse (massive particles)
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Corollary.
The very “black hole-ness” of an extremal black hole arising in gravitational collapse
can be unstable.
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Sketch of the proof: bouncing charged Vlasov beams

The problem is to construct charged Vlasov beams that:

I form a Reissner–Nordström exterior with specified parameters

I take advantage of EM repulsion and avoid getting too close to r = 0

I only form trapped surfaces where we want them to
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Toy model: Ori’s bouncing charged null dust

I Charged Vaidya metric: “time-dependent” Reissner–Nordström metric

g = −
(

1−
2M(v)

r
+

e(v)2

r2

)
dv2 + 2dvdr + r2gS2

I Ori (’91) realized the charged Vaidya metric is a solution of the
Einstein–Maxwell-charged null dust model (charged, massless, pressureless
perfect fluid with momentum k and density ρ)

gµνk
µkν = 0

Rµν − 1
2
Rgµν = 2

(
TEM
µν + ρkµkν

)
∇αFµα = eρkµ

kν∇νkµ = eFµνk
ν

∇µ(ρkµ) = 0,

provided we set

k =
e

ė

(
Ṁ −

eė

r

)
(−∂r ), ρ =

ė2

e2r2

(
Ṁ −

eė

r

)−1
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Toy model: Ori’s bouncing charged null dust

kµ =
dxµ

ds
, ∇kk

µ = eFµνk
ν

If (g ,F ) is spherically symmetric and k is radial, then k is an eigenvector of F
=⇒ k(s) can decay exponentially, x(s) has a limit point at r = eė/Ṁ as s → +∞

Proposition (Kehle–U. ’24).
There exists a procedure for generating bouncing charged null dust spacetimes where
the location of the bounce and initial and final Reissner–Nordström parameters can be
prescribed.
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Singular toy model: Ori’s bouncing charged null dust
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ECC in Ori’s model

Theorem (Kehle–U. ’24).
Ori’s charged null dust model exhibits extremal critical collapse.
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λ = λ∗: extremal BH λ > λ∗: subextremal BHλ < λ∗: dispersion
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Upshot

Studying this toy model does give valuable insight into constructing
smooth extremal critical collapse!

Theorem (Kehle–U. ’24).
Solutions of Ori’s model can be realized as suitable limits of C∞ solutions of the
spherically symmetric Einstein–Maxwell–charged Vlasov model (C1 for g and weak∗

for the matter).

In kinetic theory language, Ori’s model arises as a hydrodynamic limit of
Einstein–Maxwell–Vlasov.
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Construction of bouncing charged Vlasov beams
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Construction of bouncing charged Vlasov beams
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Construction of bouncing charged Vlasov beams
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Construction of bouncing charged Vlasov beams

i−

r
=

0

want this region to look like
a desingularized bouncing
Ori dust solution

approximate spacelike
bounce hypersurface
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Construction of bouncing charged Vlasov beams

i−

r
=

0

Birkhoff’s theorem
totally geodesic
spacelike hypersurface
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Construction of bouncing charged Vlasov beams

time symmetric!

r
=

0

particles have conserved
angular momentum `2 = r2/g(p, p)

charged null dust:
monokinetic Maxwell–Vlasov with ` = 0

bouncing charged null dust has p = 0
along the bounce hypersurface

initial data f0 needs to have p ≈ ` ≈ ε� 1
to behave like dust

|JEM| & 1 =⇒ f0 ≈ ε−3 (f ⇀ δ′(p) as ε→ 0)

dust approximation requires a singular ansatz for f0

f0 is given by an explicit formula
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Construction of bouncing charged Vlasov beams

strong main beam
` ≈ ε
∆Q ≈ M

r
=

0

the most important feature to resolve is the
outward acceleration near the bounce hypersurface

we employ a weak “auxiliary beam” to impart charge
0 < ε� η � 1 =⇒ stabilizes the main beam
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the auxiliary beam bounces due to
angular momentum repulsion, not charge

null structure: T uu , T uv better in ε than T vv

monotonicity: ∂uQ ≤ 0, ∂vQ ≥ 0

dispersion proved using energy estimates
at a late time v̆ � 1
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r
=

0

the most important feature to resolve is the
outward acceleration near the bounce hypersurface

we employ a weak “auxiliary beam” to impart charge
0 < ε� η � 1 =⇒ stabilizes the main beam

the auxiliary beam bounces due to
angular momentum repulsion, not charge

null structure: T uu , T uv better in ε than T vv

monotonicity: ∂uQ ≤ 0, ∂vQ ≥ 0

dispersion proved using energy estimates
at a late time v̆ � 1

weak aux beam
` ≈ 1
∆Q ≈ η

strong main beam
` ≈ ε
∆Q ≈ M

v = v̆

hierarchy of scales 0 < m� ε� η � v̆−1 � 1
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Conjectured stability of extremal critical collapse

Conjecture.
Extremal critical collapse is stable:

Let {Dλ} be one of the interpolating families given by [KU24]. Then there exists a C1

hypersurface Bcrit of the spherically symmetric moduli space M such that
Dλ∗ ∈ Bcrit ⊂ B, which has the following properties:

1. Bcrit is critical in the sense that B and C locally lie on opposite sides of Bcrit.

2. If D ∈ Bcrit, then D contains a black hole which asymptotically settles down to a
extremal Reissner–Nordström.

CB Bcrit

{D′λ}

{Dλ}
Dλ∗

B(r)

I This is also a nontrivial statement about interiors of extremal black holes

I Fundamental difficulty: Aretakis instability associated to extremal horizons
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The vacuum case: extremal critical collapse

In principle, extremal critical collapse, its stability, and the conjectured picture of
moduli space can be conjectured to also hold true in vacuum with extremal

Reissner–Nordström replaced by extremal Kerr.

However, this is a very difficult problem which also relates to understanding

I the formation of extremal black holes in vacuum (the case |a| � M has been
resolved in Kehle–U. ’23)

I the stability and codimension stability of subextremal and extremal black holes in
vacuum and without symmetry assumptions

I the nonlinear ramifications of horizon instabilities associated to extremal Kerr, in
particular the newly discovered azimuthal instabilities (Gajic ’23) which are
stronger than the Aretakis instability
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Minkowski space

future-complete spacetimes C

black hole spacetimes B

critical asymptotically
extremal black holes
Kehle–U. ’24

critical naked
singularities
Choptuik ’93

critical star-like solutions
Rein–Rendall–Schaeffer ’98

interpolating families

Thank you!
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